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Abstract 

Technical change, even if it is limited in scope, can have employment, output, price and wage 
effects that ripple through the whole economy. This paper uses a flexible and tractable 
framework, with heterogeneous workers and technologies, and many tasks to analyze the general 
equilibrium effects of technical change for a limited set of tasks. Output increases and price falls 
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substitution across tasks. For high elasticities, employment expands to a group of more skilled 
workers. Hence for tasks farther up the technology ladder, employment falls, output declines, 
and prices and wages rise. For low elasticities, employment at affected tasks contracts among 
less skilled workers, as they shift to complementary tasks with unchanged technologies. In all 
cases, the output, price and wage changes are damped for more distant tasks, both above and 
below the affected group.   
JEL Classification: D50, E24, O33, O40 
KEYWORDS: technical change, human capital, wages 
 
 
Department of Economics 
University of Chicago 
1126 E. 59th Street 
Chicago, IL 60637 
nstokey@uchicago.edu 
 
*I thank Daron Acemoglu, Ufuk Akcigit, Treb Allen, Marios Angeletos, Enghin Atalay, Gadi 
Barlevy, Marco Bassetto, Jess Benhabib, Katarina Borovickova, Paco Buera, Ariel Burstein, 
Raquel Fernandez, Xavier Gabaix, Larry Jones, Boyan Jovanovic, Joe Kaboski, Greg Kaplan, 
Rasmus Lentz, Jeremy Lise, Bob Lucas, Sydney Ludvigson, Jesse Perla, Steve Redding, Jose 
Scheinkman, Ananth Seshadri, Jaume Ventura, Gianluca Violante, and seminar participants at 
UCL, the University of Wisconsin, the Federal Reserve Bank of Philadelphia, the Becker-
Friedman Institute, the Stern School, the Federal Reserve Bank of Chicago, and CREi, for useful 
comments. 



1. INTRODUCTION

Technical change, even if it is limited in scope, can have employment, output, price

and wage e�ects that ripple through the whole economy. This paper uses a 
exible

and tractable framework, with heterogeneous workers and technologies, and many

tasks/goods, to analyze in detail the general equilibrium e�ects of technical change

for a limited set of tasks. Technology and human capital are assumed to be comple-

ments in production, so the labor market|which is competitive|produces positively

assortative matching between technologies and skills: tasks/goods with better tech-

nologies are produced by workers with more human capital. But the quantitative

allocation of workers to technologies is endogenous, determined by demands for the

tasks that are produced. Hence technical change for a limited set of tasks produces

changes in employment, output levels, prices and wages, for tasks and workers not

directly a�ected.

Why is a model of this type useful? Not only do wage di�erentials across skill or

occupational categories change over time, but even the trends shift. As documented

by Goldin and Katz (2007), and described both succinctly and accurately in their title,

the wage structure in the U.S. has seen \narrowing, widening, and polarizing" over

the last century.1 Explanations for these trends always involve shifts in the relative

supply of and demand for skill, with shifts in demand arising from technological

change. What has been missing from the discussion is a uni�ed way to analyze how

technology and skill are matched that is 
exible enough to accommodate all of these

1Ober (1948) documents in detail the narrowing of wage di�erentials over the period 1907-47;

Goldin and Margo (1992) describe the rapid compression in the 1940's, followed by a slow widening

in the 1950's and 1960's that accelerated in the 1970's and early 1980's; Katz and Murphy (1992)

show that the college premium rose slowly in the 1960's, fell during the 1970's and rose sharply in

the 1980's; and Autor, Katz and Kearney (2006), Machin and Van Reenen (2007), and Autor and

Dorn (2013) document labor market polarization after 1980.
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trends as possible outcomes. The usual model, which features two skill groups and

labor-augmenting technical change for each group, can explain narrowing or widening

of wage di�erentials (with skill-biased or unskilled-biased technical change), but is

inadequate to talk about polarizing.

The model here �lls this gap. It has many intermediate goods/tasks, which are

combined to produce a single �nal good. Tasks di�er in terms of their technology level,

so there is a one-dimensional technology ladder, and workers di�er in their human

capital, so there is also a one-dimensional skill ladder. All production functions display

constant returns to scale, and all markets are perfectly competitive, so �rms, as such,

play no role. A competitive equilibrium consists of an allocation of skill types to

tasks, and a supporting set of prices and wage rates. Complementarity between skill

and technology implies that the equilibrium features positively assortative matching

(PAM), as in Becker's (1973) classic model of partnership formation.

After an improvement in one technology, a�ecting a limited set of tasks, labor

is reallocated across all tasks, and all prices and wage rates change. In the model

here, those e�ects can be sharply characterized analytically and easily computed

numerically.

The results are intuitively appealing. First, and unsurprisingly, output increases

and price falls for tasks that are directly a�ected by the technical change. General

equilibrium e�ects are never strong enough to o�set the direct e�ect of the shock.

The e�ects on employment depend on the elasticity of substitution across tasks and

on the change in relative match quality. To assess match quality, note that because

the equilibrium features PAM, the set of skill levels employed at any particular task

form an interval. Call this the skill bin for that task.

For elasticities across tasks that exceed unity, the substitution e�ect works toward

pulling labor into the production of tasks that are directly a�ected. Since the change

is an improvement in technology, this e�ect is reinforced at the upper threshold of the
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a�ected skill bin. Hence employment necessarily expands to a group of more highly

skilled workers. Consequently employment falls at tasks farther up the technology

ladder, so outputs decline, and prices and wages rise. The e�ects are stronger for

tasks with technologies closer to the one enjoying the technical change, and damped

for tasks farther up the ladder.

At the other end of the a�ected skill bin, the tendency to pull more labor in is o�set

by the fact that the labor is a less suitable match for the newly improved technology.

Either of these forces can dominate, so employment at the lower threshold can expand

to less skilled workers, or it can contract. If it expands, employment falls at tasks

farther down the ladder, so outputs decline, and prices and wages rise. If it contracts,

outputs farther down the ladder increase. In either case the changes are damped for

more distant tasks. The direction of the change at the lower threshold depends in

part on the level of employment at the a�ected and neighboring tasks.

For elasticities of substitution across tasks below unity, the previous results are

mirrored and reversed. The substitution force works toward pushing labor away from

tasks that are directly a�ected, to increase output of complementary tasks.

At the lower threshold of the a�ected skill bin, this e�ect is reinforced by the fact

that the less skilled labor at this threshold has become a worse match for the newly

improved technology. Hence employment at the a�ected tasks contracts among less

skilled workers. Consequently employment expands for tasks farther down the ladder,

and outputs rise, with damped changes for more distant tasks. Prices and wages may

fall for some tasks and workers closest to those a�ected by the technical change.

At the upper threshold of the a�ected skill bin, the tendency to push labor out

is o�set by the fact that more highly skilled labor is a better match for the newly

improved technology. Hence employment at the a�ected tasks can expand or contract.

If it expands, employment falls at tasks farther up the ladder, so outputs decline, and

prices and wages rise. If it contracts, employment and output increase for tasks
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farther up the ladder. In either case the changes are damped for more distant tasks.

In the cases where the direction of the net e�ect is ambiguous, the range of the

a�ected skill bin is important in determining the sign. For elasticities that are not

too close to unity and narrow skill ranges, the e�ects are rather symmetric up and

down the ladder from the tasks a�ected by the technical change. For elasticities that

are close to unity, the signs are ambiguous, but the magnitude of the change is likely

to be small.

As noted above, �rms play no role in the analysis, and even the word is (mostly)

avoided. Each worker chooses how to use his labor endowment, combining it with any

of the available technologies. The worker's decision can be viewed as a choice about

an occupation, with his task output used in production of the single �nal good.

In some contexts the distinction between human capital and technology is blurred.

Here, human capital is an asset that belongs to a single worker, who is the only one

able to employ it in production. Technology is a nonrival input, used by all workers

producing a particular task. Framed in terms of competitive �rms, the technology for

producing a particular task is available to all. However, as will be shown below, the

equilibrium can readily be re-interpreted as one with monopolistically competitive

�rms, and the technology as intangible capital that is the property of the producer.

In either case, the fact that it is a nonrival input distinguishes it from both human

and physical capital.

The vast literature on vintage capital models suggests that the distinction between

new technologies and new capital is also blurred. If a new technology requires new

investment for its implementation, giving it one label or the other is largely a matter

of taste. Here, physical capital is ignored, so implementing improved technologies

requires no investment.

The rest of the paper is organized as follows. Section 2 discusses the related liter-

ature. Section 3 presents the basic model and characterizes the competitive equilib-
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rium. The main results are contained in section 4, where the model is used to study

the e�ect of technical change for one set of tasks. In particular, we ask how the labor

allocation, task outputs, task prices and wage rates change, for all tasks and workers.

A su�cient condition is provided for the conclusion that \a rising tide lifts all boats,"

that the improvement raises wages for all workers, even those paired with technologies

that are una�ected. Section 5 shows how the model can be used to address policy

questions: the e�ects of a minimum wage and of opening to international trade or im-

migration. It also analyzes the e�ects of eliminating positively assortative matching

and of eliminating technological heterogeneity. Section 6 concludes. Mathematical

arguments and proofs are gathered in the Appendix.

2. RELATED LITERATURE

The model here is related to the extensive theoretical literature on skill-biased

technical change and to the literature on assignment models of the labor market.

The �rst models of skill-biased technical change have two types of workers, high-skill

and low-skill, performing distinct and imperfectly substitutable tasks. In particular,

the aggregate supplies of the two types of labor input are inputs into a constant

elasticity of substitution (CES) production function for the single �nal good, with

separate (factor-augmenting) technology shocks for each type. Acemoglu (2002) pro-

vides an elegant treatment of this model, and studies its ability to account for some

of the major trends in employment, wages, and skill premia in the U.S.

Acemoglu and Autor (2011), who call it the `canonical' model, provide a nice as-

sessment of its limitations as well as its strengths. They point to four limitations in

particular. First, technical change, whether it is skill-biased or unskilled-biased, nec-

essarily increases the wages of both groups. The model cannot produce wage declines.

Second, because there are only two types of labor, it cannot explain the \polarization"

in the wage structure observed in recent years, as documented in Autor, Katz, and
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Kearney (2006) and Autor and Dorn (2013). Third, because it does not distinguish

between skills and tasks, it is inadequate for studying the impact of technical change

that a�ects only particular tasks. And �nally, it cannot explain changes in the allo-

cation of skill groups across tasks. Dealing with the last two limitations requires a

model that distinguishes between skills and tasks.

Acemoglu and Autor (2011) also describe four features that they would like to see

in an alternative to the canonical model. These are: an explicit distinction between

skills and tasks; at least three skill groups; comparative advantage at di�erent tasks

across di�erent skill groups; and the ability to produce conventional substitution and

complementarity across skill groups. The authors go on to develop a model with

three skill groups (plus capital) and many tasks, with production technologies for

each task that are linear in the four inputs. The factor weights in the linear tech-

nologies are assumed to have the property that higher-skill types have a comparative

advantage in higher-index tasks. A limitation of this setup is that improvements in a

\technology"|a labor-augmentation coe�cient in the production functions|a�ects

only a single skill-task pair.

Relative to the framework in Acemoglu and Autor (2011), the model here has

many skill groups as well as many tasks. In addition, comparative advantage arises

endogenously as a consequence of the production function, which has skill and task

technology as inputs.

Another strand of the literature on technical change adds physical capital as a factor

of production, as in Autor, Levy, and Murnane (2003) and Autor and Dorn (2013),

and sometimes uses the strong decline in capital (equipment) prices observed in the

data as the technology shock, as in Krusell, et. al. (2000). In these models, physical

capital can enter as a substitute for low-skill or routine labor, reducing its wage rate, or

as a complement to high-skill labor, raising its wage rate. Thus, increasing the supply

of physical capital can produce a wide variety of e�ects on wages and employment
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patterns, depending on the type of capital. The model here has no physical capital.

Although it could be added, the price in terms of tractability is not clear.

The extensive literature on assignment models goes back to Roy (1950), who used

a multidimensional description of ability. In an important contribution, Sattinger

(1975) uses a model very similar to the one here to examine the partial equilibrium

problem of a single employer choosing what types of workers to hire to perform

various tasks. This literature is nicely reviewed in Sattinger (1993). Virtually all of

it is partial equilibrium, while the setup here is a general equilibrium model.

The model here is closest to the one in Costinot and Vogel (2010). Their model,

like the one here, is a general equilibrium setup with one-dimensional heterogeneity

of both workers and tasks. On the technology side, the model here is a special

case of theirs. Speci�cally, in the model here skill and technology are inputs into

a CES function with a substitution elasticity (strictly) less than unity, while in CV

the production function is only required to be (strictly) log-supermodular. Thus the

function here satis�es the requirement in CV, but the converse does not hold. The

additional assumption brings two important advantages, however.

The �rst advantage is that the model here puts no restriction on the type of tech-

nology shocks that can be analyzed. The shocks studied here are limited in scope,

a�ecting only one set of tasks. In terms of the distribution function for technologies, a

\simple" shock of this type is a rightward shift over a limited range. Thus, it satis�es

�rst order stochastic dominance (FOSD).

CV's framework allows them to look at only two types of technology shocks, skill-

biased and extreme-biased. A skill-biased shift requires the relevant distribution

functions to satisfy the monotone likelihood ratio property (MLRP), a stronger con-

dition than FOSD, in general involving shifts throughout the distribution function.

A technology shift in CV is extreme-biased if there exists a threshold technology with

that property that the relevant distribution functions satisfy MLRP above the thresh-
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old and the reverse condition below the threshold. Again, extreme biased shocks can

be constructed as weighted sums of simple shocks.

Second, the results in CV are only about relative wage e�ects, while the model

here delivers conclusions about wage levels, as well output and task price levels. The

relationship between the shocks here and those in CV are discussed in more detail in

section 5.

CV also look at shifts in the distribution of skill that satisfy similar restrictions,

increasing either skill abundance or skill diversity, both de�ned using MLRP proper-

ties. The model and methods employed here could be slightly modi�ed to study shifts

in the skill distribution. Speci�cally, in the setup here the technology distribution is

discrete and the skill distribution is continuous. As will be seen below, this assump-

tion makes it easy to characterize analytically the e�ects of a small change in one

technology. A model like the one here, but with discrete skill types and continuous

technologies, could be used to study the e�ects of shifts in the supply of skills.

In summary, compared with the literature on biased technical change, the model

here allows extensive heterogeneity in both skills and tasks. Compared with the

assignment literature, the model here is general equilibrium. Compared with Costinot

and Vogel (2010), the CES structure imposed here makes the solution to the general

equilibrium problem easy to characterize, both analytically and numerically, allowing

sharper answers to a wider range of comparative statics questions.

3. THE MODEL

In this section the technologies are described and the competitive equilibrium is

characterized.
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A. Final good technology

The �nal good is produced by competitive �rms using intermediate goods/tasks

as inputs. A task is characterized by its technology level xj > 0: There are J such

levels, indexed by j = 1; :::; J; ordered so 0 < x1 < x2 < ::: < xJ : Let 
j be the share

of tasks with technology level xj: The total number (mass) of tasks is normalized to

unity.

All inputs enter symmetrically into �nal good production, but demands for them

di�er if their prices di�er. In equilibrium, price pj is the same for all tasks with

technology level xj. Hence demand is the same for such tasks. Let yj denote the

(common) quantity for those tasks. The �nal good is produced with the constant

returns to scale (CRS) technology

yF =

 
JX
j=1


jy
(��1)=�
j

!�=(��1)
; (1)

where � > 0 is the substitution elasticity. For � = 1 the technology is Cobb-Douglas.

The �nal goods sector takes the prices pj as given. As usual, input demands are

yj =

�
pj
pF

���
yF ; all j; (2)

and the price of the �nal good is

pF =

 
JX
j=1


jp
1��
j

!1=(1��)
: (3)

We will take the �nal good as numeraire throughout, indexing prices so pF = 1: Input

costs exhaust revenue, so there are no pro�ts.

The analysis could be extended to include weights on tasks. Let f!igIi=1 be a set of

values for the weights, and let �ji be the share of tasks with the (technology, weight)

pair (xj; !i) : Then output of the �nal good is

yF =

 
JX
j=1

IX
i=1

�ji!
1=�
i ey(��1)=�ji

!�=(��1)
;
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where eyji is the input of a task with characteristics (xj; !i) : It is straightforward to
show that in this setting prices pj do not depend on i; and demand for each task is

eyji = !iyj; all i; j;

where fpj; yjgJj=1 and the aggregates yF ; pF are as above, and


j �
IX
i=1

�ji!i; all j:

Output and employment vary with !i across tasks with the same technology xj; but

the wage structure in the economy depends only on the 
j's.

B. Di�erentiated good technology

Tasks are produced using heterogeneous labor, characterized by its skill level h; as

the only inputs. Assume that h has a continuous distribution. Let G(h) with density

g(h) on H � (hmin; hmax) ; with 0 < hmin < hmax � 1; denote the distribution of skill

across workers. The total size (mass) of the workforce is normalized to unity, and

labor supply is inelastic: each worker supplies one unit.

The total output of a task depends on the size and quality of the workforce pro-

ducing it, as well as its technology level xj. In particular, if a task with technology xj

employs workers of various human capital levels, with `j(h) � 0 denoting the number

(density) of each type, then total output is

yj =

Z
`j(h)�(h; xj)dh; all j;

where �(h; x) is the CES function

�(h; x) �
�
!h(��1)=� + (1� !)x(��1)=�

��=(��1)
; �; ! 2 (0; 1) : (4)

The elasticity of substitution � between technology and human capital is assumed to

be less than unity, and ! is the relative weight on human capital.
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C. Equilibrium

An equilibrium consists of a �nal output level yF ; task outputs and prices fyj; pjgJj=1 ;

a wage function w(h); h 2 H; and an allocation of labor across technologies, that sat-

isfy the usual optimization and market clearing conditions.

The model allows two interpretations about market structure. One is that each

task is produced by competitive �rms, with each �rm choosing to employ skill types

that minimize unit cost. In this case competition insures that each worker is paid his

marginal revenue product.2 Alternatively, one can suppose that workers simply choose

which task to produce, with each worker choosing a task|a job|that maximizes

his income. In either interpretation, task prices are taken as given by the decision

maker|the �rm or the worker.

In principle, the allocation of labor could be quite complicated, with any technology

level xj employing workers with skill h in various disjoint intervals, and with workers

of a given human capital level h producing goods with di�erent technologies xj. This

does not occur in equilibrium, and it is straightforward to see why not.

Since labor markets are competitive, the allocation of labor across technologies

is e�cient. And since the elasticity of the CES function � is less than unity, it is

log supermodular. Hence e�ciency requires positively assortative matching: workers

with higher skill h work with higher technologies xj (Costinot, 2009). Consequently

the equilibrium labor allocation is characterized by thresholds hmin = b0 < b1 < ::: <

bJ�1 < bJ = hmax; where technology xj employs workers with skill h 2 (bj�1; bj) : We

will refer to the interval (bj�1; bj) as skill bin j: An individual with human capital h =

bj is indi�erent between working with technologies xj and xj+1: Since the distribution

2If � > 1; pro�t-making �rms could be introduced by assuming that each task is supplied by a

unique producer. Under this assumption, the allocation of labor, output of each task, and prices

would be unchanged, but wages would reduced by the factor (�� 1) =�; with the residual revenue

going to pro�ts.
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function G is continuous, the set of such workers has measure zero, and they can be

allocated to either bin.

Equilibrium also requires market clearing for goods and labor. Thus, the equilib-

rium conditions are:

a. income maximization by all types of labor,

w(h) � pj�(h; xj); all h; with equality if h 2 [bj�1; bj] ; all j; (5)

b. market clearing for tasks: fyj; pjgJj=1 satisfy (2), with yF as in (1);

c. labor market clearing,Z bj

bj�1

�(h; xj)g(h)dh = 
jyj; all j: (6)

The �rst condition implies that each task is priced at unit cost, and the last says

that the total productive capacity of labor with skill h 2 (bj�1; bj) is su�cient for

production of tasks with technology xj.

The allocation of labor within any skill bin (bj�1; bj) across tasks with technology

xj is, to some extent, indeterminate. Equilibrium determines only the output level

yj, which is the same across tasks with technology level xj. For concreteness we can

suppose that each task is produced by skill types in the interval (bj�1; bj) in proportion

to their representation in the population, but this is not required.3

To characterize the thresholds fbjgJ�1j=1 ; note that (5) implies

w0(h)

w(h)
=
�h(h; xj)

�(h; xj)
; h 2 (bj�1; bj) ; all j: (7)

Hence the equilibrium wage function is piecewise continuously di�erentiable, with

kinks at the points fbjgJ�1j=1 :

3Since � has constant returns to scale, the number of �rms producing any task|if �rm are

introduced into the narrative|is indeterminate. Only the total (productivity-weighted) labor input

and total output are determined in equilibrium.
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Since workers with skill bj are indi�erent between working with technologies xj and

xj+1; it follows immediately from (5) and (2) that

pj+1
pj

=
�(bj; xj)

�(bj; xj+1)
; (8)

yj+1
yj

=

�
�(bj; xj+1)

�(bj; xj)

��
; j = 1; :::; J � 1: (9)

Unit cost and price are strictly decreasing in j; and output is strictly increasing: goods

with better technologies have lower prices and higher sales. If � > 1 (if � < 1); total

revenue is increasing in j (decreasing in j):

To characterize equilibrium, combine (6) and (9) to �nd that fbjgJ�1j=1 satisfyZ bj+1

bj

g(h)�(h; xj+1)dh =

j+1

j

�
�(bj; xj+1)

�(bj; xj)

�� Z bj

bj�1

g(h)�(h; xj)dh; (10)

j = 1; :::; J � 1:

Since � < 1; the ratio �(bj; xj+1)=�(bj; xj) is strictly increasing in bj: Therefore, since

b0 = hmin is given, for any conjectured b1; the sequence fbjgJj=2 de�ned recursively by

using (10) is increasing in b1: Equilibrium requires bJ = hmax: Thus a solution exists

and it is unique.

De�ne 	j to be `total productivity' of labor in the j
th skill bin,

	j �
Z bj

bj�1

�(h; xj)g(h)dh; j = 1; :::; J: (11)

Then use (6) to write output of each type of good as

yj =
1


j
	j; j = 1; :::; J; (12)

and write (10) in the more symmetric form

�(bj; xj+1)
�� 1


j+1
	j+1 = �(bj; xj)

�� 1


j
	j; j = 1; :::; J � 1: (13)
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D. Skill allocation

To see more clearly how workers and technologies are matched, it is useful to look

at potential wage functions, like those in Neal and Rosen (2000, Figure 3.1). Let

wp(h; xj) denote the wage a worker with skill h would earn producing a task with

technology xj;

wp(h; xj) = pj�(h; xj); all h; all j:

Figure 1 displays potential wages as a function of h; for J = 4 technology levels.

For �xed xj; the potential wage w
p(h; xj) is strictly increasing in h; so each curve

is upward sloping. As a function of xj; there are two e�ects. First, the price pj

is decreasing in xj; so the intercept decreases with xj: In addition, since � is log

supermodular, higher xj implies a steeper slope for � as a function of h. Thus, plotted

against h; for various xj values, the potential wage functions cross. A worker's actual

wage is the maximum of his potential wages, as in (5). Hence the wage function w(h)

is de�ned by the upper envelop of the four curves, and the crossing points along the

upper envelop are the thresholds bj that divide the skill range into bins.

The four small circles show the choices available to a worker with skill hi: The

potential wage for that worker increases moving from x1 to x2 and from x2 to x3: But

it falls moving from x3 to x4, so that worker chooses x3:

In a model with search frictions, these points would represent rungs on a job ladder

for a worker with skill hi: This worker's �rst job might come from an employer of any

type. That �rm would pay him his reservation wage, not his marginal revenue prod-

uct, so his initial wage would lie below all of the displayed values. But subsequently,

outside o�ers from other �rms would raise his wage, for two reasons. If the outside

�rm was a better match, he would change jobs and receive a wage increase. But even

if the outside �rm was an equivalent (or possibly worse) match, his wage might be

bid up by competition, although in this case he would not change jobs.
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4. TECHNICAL CHANGE

This section looks at the e�ects of technical change that improves one technology

by a small increment, with all others unchanged. Speci�cally, it characterizes the

e�ect on the labor allocation, described by the thresholds fbjgJ�1j=1 ; on the output

levels and prices fyj; pjgJj=1 for all tasks, and on the wage function w(h):

The main forces can be previewed in Figure 1. Suppose technology xk gets the

improvement. The direct e�ect is to increase labor productivity for workers in skill bin

k; raising wp(�; xk) and making it slightly steeper. But the higher labor productivity

increases yk; which depresses the price pk, and tends to raise all other prices, pj; j 6= k:

These price changes lower wp(�; xk) partway back toward its original level and raise

all the other curves, wp(�; xj); j 6= k: The thresholds de�ning the employment bins

shift, changing employment patterns and wages for all workers.

The rest of this section analyzes these changes in detail. Throughout we will use

`hats' to denote proportionate changes induced by the perturbation, ẑ � z�1@z=@";

for any variable z: All derivations and proofs are in the Appendix.

A. Final output

Suppose that technical change increases technology xk by a small increment " > 0;

with all others unchanged. Note that the change in output of the �nal good yF is a

weighted average of the output changes for tasks,

ŷF =
JX
j=1

�j ŷj; (14)

where the weights

�j �
1

yF

jpjyj; all j; (15)
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with
PJ

j=1 �j = 1; are their cost shares in producing the �nal good. With the price

of the �nal good �xed at unity, the relative price changes for tasks are

p̂j =
1

�
(ŷF � ŷj) ; all j; (16)

and the weighted average of the price changes is
PJ

j=1 �j p̂j = p̂F = 0:

Consider �rst the short run e�ects, with labor immobile. Recall the de�nition of

	j; all j; in (11), and let 	̂k be the direct e�ect of the technology improvement on

total labor productivity in skill bin k. Output increases for tasks produced with

technology xk;

ŷSRk = 	̂k �
1

	k

@	k
@xk

> 0; (17)

and is unchanged for all other tasks. Hence the change in �nal output is

ŷSRF = �k	̂k > 0:

In the longer run, with labor mobile, the changes in fyjgJj=1 and yF must be aug-

mented to account for the impact of changes in the skill bins, changes in the bj's.

Let
n
b
(k)
j (")

oJ�1
j=1

denote the solution to (13) as a function of ", where b0 = hmin and

bJ = hmax are �xed. De�ne the density-weighted changes in the thresholds

�
(k)
j � g(bj)b

(k)0
j ("); j = 1; :::; J � 1; (18)

with �
(k)
0 = �

(k)
J = 0: From (11) and (12), the long run changes in output levels for

tasks are

ŷk =
1

	k

h
�(bk; xk)�

(k)
k � �(bk�1; xk)�

(k)
k�1

i
+ 	̂k; (19)

ŷj =
1

	j

h
�(bj; xj)�

(k)
j � �(bj�1; xj)�

(k)
j�1

i
; all j 6= k:

The next proposition shows that, to a �rst-order approximation, the change in the

labor allocation has no impact on output of the �nal good: the long-run increase is

the same as the short-run increase.
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Proposition 1: In the long run, with labor mobile, the change in output of the

�nal good is, to a �rst-order approximation, the same as in the short run, ŷF = ŷSRF :

This result is not surprising. The potential additional e�ect in the long run arises

only from the reallocation of labor, changes in the thresholds fbjgJ�1j=1 de�ning the skill

bins. Since labor markets are competitive, the baseline allocation of labor maximizes

yF : Hence to a �rst order approximation, small changes in those thresholds have no

e�ect on �nal output. An increase (decrease) in bj raises (lowers) the output of tasks

with technology xj; but the e�ect on �nal output is exactly o�set by the decrease

(increase) in the output of tasks with technology xj+1:

B. Labor allocation

The changes in the labor allocation do, however, a�ect task-level outputs and prices,

as well as wages. The rest of this section describes these changes. To determine the

e�ect on the labor allocation, di�erentiate (13) and use (11) to get a system of J � 1

linear equations for the changes in the thresholds,

�(k) =MA(k); (20)

where the superscript denotes which technology has been perturbed, and for any k;

A
(k)
k�1 = ���̂x(bk�1; xk) + 	̂k; (21)

A
(k)
k = ��̂x(bk; xk)� 	̂k;

A
(k)
j = 0; otherwise.

Since A(k) has at most two non-zero elements|and only one if k = 1 or k = J; for

�xed k the solution to (20) involves only A
(k)
k�1; A

(k)
k ; and the columns M�k�1 and M�k:

In particular,

�
(k)
j = mj;k�1A

(k)
k�1 +mj;kA

(k)
k ; j = 1; :::; J � 1; (22)
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where the �rst term drops out if k = 1; and the second drops out if k = J:

M is the inverse of a tridiagonal matrix, so it has a recursive structure. Lemma 2

shows that it has strictly positive elements, and that successive row elements above

and below the diagonal have ratios that depend only on the row j:

Lemma 2: All elements of M are positive, and the elements in each column M�n

satisfy

mj+1;n = qj+1mj;n; j � n; (23)

mj�1;n = rj�1mj;n; j � n;

where fqj+1gJ�2j=1 and frj�1g
J�1
j=2 are positive constants.

Lemma 2 can be used as follows. Fix k; and use the �rst line in (23) to compare

successive rows j+1 > j � k in (20). Similarly, use the second line in (23) to compare

successive rows j � 1 < j � k � 1; concluding that

�
(k)
j+1 = qj+1�

(k)
j ; j � k; (24)

�
(k)
j�1 = rj�1�

(k)
j ; j � k � 1:

Thus, all thresholds at and above the kth move in the same direction, and all those

at and below the (k � 1)th move in the same direction. It remains to determine the

signs of �
(k)
k and �

(k)
k�1: For this we need to characterize the two nonzero elements of

A(k):

Lemma 3: For any k;

i. if � = 1; then A
(k)
k�1 > 0 and A

(k)
k > 0;

ii. if � > 1; then A
(k)
k > 0 and A

(k)
k�1 can have either sign; and

iii. if � < 1; then A
(k)
k�1 > 0 and A

(k)
k can have either sign.

The intuition for Lemma 3 is straightforward from (21). The term �̂x(h; xk) is the

proportionate change in labor productivity for a worker with skill h: Since � < 1,
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it is strictly increasing in h: The term 	̂k is the average value of these changes in

skill bin k: If � � 1; then for a worker with skill bk; at the upper threshold of the

bin, 	̂k < �̂x(bk; xk) � ��̂x(bk; xk); so A
(k)
k > 0: If � < 1; the sign is ambiguous.

Similarly, if � � 1; then for a worker with skill bk�1; at the lower threshold of skill bin

k; ��̂x(bk�1; xk) � �̂x(bk�1; xk) < 	̂k; so A
(k)
k�1 > 0: If � > 1; the sign is ambiguous.

Can anything more be said about the terms with ambiguous signs? The answer

depends, to a large extent, on how the technology levels are chosen/de�ned. If the

technology grid is �ne, then the skill bins are narrow, so bk�1 is close to bk; and

A
(k)
k�1 � �A

(k)
k . For � = 1; both are close to zero.

If A
(k)
k�1 and A

(k)
k are both positive, then it follows immediately from (22) and

Lemma 2 that all thresholds shift upward. But even if one term in (22) is negative,

the sign of the sum can sometimes be determined. Proposition 4 characterize the

signs of �
(k)
k and �

(k)
k�1 to the extent that it is possible.

Proposition 4: For any k; an increase in technology xk implies:

for � = 1;

�
(k)
j > 0; all j;

for � > 1;

�
(k)
j > 0; j � k;

�
(k)
j S 0; j < k � 1; as �

(k)
k�1 S 0;

and for � < 1;

�
(k)
j > 0; j � k � 1;

�
(k)
j S 0; j > k; as �

(k)
k S 0:

For � = 1; all thresholds shift upward. For � > 1; the thresholds at and above the

kth shift upward, while those at and below the (k � 1)th can shift either way. For
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� < 1; the thresholds at and below the (k � 1)th shift upward, while those at and

above the kth can shift either way.

C. Task outputs

From (6) and (11), the change in output for a task of type j 6= k depends on the

sum of the productivity-weighted employment changes at the two thresholds,

ŷ
(k)
j =

1

	j

h
�(bj; xj)�

(k)
j � �(bj�1; xj)�

(k)
j�1

i
; j 6= k; (25)

where �
(k)
0 = �

(k)
J = 0: For goods of type k; the direct e�ect of the productivity change

must also be added, so

ŷ
(k)
k = 	̂k +

1

	k

h
�(bk; xk)�

(k)
k � �(bk�1; xk)�

(k)
k�1

i
: (26)

Proposition 5 characterizes the changes in output.

Proposition 5: For any k;

ŷ
(k)
k > 0;

ŷ
(k)
j T 0; j > k; as �

(k)
k S 0;

ŷ
(k)
j T 0; j < k; as �

(k)
k�1 T 0:

Output rises for tasks of type k: The output change is in the same direction for all

tasks of type j > k; rising if �
(k)
k < 0; so more labor is devoted to these tasks, and

falling if �
(k)
k > 0: Similarly, the output change is in the same direction for all tasks

of type j < k; falling if �
(k)
k�1 < 0 and rising if �

(k)
k�1 > 0: Thus, for � � 1; output falls

for tasks of types j > k; and for � � 1; output rises for tasks of types j < k:

Proposition 6 shows that the size of the output changes above and below k are

damped|whatever their sign|for more distant technology types.
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Proposition 6: For any k;���ŷ(k)1 ��� <
���ŷ(k)2 ��� < ::: <

���ŷ(k)k�1��� ;���ŷ(k)k+1��� >
���ŷ(k)k+2��� > ::: >

���y(k)J ��� :
D. Prices and wages

Next consider prices and wages. The price of a task rises or falls as its output change

is less than or greater than the output change for the �nal good. In particular, from

(16) and Proposition 1,

p̂
(k)
j =

1

�

�
�k	̂k � ŷ

(k)
j

�
; all j: (27)

Proposition 7 describes price changes. For tasks of type k; price falls. For types

j 6= k, price rises if output falls, and the size of the increase is damped for types

more distant from k: The sign of the price change is ambiguous if output rises, but

the price changes are nevertheless ordered, even if there is a sign change somewhere

along the chain. Price decreases, if they occur, are clustered among types near k:

Proposition 7: For any k; an increase in technology xk implies

p̂
(k)
k < 0:

For j < k;

0 < p̂
(k)
1 < p̂

(k)
2 < ::: < p̂

(k)
k�1; if �

(k)
k�1 < 0;

p̂
(k)
k�1 < ::: < p̂

(k)
2 < p̂

(k)
1 ; if �

(k)
k�1 > 0;

and some or all of the latter price changes can be negative. For j > k;

0 < p̂
(k)
J < p̂

(k)
J�1 < ::: < p̂

(k)
k+1; if �

(k)
k > 0;

p̂
(k)
k+1 < ::: < p̂

(k)
J�1 < p̂

(k)
J ; if �

(k)
k < 0;
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and some or all of the latter price changes can be negative.

Next consider wage changes. It follows immediately from (5) that

ŵ(h) = p̂
(k)
k + �̂x(h; xk); h 2 (bk�1; bk) ;

ŵ(h) = p̂
(k)
j ; h 2 (bj�1; bj) ; j 6= k:

For workers in skill bins j 6= k; wages change only because the price of their output

changes. Hence the direction and size of the wage change is the same as the price

change, and is equal for all workers in a skill bin. Workers in skill bin k also experience

a direct productivity e�ect, which is increasing in the worker's own human capital h.

Proposition 8 describes the one case where a technology improvement necessarily

raises all wages.

Proposition 8: If � > 1; then for any k; �
(k)
k�1 < 0; implies ŵ(h) > 0; all h:

If � � 1; then �(k)k�1 > 0; leaving open the possibility that pk�1 falls, so wages fall for

skill bin k � 1:

More generally, if �
(k)
k > 0, then workers in skill bins j > k get wage increases, as

do workers with human capital near the upper threshold of skill bin k: If �
(k)
k < 0;

wages can fall for some workers at the top of skill bin k: In this case prices can fall

for some or all tasks of type j > k; so that wages fall for workers in these skill bins.

The wage declines are clustered near skill bin k; and are damped for more distant

skill bins. Indeed, wages can rise for workers su�ciently far up the skill ladder.

If �
(k)
k�1 < 0; then workers in skill bins j < k get wage increases, as do workers

with human capital near the lower threshold of skill bin k: If �
(k)
k�1 > 0; wages can

fall for some workers at the bottom of skill bin k: In this case prices fall for some or

all tasks of type j < k; so that wages fall for workers in these skill bins as well. The

wage declines are clustered near skill bin k; and are damped for more distant skill

bins. Indeed, wages can rise for workers su�ciently far down the skill ladder. The

Appendix provides an example where wages decline for some workers.
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5. EXAMPLES AND APPLICATIONS

In this section we will �rst look at several examples that illustrate the relationship

between the results above and those in Costinot and Vogel (2010). The model will

then be used to study several substantive questions|the e�ects of minimum wage

legislation, of opening up to international trade, of positively assortative matching

(PAM), and of technology heterogeneity.

A. Relationship to Costinot and Vogel (2010)

In the model here, the technology space is discrete and the focus is on changes in

a single technology. We will call such shifts simple.

In CV (2010) the technology space is continuous and a shift is described as a change

in the density function weighting various technologies. Speci�cally, the technology

values lie in an interval X = [a; b] ; and their weights in the production function for

the �nal good are represented by a continuous and strictly positive density 
o(�) on

X: A technology shift changes the density, from 
o to 
n.

CV study two types of shifts. A technology shift is skill biased if the densities

satisfy the monotone likelihood ratio property (MLRP). By de�nition, this property

holds if and only if

n(x)


o(x)
� 
n(x0)


o(x0)
; all x < x0:

That is, the ratio of the new density to the old must be (weakly) increasing in x:

Lemma 5 in CV shows that after such a shift, every skill type is matched to a (weakly)

better technology. In addition, the two wage functions satisfy MLRP: the propor-

tionate wage increase is larger for higher-skill workers.

A technology shift in CV is extreme biased if there exists a threshold technology

x̂ with the property that the densities satisfy MLRP above x̂ and satisfy the reverse

property below x̂. Lemma 6 in CV shows that after such a shift, there exists a skill
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threshold h� with the property that workers with skill above h� are matched with

better technologies and those with skill below h� with worse technologies.

To compare the results here with those lemmas, we need to approximate discrete

distributions with continuous densities and vice versa.

i. A continuous approximation to a simple shift.|

Fix the discrete technology levels and weights fxj; 
jgJj=1 ; and consider an incre-

ment of " > 0 to technology k: For the continuous approximation, let a = x1 � � and

b = xJ+� (or b = xJ+�+"; if k = J), where � > 0 is small, and let 
o be a continuous

and strictly positive approximation to f
jg. The increment to xk is captured by a

shift in the density 
o to 
n that replaces weight near xk with weight near xk + ":

Clearly, such a shift never satis�es MLRP. The ratio 
n(x)=
o(x) is unity except

near xk; where it shrinks almost zero, and near xk + "; where it explodes. Hence no

shift of this type satis�es CV's de�nition of skill biased. The simple shifts considered

in section 4 satisfy �rst order stochastic dominance (FOSD), but not MLRP.

ii. Skilled biased shifts.|

As the previous example suggests, in the discrete framework a technology shift

that satis�es MLRP requires combining a series of simple shifts. One that is easy

to construct is the discrete approximation to a rightward translation of the density

function. Fix X = [a; b] and 
o: A rightward translation of 
o satis�es MLRP if and

only if
D
o(x)


o(x)
>
D
o(x0)


o(x0)
; all x < x0;

where D
o � d
o=dx: That is D
o=
o must be a decreasing function. Suppose this

is the case, so Lemma 5 in CV applies.

For the discrete approximation to 
o, choose J large and let " = (b� a)=J be the

size of the shift. Let fxjgJj=1 be a uniform grid with step size "; and with x1 = a+"=2
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and xJ = b� "=2: De�ne the probabilities f
jgJj=1 by


j =

Z xj�"=2

xj+"=2


o(z)dz; j = 1; :::; J:

In addition, let xJ+1 = b+ "=2 and 
J+1 = 0:

Consider a rightward translation of 
o by ": In the discrete approximation, this

shift changes the probabilities from f
jg to f
̂jg de�ned by 
̂1 = 0; and


̂j+1 = 
j; j = 1; :::; J:

Moreover, this shift clearly is isomorphic to the sum of J simple shifts of the type

described in section 4.

Therefore, summing the changes in (20), the net e�ect on the thresholds is

� =M
JX
k=1

A(k) =M

0BBBBBB@
A
(1)
1 + A

(2)
1

A
(2)
2 + A

(3)
2

...

A
(J�1)
J�1 + A

(J)
J�1

1CCCCCCA ;

where

A
(k)
k + A

(k+1)
k = �

h
�̂x(bk; xk)� �̂x(bk; xk+1)

i
�
h
	̂k � 	̂k+1

i
; all k: (28)

As shown in the Appendix, for each k; both of the terms on the right in (28) have

order ": Hence the terms A
(k)
k +A

(k+1)
k and the vector � also have order ": Recall that

� is de�ne in (18) as a derivative, so the vector of shifts in the thresholds induced by

a rightward shift of size " in the technology distribution is "�: Since � itself has order

"; the vector of changes in the thresholds has order "2:

Does this mean that there is no task upgrading? In the setup here, no change in

the thresholds means that every worker, in every skill bin, works with a technology

that has improved by ": Thus every worker experiences task upgrading. Similarly,

every absolute technology level experiences skill downgrading.
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iii. An extreme biased shift.|

For J = 2; a shift that is extreme biased can be constructed from two simple shifts.

Speci�cally, an increment of �"1 < 0 to x1 together with an increment of "2 > 0 to

x2 satis�es the required condition. Let b̂1 denote the new threshold. Workers with

skill below h� = b̂1 experience task downgrading, and the complement experience task

upgrading, in accord with Lemma 6 in CV. Workers who remain in the same bin after

the shift experience a change of size j"jj in their technology. If b01 < b1; then workers

with skill h 2 [b01; b1] experience a larger increase. If b1 < b01; then workers with skill

h 2 [b1; b01] experience a larger decrease.

B. Minimum wage legislation

The model here can be used to assess the e�ects of minimum wage legislation. The

analysis proceeds by truncating a small segment of workers at the bottom of the skill

distribution, analyzing the e�ects on all wages, and then backing out the minimum

wage that would prompt the change. The method is exactly as in section 4, except

that the exogenous shock is a change in the supply of labor of a particular type,

instead of a technology shock.

Fix the baseline economy and its competitive equilibrium, choose " > 0; and sup-

pose all individuals with h < hmin + " are prohibited from working. Let b
(w)
j (")

denote the new equilibrium thresholds, as functions of ": The lowest threshold after

the change is b
(w)
0 (") = hmin + "; while the top threshold b

(w)
J = hmax is unchanged.

The (endogenous) changes in the other thresholds are determined as for a technology

shock.

Formally, de�ne �
(w)
j as the slope of the function b

(w)
j ("), scaled by the density for

skill at that point,

�
(w)
0 � g(b0);
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�
(w)
j � g(bj)b

(w)0
j ; j = 1; :::; J � 1;

�
(w)
J � 0:

Di�erentiate (13) and use (11) to get the analog of (20),

�(w) =MA(w);

where M is as before, and here the exogenous shock is the perturbation to labor

supply at the bottom of the skill distribution,

A
(w)
1 � 1

	1
�(b0; x1)�

(w)
0 > 0;

A
(w)
j � 0; j = 2; :::; J � 1:

Since A(w) has only one non-zero element, it follows that

�
(w)
j = mj;1A

(w)
1 ; j = 1; :::; J � 1:

Hence by Lemma 2, all the thresholds shift upward, �
(w)
j > 0; j = 1; :::; J � 1:

Using (12) and the argument in the proof of Proposition 5, the e�ects on task

outputs are

ŷ
(w)
j = � 1

	j

�
dj
 j+1
 j

+ 1

�
�(bj�1; xj)�

(w)
j�1 < 0; j = 1; :::; J � 1;

ŷ
(w)
J = � 1

	J
�(bJ�1; xJ)�

(w)
J�1 < 0;

where fdjgJ�1j=1 and f jg
J
j=1 are de�ned in the Appendix. Hence output of every task

falls. Using the argument in the proof of Proposition 6,

ŷ
(w)
j+1

ŷ
(w)
j

= �cj
	j
	j+1

dj+1 j+2 +  j+1
dj j+1 +  j

�(bj; xj+1)

�(bj�1; xj)
< 1; j = 1; :::; J � 1;

so the changes are damped farther up the task ladder,

jŷ1j > jŷ2j > ::: > jŷJ�1j > jŷJ j :
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Using the argument in the proof of Proposition 7, the proportionate price changes

satisfy

p̂1 > p̂2 > ::: > p̂J�1 > p̂J :

Since
PJ

1 �j p̂j = 0; prices rise for a set of tasks at the bottom of the ladder, and fall

for the complementary set. That is, there exists 1 < k � J such that p̂j > 0 for

j < k, and p̂j � 0 for j � k: Moreover, the largest price increase is at the bottom of

the task ladder, for j = 1; with more damped changes for 1 < j < k: For tasks at

and above the kth; the price decreases are larger, farther up the task ladder.

Wages changes exactly parallel the price changes. Thus, wages rise for workers in

skill bins 1 � j < k; where price has gone up, with larger increases farther down

the skill ladder. Wages fall for workers in skill bins k and above, with larger declines

farther up the skill ladder.

Finally, notice that the new equilibrium is also the one that prevails if the baseline

economy adopts a minimum wage of

wmin = w(w)(hmin + ") > w(base)(hmin + ") > w(base)(hmin):

Thus, minimum wage legislation hurts workers at the very bottom of the ladder,

who lose their jobs, bene�ts workers in a range above that group, who gain from

the exclusion of close competitors, and hurts workers at the upper end of the skill

ladder, since relative output levels for complementary tasks fall. The workers near

the bottom of the skill ladder who keep their jobs are the biggest winners.

Figure 2 displays, for a numerical example. The substitution elasticity between

technology and skill is set at � = 0:5; and the two inputs are given equal weight,

! = 0:5: Four values are used for the elasticity of substitution across tasks, � =

0:5; 1:002; 2; and 6. The probability vector 
 for technology types is a discrete

approximation to a Pareto, with shape parameter �F = 1:0 and location xmin = 1:

The skill distribution is a truncated lognormal, with mean and variance of unity. In
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summary, the parameters are

� = 0:5; ! = 0:5; � 2 f0:5; 1:002; 2; 6g ;

�F = 1; xmin = 1; �h = 1; �2h = 1:

In each economy the minimum wage is chosen so that it puts 1% of the labor force

out of work. The wage function in these economies is steep at the bottom end, so

the wage at the �rst percentile is in each case about 22% higher than at the bottom.

Not surprisingly, in each case the required minimum wage is about 22% higher than

the lowest wage in the baseline economy. Because skill and wage are so low at the

bottom of the skill distribution, the reduction in �nal output is between 0.22% and

0.30%, with lower elasticities producing larger losses. Virtually all of the loss is born

by those who lose their jobs: the total wage bill for those who remain employed

is almost unchanged. But in line with the theory, Figure 2 shows that wages rise

slightly for workers who remain employed in the lowest skill bins, and decline slightly

for workers farther up the skill ladder.

C. International trade, immigration

The e�ects of international trade, for two special cases, can be analyzed in a similar

way. We will assume that all tasks are costlessly tradeable, and that both countries

produce the same set of tasks and have the same production function for �nal output.

Consider a large country whose workers have skills in the range [hmin +�; hmax] :

Suppose this country opens up to trade with a small, less-skilled partner, one with

workers who have skills in the range [hmin; hmin +�] : Before opening, the large coun-

try's economy is like the one in the previous section, with the minimum wage. After

opening, the integrated world economy is like the one in the previous section, without

a minimum wage. Hence the e�ects on the thresholds, task outputs, prices and wages

for the large country are exactly the reverse of those resulting from a minimum wage.
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With trade, all bin thresholds in the large country shift downward, so all workers ex-

perience task upgrading. Output of every task is higher in the integrated economy,

and the proportionate output increases are damped farther up the task ladder. Hence

the proportionate price changes satisfy

p̂1 < p̂2 < ::: < p̂J�1 < p̂J :

Since the weighted price changes sum to zero, prices fall for a set of tasks j < k; and

rise for the set j � k.

Wages follow the same pattern, falling for workers in skill bins where price has gone

down, and rising for those where price has increased. Trade with a skill-poor partner

hurts workers in the lower part of the skill distribution, with the biggest losses at the

bottom of the ladder. Trade bene�ts workers at the upper end of the skill ladder,

since output of complementary tasks increases, with the biggest gains going to those

at the top of the skill ladder.

The usual gains-from-trade argument implies that both countries enjoy increases

in total output of the �nal good. Hence trade bene�ts all the (very similar) workers

in the small, skill-poor country. In the large country, which has more heterogeneity

across workers, there are losers as well as winners.

Figure 2 illustrates the wage e�ects for a large, skill-rich country, one with 99%

of the world population, all of whom are at the top of the world skill distribution,

that opens up to trade with a small, poorly-skilled partner, one with 1% of the world

population, all of whom are at the bottom of the skill distribution. For the skill-rich

country, opening to trade results in slight wage reductions in the lowest skill bins and

slight wage gains at the top of the skill distribution, exactly the reverse of the changes

in Figure 2.

The e�ects of trade for a large, less-skilled country that opens to trade with a

small, skill-rich partner can be analyzed analytically in exactly the same way. The
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e�ects of opening trade between two countries of similar size or with overlapping skill

distributions is more complex, but could easily be studied numerically.

Finally, in all cases immigration produces exactly the same e�ects for workers in

the host country.

D. Gain from positively assortative matching (PAM)

To analyze the gains from positively assortative matching (PAM), it is useful to

introduce �rms, and compare economies where skill is and is not observable to �rms.

Suppose that each task is produced by many �rms, which hire labor and sell output.

Labor and task markets are competitive, so price equals unit cost for all tasks, all

revenue is paid as wages, and there are no pro�ts. Then task outputs, task prices

and the wage function are uniquely determined. The number �rms and their sizes

are indeterminate, but also irrelevant.

If skill is observable, the equilibrium is exactly as before, and the economy-wide

average wage is E[w(h)] = yF . If skill is unobservable, �rms must hire indiscriminately

and pay all workers the same wage, so in the economy with no PAM (NP) the common

wage of all workers is average output, wNP = yFNP : Hence the social gain from PAM,

the increase in the average wage, is the di�erence in �nal output.

To quantify the gain, we can use a second-order approximation to the production

function for �nal goods and, for the NP economy, approximations to the task output

levels. For the NP economy both calculations are straightforward and require no ad-

ditional assumptions. For the economy with PAM, approximations are more di�cult.

Thus, we will restrict attention to economies where technology and skill have similar

distributions, so closed form expressions are available. In addition, we require � > 1:

To approximate �nal output, �x a vector (y1; :::; yJ) of task inputs, and let y =P

jyj; �

2
y =

P

j (yj � y)2 ; and cy � �y=y denote the mean, variance, and coe�cient
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of variation (CoV). Then �nal output is

F (y1; :::; yJ) �
 X

j


jy
(��1)=�
j

!�=(��1)
� y

�
1� 1

�

1

2
c2y

�
; (29)

where the second line approximates around (y; :::; y): Thus, �nal output is the mean

of task output, adjusted for its CoV, where the weight on the adjustment is the

inverse of the substitution elasticity across tasks. Hence the change in �nal output

from introducing PAM has two components: the change in average task output y;

and the change in the CoV adjustment, the term in parentheses. As will be shown

below, the �rst is necessarily positive, but the second can have either sign. Note that

the approximation is good only if the CoV of task output cy is not too large. At a

minimum, we require c2y=2 < �:

Fix the technology and skill distributions, and let (x; �2x; cx) and
�
h; �2h; ch

�
denote

the mean, variance, and CoV for each.

For the NP economy, let q(xj) denote average labor productivity at a task with

technology xj;

q(xj) � Eh [�(h; xj)] ; all j:

Task outputs in the NP economy are

yjNP = Z(x1; :::; xJ)q
�(xj); all j;

where

Z(x1; :::; xJ) �
 

JX
i=1


iq
��1(xi)

!�1
:

Hence labor per task Zq��1(xj) is increasing in j: Average skill is the same across

tasks, and better technologies are exploited (only) by allocating more labor to those

tasks. First-order approximations to q and Z imply

yjNP � q(x)

�
1 +

�q0(x)

q(x)
(xj � x)

�
; all j; (30)
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so task outputs have mean, variance, and CoV

yNP � q(x); �2yNP � (�q0)
2
�2x; cyNP �

�xq0

q
cx: (31)

To analyze the equilibrium with PAM, a tractable family of economies are those

with technology and skill distributions that jointly satisfy the following assumption.

Alignment assumption: Let � > 1; de�ne

aH =

�
(�� 1) 1� !

!

��=(��1)
;

let fxjg be a �ne grid over its whole range, and let f
jg and G together have the

property that
Pj

i=1 
i � G(aHxj); all xj:

Under the Alignment Assumption, skill has approximately the same distribution

as technology, but scaled by aH : Thus, h=x = aH ; and ch = cx: Let c denote their

common CoV. For these economies, the competitive equilibrium with PAM has the

property that both the ratio of average skill to technology, aH ; and labor per task,

unity, are approximately constant across tasks.4 Better technologies are exploited

(only) by allocating labor with proportionately higher skill. Hence task outputs are

yjP � �xj; all j;

with mean, variance and CoV

yP � x�; �2yP � �2�2x; cyP � c; (32)

where � is evaluated at (aH ; 1): Thus, the CoV for task output is the (common) CoV

of the technology and skill distributions.

Under the Alignment Assumption, the mean and CoV of task output in the NP

economy are

yNP � x�
�
1� Ac2=2

�
; cyNP �

1�BAc2=2

1� Ac2=2
c; (33)

4This solution is exact if x has a continuous distribution or h has a discrete distribution.
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where

A(�; �) � 1

��2
(�� 1) > 0; (34)

B(�; �) � (�� 1)� 1
�
(�� 2) ;

and B can have either sign. By de�nition, both q and q0 are positive, which requires

c2=2 < 1=A; and Bc2=2 < 1=A: (35)

Recall from (29) that PAM a�ects �nal output by changing the mean and CoV

of task output. Since � is strictly concave, the e�ect through the mean is always

positive: from (32) and (33),

yNP � x�
�
1� Ac2=2

�
< x� � yP :

Clearly the size of the increase is increasing in c: a higher CoV in skill and technology

increases the gain from PAM. And since A is increasing in � and decreasing in �;

better substitutability across tasks increases the mean gain from PAM, while better

substitutability between skill and technology reduces the mean gain.

The e�ect of PAM through the CoV of task output can have either sign. From (32)

and (33), it reinforces or mitigates the mean e�ect,�
1� 1

2

1

�
c2yP

�
R
�
1� 1

2

1

�
c2yNP

�
;

or equivalently as cyP Q cyNP ; or as

1 Q �xq0

q
� 1�BAc2=2

1� Ac2=2
: (36)

For A > 0; the inequalities in (36) hold as B Q 1; where the approximations in (29)
require

c2=2 < �=max

(
1;

�
1�BAc2=2

1� Ac2=2

�2)
: (37)

34



There are several cases, depending on �. In all cases, good approximations to F and

to q; q0 require c2 to be small. At a minimum, c2 must satisfy (35) and (37).

Case A: As � # 1; (34) impliesA! 0 andB ! 1=�; and (36) implies lim�!1 cyNP =

cyP : As the production function for �nal output converges to Cobb-Douglas, the CoV

e�ect contributes nothing to the gain from PAM.

Case B: If � 2 (1; 2) ; then B > 1 and cyNP < cyP : In this case the CoV of task

output is smaller in the NP economy, mitigating the gain from PAM.

Case C: If � = 2; then B = 1 and cyNP = cyP : In this case the CoV e�ect

contributes nothing to the gain from PAM.

Case D: If � > 2; then B < 1 and cyNP > cyP : In this case the CoV of task output

is smaller in the economy with PAM, further increasing the gain from PAM.

Case E: As � ! 1; (34) implies A ! 0 and BA ! (� � 1) =�2 < 0; so (36)

implies lim�!1 cyNP > cyP : As task inputs become perfectly substitutable, the CoV

adjustment necessarily increases the gain from PAM.

In summary, the CoV adjustment for task output mitigates or reinforces the gain

from the mean e�ect of PAM as � < 2 or � > 2: It is zero at � = 2; and it also

vanishes as � # 1:

The elasticity of substitution � a�ects the magnitude of the CoV adjustment. To

see this, consider the two extremes. Note from (36) that lim�!1B = 1; so as the task

production function � converges to Cobb-Douglas, the CoV adjustment contributes

nothing to the gain from PAM. At the other extreme,

lim
�!0

B =

8>>><>>>:
+1; if � < 2;

1; if � = 2;

�1 if � > 2:

Except in the special case � = 2; as � converges to Leontief, the size of the CoV

adjustment diverges, with the direction of the e�ect depending on �:
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E. Heterogeneous technologies

To assess the e�ect of technology heterogeneity on the wage distribution, we can

compare the baseline economy with one that has the same skill distribution, but

a single technology level. To focus on wage inequality, we will choose the single

technology level so that �nal output is the same in both economies. Then the total

wage bill is also the same, and only the distribution of wages across workers changes.

With a single technology level, there are many equilibrium skill allocations, but

task outputs, �nal output and wages are uniquely determined. In one equilibrium

skill allocation, each task is produced with a pro rata share of all skill levels. For

convenience, we use that one to calculate the common technology level that keeps

�nal output unchanged.

To keep �nal output yF unchanged, output of each task in the homogeneous tech-

nology (HT) economy must be yjHT = yHT = yF ; all j: Hence the required technology

level xHT satis�es

yHT = Eh [�(h; xHT )] :

Then from (2) and (5), the wage change for a worker with human capital h 2 (bj�1; bj) ;

who is in skill bin j if technologies are heterogeneous, is

wHT (h)

w(h)
=
�(h; xHT )

�(h; xj)

�
yHT
yj

��1=�
; h 2 (bj�1; bj) : (38)

There are two forces, working in opposite directions.

In the baseline economy workers with lower skill are matched with worse tech-

nologies. Hence a worker who in the baseline economy would be in skill bin j; with

xj < xHT ; becomes individually more productive. This e�ect works to raise his wage,

the �rst term in (38). The reverse occurs for workers in skill bins with xj > xHT ; so

this e�ect works to compress the wage distribution.

But task prices also change. In the baseline economy output yj is increasing in xj
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and price pj is decreasing. Hence a worker who would be in skill bin j; with output

yj < yHT and price pj > pHT = 1; su�ers a cut in his product price, the second term

in (38). Output can rise because the technology improves, because the average skill

of co-workers rises, because employment rises, or any combination. This price e�ect,

which is reversed for workers in skill bins with yj > yHT ; works to expand the wage

distribution.

The relative strength of the two forces depends on the distributions for technology

and skill. For an analytical assessment it is convenient to consider economies that

satisfy the Alignment Assumption in the previous subsection. Then in the baseline

economy, all workers in skill bin j have human capital of approximately hj � aHxj;

and produce

yj � �(hj; xj) = xj� (aH ; 1) ; all j:

In the HT economy they produce �(hj; xHT ): Hence the wage change is

� lnw(hj) = ln
� (hj; xHT )

�(hj; xj)
� 1
�
ln
yHT
yj

= ln
� (aH ; xHT=xj)

� (aH ; 1)
� 1
�
ln

�
yHT

xHT� (aH ; 1)

xHT
xj

�
� �x

�
�j +

1

2

�x
�

�
�xx
�x

� �x
�

�
�2
j + �0 �

1

�

�
�j �

1

2
�2
j

�
= �0 �

1

2

�� 1
�2

1� �

�
�2
j ; (39)

where the second line uses Euler's theorem, the third uses second-order approxima-

tions for � (aH ; xHT=xj) and ln (xHT=xj) ; the last substitutes for �x=� and �xx=�x;

and where

1 + �j � xHT
xj

; all j;

�0 � �1
�
ln

�
yHT

xHT� (aH ; 1)

�
:

The coe�cient on the quadratic term in (39) is negative, and by construction the
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average wage is unchanged, so �0 > 0: Thus workers with skill near the mean enjoy

a wage gain, and those su�ciently far from the mean experience losses.

Figure 3 displays, for the same numerical examples as in Figure 2, the e�ects of

eliminating heterogeneity in technologies. In each of the four economies the common

technology xHT is chosen so that �nal output (the total wage bill) is unchanged. As

shown in Figure 3, the net e�ect in all four economies is to depress wages at both ends

of the skill distribution, and to raise wages for those in the middle. The loss function is

approximately quadratic, as (39) suggests, even though here the distribution functions

for skill and technology are very di�erent from each other.

Interestingly, in every case the variance of log wages in the HT economy is slightly

higher than in the baseline economy. In these examples technology inequality reduces

wage inequality, because of substantial price e�ects.

6. CONCLUSION

The analysis here has focussed on the e�ects of technology changes, but the frame-

work could also be extended and used to examine other questions. As illustrated

in the examples in section 5, it could be used to study the wage shifts arising from

changes in minimum wage, trade, and immigration policies.

It could also be used to revisit the role of labor market frictions in generating un-

employment and producing job ladders. The model here is close to the one in Lise,

Meghir, and Robin (2016), which also uses a framework with heterogeneous work-

ers and technologies, and a CES production function that combines the two inputs.

Relative to that model, the one here drops search frictions, but endogenizes the task

prices|output prices across worker-technology pairs. Here there is a downward slop-

ing demand curve for each task, and its position depends on �nal good production.

This fact produces interactions between the wages of di�erent workers employed at

the same task and at di�erent tasks. Closing the model in this way provides a micro-
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foundation for the match surplus function, a function that frictional search models

take as exogenous. As a consequence, the model here produces a non-degenerate dis-

tribution of workers across technologies/tasks, even in the absence of search frictions.

Thus, it o�ers a richer framework for asking how important frictions are in generating

wage di�erentials across workers.

In the framework here, individuals work in isolation to produce tasks outputs. But

most goods and services, whether for consumption or investment, are not produced

by single individuals. Aggregating tasks into goods requires additional information

about which tasks are involved and how they are combined|a better understanding

of what goes on inside �rms. And since a �rm may produce only one task or a wide

variety of goods, these questions also require thinking about the boundaries of a �rm,

about the choices of which set of tasks/goods/services to sell in the marketplace,

which tasks to produce in-house, and which tasks to purchase in the marketplace.

Tackling these questions is important for connecting the job/occupation decisions of

individual workers with the outputs of goods/services measured in most data sources.

Moreover, the patterns for recent wage changes suggest rather strongly that �rms are

important in determining how technical change gets translated into rising wages. 5

Wage inequality has displayed large and long-lived shifts over the last century, as

described in Goldin and Margo (1992), Goldin and Katz (2007, 2008), and Autor and

Dorn (2013), and many of these shifts are surely due to changes in technology. Large

increases in wage inequality lead, understandably, to calls for policies to deal with

it. But to such formulate policies, we �rst need to better understand the underlying

sources of wage inequality.

5For example, see Song, et. al. (2016).
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APPENDIX

A. Proof of Proposition 1

Proof of Proposition 1: Use (19) in (14) to �nd that

ŷF = �k	̂k +
JX
j=1

�j
1

	j

h
�(bj; xj)�

(k)
j � �(bj�1; xj)�

(k)
j�1

i
:

Hence it su�ces to show that

0 =
J�1X
j=1

�

jpjyj
	j

�(bj; xj)�

j+1pj+1yj+1

	j+1
�(bj; xj+1)

�
�
(k)
j

=
�

�� 1

J�1X
j=1

�

jyj
	j

� 
j+1yj+1
	j+1

�
w(bj)�

(k)
j

=
�

�� 1

J�1X
j=1

�

j�(bj; xj)

�

	j
� 
j+1�(bj; xj+1)

�

	j+1

�
�(bj; xj)

��yjw(bj)�
(k)
j ;

where the �rst line uses (15) and the fact that �
(k)
0 = �

(k)
J = 0; the second uses (5),

and the third uses (9). From (13), the term in brackets in the last line is zero, for all

j. �

B. Matrix M and proofs of Results 2 - 8

Di�erentiate (13) and use (11) to get

A
(k)
j = � 1

	j
�(bj�1; xj)�

(k)
j�1

+

�
1

	j
�(bj; xj) +

1

	j+1
�(bj; xj+1) + ��j

�
�
(k)
j

� 1

	j+1
�(bj+1; xj+1)�

(k)
j+1; j = 1; :::; J � 1:

Write this in matrix form as

A(k) = T�(k);
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where A(k) is de�ned in (21), and T is a tridiagonal matrix of dimension (J � 1) ;

with rows (0; :::; 0; cj; aj; dj+1; 0; :::; 0); where

aj � ��j � (dj + cj+1) > 0; j = 1; :::; J � 1; (40)

�j �
h
�̂h(bj; xj+1)� �̂h(bj; xj)

i
=g(bj) > 0; j = 1; :::; J � 1;

cj � � 1

	j
�(bj�1; xj) < 0; j = 2; :::; J;

dj � � 1

	j
�(bj; xj) < 0; j = 1; :::; J � 1:

The matrix in (20) is the inverse, M = T�1:

To characterize M; de�ne the constants f�igJ�1i=0 ; f ig
J
i=1 ; by

�0 � 1; �1 � a1; (41)

�i � ai�i�1 � cidi�i�2; i = 2; :::; J � 1;

 J � 1;  J�1 � aJ�1; (42)

 i � ai i+1 � ci+1di+1 i+2; i = J � 2; :::; 1:

Lemma A1 shows that these constants and certain sums are positive.

Lemma A1: The constants satisfy �i > 0; all i; and  i > 0; all i; and in addition

�i�1 + ci�i�2 > 0; i = 2; :::; J � 1; (43)

 i + di i+1 > 0; i = J � 2; :::; 1: (44)

Proof of Lemma A1: Use (40) in (41) to �nd that

�i + ci+1�i�1 = ��i�i�1 � di (�i�1 + ci�i�2) ; i = 2; :::; J � 1:

Since ��i > 0; di < 0; ci+1 < 0; all i; it follows that

�i�1 > 0 and �i�1 + ci�i�2 > 0 =) �i + ci+1�i�1 > 0 and �i > 0:
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Since �1 = a1 > 0; and

�1 + c2�0 = a1 + c2 > 0;

by induction (43) holds. Similarly, use (40) in (42) to �nd that

 i + di i+1 = ��i i+1 � ci+1 ( i+1 + di+1 i+2) ; i = J � 2; :::; 1;

so

 i+1 > 0 and  i+1 + di+1 i+2 > 0 =)  i + di i+1 > 0 and  i > 0:

Since  J�1 = aJ�1 > 0 and

 J�1 + dJ�1 J = aJ�1 + dJ�1 > 0;

by induction (44) holds. �

Proof of Lemma 2: The matrix M has elements (see Huang and McColl, 1997)

mnn =
1

�J�1
�n�1 n+1; n = 1; :::; J � 1; (45)

mj+1;n = �cj+1
 j+2
 j+1

mj;n; j = n; :::; J � 2;

mj�1;n = �dj
�j�2
�j�1

mj;n; j = n; :::; 2:

Since �i;  i > 0 and di; ci < 0, all i; clearly mjn > 0; all j; n. In addition, clearly the

columns satisfy (23), where

qj+1 � �cj+1
 j+2
 j+1

; j = 1; :::; J � 2; (46)

rj�1 � �dj
�j�2
�j�1

; j = 2; :::; J: �

Proof of Lemma 3: From the de�nitions of �̂x and 	̂x;

A
(k)
k = �

�x(bk; xk)

�(bk; xk)
�
R bk
bk�1

�x(h; xk)g(h)dhR bk
bk�1

�(h; xk)g(h)dh
;
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and since � is a CES function,

�x(h; x) = (1� !)x�1=��(h; x)1=�:

Hence A
(k)
k T 0 asZ bk

bk�1

�(h; xk)
�
��(bk; xk)

1=��1 � �(h; xk)
1=��1� g(h)dh T 0: (47)

An analogous argument (with careful attention to signs) establishes that A
(k)
k�1 T 0 asZ bk

bk�1

�(h; xk)
�
��(bk�1; xk)

1=��1 � �(h; xk)
1=��1� g(h)dh S 0: (48)

Recall that �(�; xk) is increasing in its �rst argument, and � < 1: For � � 1; the term

in square brackets in (47) is positive over the range of integration, so A
(k)
k > 0: For

� � 1; the term in square brackets in (48) is negative, so A
(k)
k�1 > 0. In other cases

the signs are ambiguous. �

Proof of Proposition 4: For � = 1; the claims are immediate from (22) and

Lemmas 2 and 3. For � 6= 1; the same is true for k = 1 and k = J; since (22) has only

one term.

For � 6= 1 and k 6= 1; J; use the �rst line of (23), with j = n = k� 1; in (22) to �nd

that

�
(k)
k = qkmk�1;k�1A

(k)
k�1 +mk;kA

(k)
k

=
 k+1
�J�1

�
�ck�k�2A(k)k�1 + �k�1A

(k)
k

�
; (49)

where the second line uses (45) and (46). Similarly, use the second line of (23), with

j = n = k; in (22) to �nd that

�
(k)
k�1 = mk�1;k�1A

(k)
k�1 + rk�1mk;kA

(k)
k

=
�k�2
�J�1

�
� kA(k)k�1 � dk k+1A

(k)
k

�
: (50)
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Suppose � > 1: Then A
(k)
k > 0; so the second term in (49) is positive. If in addition

A
(k)
k�1 � 0; then the �rst term is nonnegative, so �

(k)
k > 0: If A

(k)
k�1 < 0; then

0 <

Z bk

bk�1

�(h; xk)
1=�g(h)dg < ��(bk�1; xk)

1=��1
Z bk

bk�1

�(h; xk)g(h)dh

< ��(bk; xk)
1=��1

Z bk

bk�1

�(h; xk)g(h)dh;

so
���A(k)k�1��� < A

(k)
k : Hence by Lemma A1 the sum in parenthesis in (49) is positive. In

(50), the fact that
���A(k)k�1��� < A

(k)
k ; does not help in applying Lemma A1, so the sign

is ambiguous.

Similarly, suppose � < 1: Then A
(k)
k�1 > 0; so the �rst term in (50) is positive. If in

addition A
(k)
k � 0; then the second term is nonnegative, so �(k)k�1 > 0: If A

(k)
k < 0; thenZ bk

bk�1

�(h; xk)
1=�g(h)dg > ��(bk; xk)

1=��1
Z bk

bk�1

�(h; xk)g(h)dh

> ��(bk�1; xk)
1=��1

Z bk

bk�1

�(h; xk)g(h)dh > 0;

so
���A(k)k ��� < A

(k)
k�1: Hence by Lemma A1 the sum in parenthesis in (50) is positive. In

(49), the fact that
���A(k)k ��� < A

(k)
k�1; does not help in applying Lemma A1, so the sign

is ambiguous. �

Proof of Proposition 5: Recall from (40) that

�(bj; xj)cj = �(bj�1; xj)dj; all j: (51)

For j > k; use the �rst line in (24) in (25) to �nd that

ŷ
(k)
j =

1

	j
[�(bj; xj)qj � �(bj�1; xj)] �

(k)
j�1

=
1

	j

�
�cj

 j+1
 j

�(bj; xj)� �(bj�1; xj)

�
�
(k)
j�1

= � 1

	j

�
dj
 j+1
 j

+ 1

�
�(bj�1; xj)�

(k)
j�1 (52)

T 0 as �
(k)
k S 0;
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where the second line uses the de�nition of qj; the third uses (51), and the last uses

Lemma A1 and Proposition 4. Similarly, for j < k, use the second line in (24) in

(25), and the de�nition of rj�1 to �nd that

ŷ
(k)
j =

1

	j
[�(bj; xj)� rj�1�(bj�1; xj)] �

(k)
j

=
1

	j

�
�(bj; xj) + dj

�j�2
�j�1

�(bj�1; xj)

�
�
(k)
j

=
1

	j

�
1 + cj

�j�2
�j�1

�
�(bj; xj)�

(k)
j (53)

T 0 as �
(k)
k�1 T 0; j < k:

For j = k; the �rst term in (26) is clearly positive. If � � 1; then the second term

is also positive. If in addition �
(k)
k�1 � 0; then last term is nonnegative, and ŷ

(k)
k > 0.

If �
(k)
k�1 > 0; use the fact that equilibrium requires

�(bk�1; xk�1)pk�1 = �(bk�1; xk)pk;

before and after the shock. Hence

p̂k�1 � p̂k =
h
�̂h(bk�1; xk)� �̂h(bk�1; xk�1)

i �
(k)
k�1

g(bk�1)
+ �̂x(bk�1; xk): (54)

For �
(k)
k�1 > 0; both terms on the right are positive, so p̂k < p̂k�1: Hence ŷk > ŷk�1;

and as shown above, in this case ŷ
(k)
k�1 > 0:

If � < 1; then the �rst and third terms in (26) are positive. If in addition �
(k)
k �

0; then second term is nonnegative, and ŷ
(k)
k > 0. If �

(k)
k < 0; use the fact that

equilibrium requires

�(bk; xk)pk = �(bk; xk+1)pk+1;

before and after the shock. Hence

p̂k � p̂k+1 =
h
�̂h(bk; xk+1)� �̂h(bk; xk)

i �
(k)
k

g(bk)
� �̂x(bk; xk+1):
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For �
(k)
k�1 < 0; both terms on the right are negative, so p̂k < p̂k+1: Hence ŷk > ŷk+1;

and as shown above, in this case ŷ
(k)
k+1 > 0: �

Proof of Proposition 6: For j > k; use (52), the fact that �
(k)
j =�

(k)
j�1 = qj and

the de�nition of qj to �nd that

ŷ
(k)
j+1

ŷ
(k)
j

= �cj+1
cj

dj+1 j+2= j+1 + 1

dj j+1= j + 1

 j+1
 j

cj

=
�cj+1 (dj+1 j+2 +  j+1)

dj j+1 + aj j+1 � dj+1cj+1 j+2

=
�cj+1 (dj+1 j+2 +  j+1)

��j j+1 � cj+1 ( j+1 + dj+1 j+2)
< 1; j > k;

where the second line uses the de�nitions of  j; the third uses the de�nition of aj;

and the inequality follows from Lemma A1 and the fact that cj+1 < 0:

Similarly, for j < k; use (53), the fact that �
(k)
j�1=�

(k)
j = rj�1 and the de�nitions of

rj�1; �j�1; and aj�1 to �nd that

ŷ
(k)
j�1

ŷ
(k)
j

= �dj�1
dj

1 + cj�1�j�3=�j�2
1 + cj�j�2=�j�1

�j�2
�j�1

dj

=
�dj�1 (�j�2 + cj�1�j�3)

aj�1�j�2 � dj�1cj�1�j�3 + cj�j�2

=
�dj�1 (�j�2 + cj�1�j�3)

��j�1�j�2 � dj�1 (�j�2 + cj�1�j�3)
< 1; j < k: �

Proof of Proposition 7: For j 6= k; the claims are immediate from (27) and

Propositions 5 and 6.

For j = k there are two cases. If �
(k)
k�1 > 0; then ŷ

(k)
k�1 > 0 and p̂

(k)
k�1 < 0: Since both

terms on the right in (54) are positive, it follows that p̂
(k)
k < p̂

(k)
k�1 < 0: This argument

always holds if � � 1; and holds for � > 1 if �(k)k�1 > 0:

If � > 1 and �
(k)
k�1 < 0; then ŷ

(k)
j < 0 and p̂

(k)
j > 0; all j < k: In addition, since

�
(k)
k > 0; in this case ŷ

(k)
j < 0 and p̂

(k)
j > 0; all j > k: Since �Jj=1�j p̂

(k)
j = 0; it follows

that p̂
(k)
k < 0: �
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Proof of Proposition 8: For h =2 (bk�1; bk) ; the claim is immediate from

Propositions 4 and 7. For skill bin k; note that ŵ(bk�1) = p̂k�1 > 0; and ŵ(h) is

increasing in h for h 2 (bk�1; bk) : �

C. An example with wage declines

For an example where wages fall for some workers, let J = 3 and k = 2; and let

the skill distribution be discrete, also with three types. Let hi; `j; j = 1; 2; 3; be the

skill types and the number of workers of each type. The parameters are

x3 = 10; 000; x2 = 4; x1 = 1; x02 = 1:01x2;

h3 = 10; 000; h2 = 4; h1 = 0:95;


3 = 0:99; 
2 = 0:0090; 
1 = 0:0010;

`3 = 0:988912; `2 = 0:007991 `1 = 0:003097

� = 0:22; ! = 0:5; � = 1:2:

The vast majority of �rms have technology x3; and the vast majority of the workforce

has skill h3 = x3; and these levels are much higher than the others. Hence the increase

in technology x2 leaves �nal output virtually unchanged, and the price change at x1

�rms depends almost entirely on their own output change. In the initial equilibrium

all workers with skill h3 are employed at �rms with technology x3; and all with skill

h2 are matched with technology x2: Workers with skill h1 are divided between �rms

with technologies x1 and x2: The increase in x2 reallocates some additional h1 workers

to x1 �rms, and p1 falls. Workers with skill h1 take a wage cut equal to decline in p1.

D. Skill-biased technical change

Here we will show that for each k; both of the terms on the right in (28) have order

": For the �rst term, note that by construction

�̂x(bk; xk)� �̂x(bk; xk+1) = �̂x(bk; xk)� �̂x(bk; xk + ")
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� �x
�
� �x + "�xx

�+ "�x

� "
�x
�

�
�x
�
� �xx

�x

�
;

where � and its derivatives are evaluated at (bk; xk) :

For the second term, �rst note that

	̂k � 	̂k+1 =

R bk
bk�1

�x(h; xk)g(h)dhR bk
bk�1

�(h; xk)g(h)dh
�
R bk+1
bk

�x(h; xk + ")g(h)dhR bk+1
bk

�(h; xk + ")g(h)dh

� �x(hk; xk)

�(hk; xk)
� �x(hk+1; xk) + "�xx(hk+1; xk)

�(hk+1; xk) + "�x(hk+1; xk)
;

where

hk �
Z bk

bk�1

hg(h)dh; all k;

is the average value in skill bin k: To approximate hk+1 in terms of hk; let H(x) denote

the inverse matching function in the continuous framework: technology x is paired

with skill H(x): Then by construction, hk � H(xk); all k; so

hk+1 � hk + "H 0(xk); all k:

Hence

	̂k � 	̂k+1 � �x
�
� �x + " [�xhH

0 + �xx]

�+ " (�hH 0 + �x)

� "
�x (�hH

0 + �x)� � (�xhH
0 + �xx)

� [�+ " (�hH 0 + �x)]

� "
�x
�

�
�hH

0 + �x
�

� �xhH
0 + �xx
�x

�
;

so this term also has order ":

E. The gain from PAM

For the approximation in (29), note that F (y; :::; y) = y; and

Fj =

 X
k


ky
(��1)=�
k

!1=(��1)

jy

�1=�
j jy = 
j; all j;
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Fji =
1

�
y(2��)=�
jy

�1=�
j 
iy

�1=�
i jy =

1

�
y�1
j
i; all i 6= j;

Fjj =
1

�
y�1
2j �

1

�
y1=�
jy

�1�1=�
j jy

=
1

�
y�1
2j �

1

�
y�1
j; all j:

Hence X
j

Fj (yj � y) = 0;

X
j

X
i

Fji (yj � y) (yi � y) = �1
�

�2y
y
:

For the approximation in (31), note that Z (x; :::; x) = q (x)1�� ; and Zi = z0
i; all

i; where z0 > 0 is a constant. Hence
P

i Zi (xi � x) = 0; and yjNP is as in (30).

For the approximations to q and q0; use Euler's theorem to �nd that

q(x) � x�

"
1 +

�
h

x

�2
�hh
�

c2h
2

#
;

q0(x) � �x

"
1 +

�
h

x

�2
�hhx
�x

c2h
2

#
;

where � and its derivatives are evaluated at
�
h=x; 1

�
: Under the Alignment Assump-

tion h=x = aH : Then by straightforward calculation

a2H�hh=� = �A; a2H�hhx=�x = �BA;

where A;B are as in (34), and ��x=� = 1. Hence �xq
0=q is as in (36).

F. Wage e�ects of heterogeneous technologies

For economies that satisfy the Alignment Assumption, the wage change from elim-

inating heterogeneity in technologies is

� lnw(hj) � �0 �
1

�

�
lnxH � lnxj

�
+
�
ln�

�
aH ; x

H=xj
�
� ln� (aH ; 1)

�
;

� �0 �
1

�
�xj + "x�xj +

1

2
"xx�

2
xj;
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where

"x �
@ ln� (h; x)

@ lnx
; "xx �

@

@ lnx

�
x�x (h; x)

� (h; x)

�
:

For the elasticities, note that

�(h; x) �
�
!h(��1)=� + (1� !)x(��1)=�

��=(��1)
�x(h; x) = (1� !)x�1=��(h; x)1=�;

�xx(h; x) =
1

�
(1� !)x�1=��(h; x)1=�

�
�x
�
� x�1

�
;

so

x�x
�

= (1� !)�(h=x; 1)�(��1)=�;

x2�xx
�

=
1

�
(1� !)�(h=x; 1)�(��1)=�

�
x�x
�
� 1
�
:

Note, too, that

� (aH ; 1)
�(��1)=� =

1

� (1� !)
:

Hence evaluating the elasticities at (h; x) = (aH ; 1) gives

"x =
x�x
�
= (1� !)�(aH ; 1)

�(��1)=� =
1

�

"xx = x

"
�x
�
� x

�
�x
�

�2
+
x�xx
�

#

=
1

�
� 1

�2
+
1

�
(1� !)�(aH ; 1)

�(��1)=�
�
1

�
� 1
�

=
�� 1
�2

� � 1
�

:
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