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Abstract

This paper develops a model in which two factors contribute to growth:

investments in technology by heterogeneous �rms and investments in human

capital by heterogeneous workers. Growth in per capita income in turn takes

two forms: growth in the quantity produced of each di�erentiated good and

growth in the number of goods available. It is important to analyze both types

of investment together because there is strategic complementarity in the incen-

tives to invest. Workers invest in skill to increase their wages. But without

continued improvement in the set of technologies used by �rms, the returns to

workers' investments would decline and, eventually, be too small to justify fur-

ther investment. Similarly, without continued improvement in the skill distrib-

ution of the workforce, the incentives for �rms to invest in better technologies

would decline, and technology investment would eventually cease. Sustained

growth requires continued investment in both factors.
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1. OVERVIEW

This paper develops a model in which two factors contribute to growth: invest-

ments in technology by heterogeneous �rms and investments in human capital by

heterogeneous workers. Growth in per capita income in turn takes two forms: growth

in the quantity produced of each di�erentiated good and growth in the number of

goods available. The two forms will be referred to as total factor productivity (TFP)

growth and growth in variety. Both types of investment a�ect both forms of growth,

although the contributions are not symmetric.

It is important to analyze both types of investment together because there is strate-

gic complementarity in the incentives to invest. Workers invest in skill to increase

their wages. But without continued improvement in the set of technologies used by

�rms, the returns to workers' investments would decline and, eventually, be too small

to justify further investment. Similarly, without continued improvement in the skill

distribution of the workforce, the incentives for �rms to invest in better technologies

would decline, and technology investment would eventually cease. Sustained growth

requires continued investment in both factors, and the contribution of this paper is

to characterize the interplay between the two types of investment.

In the model here, the investment technologies for skill and technology are in many

respects symmetric, and on balanced growth paths (BGPs) the rate of TFP growth

is also the (common) growth rate of technology and human capital. Nevertheless,

the actual growth rates of TFP and variety do not depend symmetrically on the

parameters governing the investment processes for skill and for technology.

An improvement in any of the parameters governing the returns to investment

in skill raises the rate of TFP growth and reduces the rate of growth in variety.

An improvement in any of the parameters governing the returns to investment in

technology raises the rate of variety growth, while the e�ect on TFP growth depends
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on preferences. In particular, the e�ect is positive, zero, or negative as the elasticity

of intertemporal substitution (EIS) is greater than, equal to or less than unity, with

the size of the e�ect depending on the magnitude of the preference for variety.

The production function for di�erentiated goods used here has two inputs, tech-

nology and human capital, and it is log-supermodular. Hence the competitive equi-

librium features positively assortative matching between technology and skill. Both

investment technologies have stochastic components, and the balanced growth path

features stationary, nondegenerate distributions of technology and human capital,

with both inputs growing at a common, constant rate.

The asymmetry in the two factors comes from the way entry appears. On the

human capital side, growth in the size of the workforce is taken as exogenous, and

both incumbent and entering workers engage in the same type of investment, to

improve their existing skill or obtain initial skill.

On the technology side, entry is endogenous, governed by a zero-pro�t condi-

tion. Incumbent �rms invest to improve their productivity|process innovation, and

they die stochastically. Entering �rms invest to obtain technologies for new goods|

product innovation, and entrants face costs that incumbents do not. Hence the ex-

pected pro�tability of a new product guides the entry rate.

The rest of the paper is organized as follows. Related literature is discussed in sec-

tion 2. Section 3 sets out the production technologies and characterizes the (static)

production equilibrium, given the number of workers and producers and the distribu-

tions of skill and technology. In particular, it describes the allocation of labor|both

quality and quantity|across technologies and the resulting prices, wages, output lev-

els, and pro�ts. Lemmas 1-3 establish the existence, uniqueness and e�ciency of a

production equilibrium, as well as some homogeneity properties. Proposition 4 shows

that if the technology and skill distributions are Pareto, with locations that are ap-

propriately aligned, then the equilibrium allocation of skill to technology is linear,
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and wage, price, and output and pro�t functions that are isoelastic.

Section 4 treats dynamics: the investment decisions of incumbent �rms, new en-

trants, and workers; the evolution of the technology and skill distributions; and the

interest rate and consumption growth. Section 5 provides formal de�nitions of a

competitive equilibrium and a balanced growth path.

Section 6 specializes to the case where technology and skill have Pareto distribu-

tions, showing that the isoelastic forms for the pro�t and wage functions are inherited

by the value functions for producers and workers. This fact leads to a tractable set

of conditions describing investment and the evolution of the technology and skill dis-

tributions on a BGP. The �rst main result, Proposition 5, provides conditions that

ensure the existence of a BGP.

Section 7 looks at the e�ects of various parameters on the growth rates of TFP and

variety. Proposition 6, the second main result, describes these e�ects. Because the

model has an important positive external e�ect, the competitive equilibrium invest-

ment rates are ine�cient: they are too low. The e�ects of subsidies to investment by

workers and �rms are also studied.

Section 8 looks at some positive implications of the model: the wage dynamics for

entering cohorts of workers and the revenue and employment dynamics for cohorts of

entering �rms. Section 9 concludes. Proofs and technical derivations and arguments

are gathered in the Appendix.
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2. RELATED LITERATURE

In most all of the endogenous growth literature, growth has only one source: either

human capital accumulation or innovations in technology.

Among the human capital models, growth can arise from on-the-job learning, as

in the learning-by-doing models of Arrow (1962), Stokey (1988), Young (1991, 1993),

Matsuyama (1992). In others, human capital accumulation competes with production

as a use of time, as in Uzawa (1965), Romer (1986), Lucas (1988, 2009), Lucas and

Moll (2014), Perla and Tonetti (2014), and others.

In the literature on technology-driven growth, some models emphasize creative

destruction, as in Romer (1990), Grossman and Helpman (1991), Aghion and Howitt

(1992), Jones (1995), Stokey (1995), Acemoglu (2002), and Klette and Kortum (2004),

while in others quality improvements are critical, as in Atkeson and Burstein (2010)

and Luttmer (2007).

The model here is also related to the model of technology and wage inequality in

Jovanovic (1998) and the model of skill and technology growth in Lloyed-Ellis and

Roberts (2002).

The framework here builds on the model of technology growth across �rms in Perla

and Tonetti (JPE, 2014), adding a similar investment model on the human capital

side.
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3. PRODUCTION AND PRICES

The single �nal good is produced by competitive �rms using intermediate goods as

inputs. Intermediate goods are produced by heterogeneous, monopolistically compet-

itive �rms. Each intermediate �rm produces a unique variety, and all intermediates

enter symmetrically into �nal good production. But intermediate �rms di�er in their

technology level x; which a�ects their productivity. Let Np be the number (mass) of

intermediate good producers, and let F (x); with with continuous density f , denote

the distribution function for technology.

Intermediate good producers use heterogeneous labor, di�erentiated by its human

capital level h; as the only input. Let Lw; be the size of the workforce, and let 	(h);

with continuous density  ; denote the distribution function for human capital. This

section looks at the the allocation of labor across producers, and wages, prices, output

levels, and pro�ts, given Np; F; Lw;	:

A. Technologies

Although intermediates enter symmetrically into �nal good production, demands

for them di�er if their prices di�er. Let p(x) denote the price charged by a producer

with technology x: The �nal goods sector takes these prices as given, and each �nal

good producer has the CRS technology

yF =

�
N1��
p

Z
y(x)(��1)=�f(x)dx

��=(��1)
; (1)

where � > 1 is the substitution elasticity and � 2 (0; 1=�] measures diminishing

returns to increased variety.

Input demands are

yd(x) = N���
p

�
p(x)

pF

���
yF ; all x;
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and prices will be normalized by setting the price of the �nal good to unity,

1 = pF =

�
N1���
p

Z
p(x)1��f(x)dx

�1=(1��)
: (2)

The output of a �rm depends on the size and quality of its workforce, as well as

its technology. In particular, if a producer with technology x employs ` workers with

human capital h; then its output is

y = `�(h; x);

where �(h; x) is the CES function

�(h; x) �
�
!h(��1)=� + (1� !)x(��1)=�

��=(��1)
; �; ! 2 (0; 1) : (3)

The elasticity of substitution between technology and human capital is assumed to

be less than unity, � < 1. Firms could employ workers with di�erent human capital

levels, and in this case their outputs would simply be summed. In equilibrium �rms

never choose to do so, however, and for simplicity the notation is not introduced.

B. Intermediate goods: price, output, labor

Let w(h) denote the wage function. For a �rm with technology x; the cost of

producing one unit of output with labor of quality h is w(h)=�(h; x): Optimal labor

quality h� minimizes this expression, so h� satis�es

w0(h�)

w(h�)
=
�h(h

�; x)

�(h�; x)
: (4)

It is straightforward to show that if the (local, necessary) second order condition for

cost minimization holds, then � < 1 implies h� is strictly increasing. Unit cost

c(x) =
w(h�(x))

�(h�(x); x)
;
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is strictly decreasing in x;

c0(x)

c(x)
= ��x(h

�(x); x)

�(h�(x); x)
< 0;

where (4) implies that the other terms cancel.

As usual, pro�t maximization by intermediate good producers entails setting a

price that is a markup of �= (�� 1) over unit cost. Output is then determined by

demand, and labor input by the production function. Hence price, quantity, labor

input, and operating pro�ts for the intermediate �rm are

p(x) =
�

�� 1
w(h�(x))

�(h�(x); x)
; (5)

y(x) = N���
p p(x)��yF ;

`(x) =
y(x)

�(h(x); x)
;

�(x) =
1

�
p(x)y(x); all x;

where the price normalization requires (2). Firms with higher technology levels x

have lower prices, higher sales, and higher pro�ts. They may or may not employ

more labor.

Each worker inelastically supplies one unit of labor. The labor market is competi-

tive, and since the production function in (3) is log-supermodular, e�ciency requires

positively assortative matching (Costinot, 2009). Let xm and hm denote the lower

bounds for the supports of F and 	: Then markets clear for all types of labor if

hm = h�(xm); (6)

Lw [1�	(h�(x))] = Np

Z 1

x

`(�)f(�)d�; all x � xm: (7)

C. Production equilibrium

At any instant, the economy is described by its production parameters, the number

of �rms and workers, and the distributions of technology and skill.
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Definition: A production environment Ep is described by

i. parameters (�; �; !; �) ; with � > 1; � 2 (0; 1=�]; ! 2 (0; 1) ; � 2 (0; 1) ;

ii. numbers of producers and workers Np > 0 and Lw > 0;

iii. distribution functions F (x) with continuous density f(x) and lower bound

xm on its support, and 	(h) with continuous density  (h) and lower bound hm � 0

on its support.

A production equilibrium consists of price functions and an allocation that satisfy

pro�t maximization and labor market clearing.

Definition: Given a production environment Ep; the prices w(h); p(x); and al-

location h�(x); y(x), `(x); �(x); yF ; are a production equilibrium if (2) and (4)-(7)

hold.

The following result is then straightforward.

Proposition 1: For any production environment Ep; an equilibrium exists, and

it is unique and e�cient.

D. Homogeneity properties

The analysis of BGPs will exploit the fact that production equilibria have cer-

tain homogeneity properties. Lemma 2 deals with proportionate shifts in the two

distribution functions.

Lemma 2: Fix Ep; and let EpA be a production environment with the same parame-

ters (�; �; !; �) and numbers Np; Lw, but with distribution functions FA;	A satisfying

FA(X) = F (X=Q); all X;

	A(H) = 	(H=Q); all H;

where

Q � EFA (X) :

9



If [w; p; h�; y; `; �; yF ] is the production equilibrium for Ep; then the equilibrium for

EpA is
wA(H) = Qw(H=Q); pA(X) = p(X=Q)

h�A(X) = Qh�(X=Q); yA(X) = Qy(X=Q);

`A(X) = `(X=Q); �A(X) = Q�(X=Q);

yFA = QyF ; all X;H:

Price and employment for any �rm depend only on its relative technology x = X=Q,

while its labor quality, output, and pro�ts are scaled by Q: Wages and �nal output

are also scaled by Q:

Lemma 3 deals with the e�ects of changes in the numbers of producers and workers.

De�ne


 � 1� ��

�� 1 : (8)

and note that 
 2 [0; 1= (�� 1)).

Lemma 3: Fix Ep; and let EpB be a production environment with the same pa-

rameters and distribution functions, but with LwB = e�Lw and NpB = enNp: If

[w; p; h�; y; `; �; yF ] is the production equilibrium for Ep; then the equilibrium for EpB
is

wB = e
nw; pB = e
np;

h�B = h�; yB = e��ny;

`B = e��n`; �B = e�+(
�1)n�;

yFB = e�+
nyF ; all X;H:

A change in Lw leads to proportionate changes in employment, output and pro�ts

at each �rm and in �nal output, with wages, prices and the allocation of skill to

technology una�ected.
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An increase in Np leads to proportionate decreases in employment and output at

each �rm. Final output, the price of each intermediate, and all wage rates change

with an elasticity of 
 � 0: Thus, all increase if variety is valued, if 
 > 0; and all

are unchanged if it is not, if 
 = 0:

Pro�ts per �rm|which re
ect both the increase in price and decrease in scale|

can change in either direction. If 
 > 1; then the love of variety is strong enough

so that an increase in the number of producers actually increases the pro�t of each

incumbent. This case occurs only if � < 2 and, in addition, the parameter � is not

too large. In the analysis of BGPs we will impose the restriction � � 2; to rule out

this case.

E. Pareto distributions

In this section we will show that if the distribution functions F and 	 are Pareto,

with shape parameters that are not too di�erent and location parameters that are

appropriately aligned, the production equilibrium has a linear assignment of skill to

technology, and wage, price, and pro�t functions that are isoelastic.

Proposition 4: Let Ep be a production environment for which F and 	 are

Pareto distributions with parameters (�x; xm) and (�h; hm) : Assume that �x > 1;

�h > 1; and

�1 < �x � �h < �� 1: (9)

De�ne

" � 1

�
(1 + �x � �h) 2 (0; 1) ; (10)

ah �
�
1� "

"

1� !

!

��=(��1)
; (11)

and in addition, assume

hm = ahxm: (12)

11



Then the production equilibrium for Ep has price and allocation functions

h�(x) = ahx; all x; (13)

w(h) = N

p w0xm (h=xm)

1�" ; all h; (14)

p(x) = N

p p0 (x=xm)

�" ; all x; (15)

y(x) = LwN
�1
p

�h
�x
�(ah; 1)xm (x=xm)

�" ; all x;

`(x) = LwN
�1
p

�h
�x
(x=xm)

�"�1 ; all x;

�(x) = LwN

�1
p �0xm (x=xm)

(��1)" ; all x;

yF = LwN


p

�h
�x
�(ah; 1)p

�
0xm;

where

p0 �
�

�x
�h � 1 + "

�1=(��1)
;

w0 � �� 1
�

p0�(ah; 1)
1

a1�"h

;

�0 � 1

�
p0
�h
�x
�(ah; 1):

The shape parameters �x and �h need not be the same, although that is allowed,

but (9) puts a restriction on how di�erent they can be. The isoelastic forms for the

wage and pro�t functions, together with the Pareto forms for the skill and technology

distributions, will be important for analyzing BGPs.
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4. DYNAMICS

In this section investment decisions and other dynamic aspects of the model are

described. As in Perla and Tonetti (2014), investment is imitative, and for incumbent

�rms and workers it is a zero-one decision, with only an opportunity cost. The Pareto

shape for the technology and skill distributions this investment technology requires

for balanced growth �ts well with the production environment here.

In the dynamic model, the set of �rms/individuals at any date consists of pro-

ducers/workers, investors and entrants. All �rms/individuals exit exogenously at

the �xed rates �x; �h > 0; and the technology/skill of producers/workers grow at the

�xed rates �x; �h: The investment technology is symmetric for producers and workers.

Brie
y, it is as follows. A producer/worker can at any time abandon its current tech-

nology/skill and attempt to acquire a new one. Call this process innovation/retooling.

The only cost of process innovation/retooling is an opportunity cost: the �rm/worker

cannot produce while investing. Success is stochastic, with �xed hazard rates �xi; �hi:

Conditional on success, the process innovator/retooler receives a technology/skill that

is a random draw from those of current producers/workers. Hence producers/workers

switch to investing if and only if their technology/skill lies below an endogenously

determined threshold Xm=Hm:

There is an important asymmetry between entering �rms and entrants to the labor

force, however. The labor force grows at a �xed rate �; and entrants to the labor force

pay no investment cost. They have a hazard rate for success �he; and are otherwise

similar to retoolers.

Entering �rms pay a one-time (sunk) cost, and a free entry condition determines

the rate at which new �rms enter. After paying the sunk cost they have a hazard rate

for success �xe; and otherwise are similar to process innovators. Call entering �rms

product innovators.
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Time is continuous and the horizon is in�nite, t � 0: N(t) is the total number

of �rms at date t, and Np(t); Ni(t); Ne(t) are the numbers of producers, process

innovators, and product innovators; L(t) is the total labor force at date t; and

Lw(t); Li(t); Le(t) are the numbers of workers, retoolers, and entrants; F (X; t);	(H; t)

are the distribution functions for technology and skill among producers and workers;

W (H; t); H�(X; t); P (X; t); Y (X; t); L(X; t); �(X; t); YF (t); t � 0; are the wage

function, skill allocation, and so on; and r(t) is the interest rate. Note that only

producers and workers are identi�ed by a technology or skill level, so the distribution

functions describe only active producers and workers.

A. Firms: process and product innovation

Let V f (X; t) denote the value of a producer with technology X at date t: A �rm

that chooses to invest|a process innovator, stops producing, abandons its current

technology, and waits to acquire a new one. The only cost of process innovation is

the opportunity cost of the forgone pro�ts. A process innovator cannot later reclaim

its old technology, so all process innovators at date t are in the same position. Let

Vfi(t) denote their (common) value. All �rms exit exogenously at the constant rate

�x.

Success for process innovators is stochastic, arriving at rate �xi: Conditional on

success at date t, the innovator gets a new technology that is random draw from

the distribution F (�; t) among current producers. Hence Vfi(t) satis�es the Bellman

equation

[r(t) + �x]Vfi(t) = �xi
�
EF (�;t)[V

f (X; t)]� Vfi(t)
	
+ V 0

fi(t); all t;

where the term in braces is the expected gain in value conditional on success.

The value V f (X; t) of a producer is the expected discounted value of its future pro�t


ows. Clearly V f is nondecreasing in its �rst argument: a better technology can only
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raise the �rm's value. Hence at any date t, producers with technologies below some

threshold Xm(t) become process innovators, while those with technologies above the

threshold continue to produce. It follows that at date t; the value of a producer with

technology X is Vfi(t) if X � Xm(t); and the irreversibility of investment means that

Xm(t) is nondecreasing. While a �rm produces, its technology X grows (or declines)

at a constant rate �x: Hence the value V
f (X; t) of a producer, a �rm with X > Xm(t);

satis�es the Bellman equation1

[r(t) + �x]V
f (X; t) = � (X; t) + �xXV

f
X(X; t) + V f

t (X; t); all t:

Value matching provides a boundary condition for this ODE, and the optimal choice

about when to invest implies that smooth pasting holds. Hence

V f [Xm(t); t] = Vfi(t);

V f
X [Xm(t); t] = 0; all t:

Entering �rms|product innovators|have a similar investment technology, except

that they make a one-time (sunk) investment ie; scaled by the average pro�ts of

current producers. The success rate of an innovator depends on his own investment

ie relative to the average spending rate ie of others in his cohort, scaled by the ratio of

entrants to existing products. In particular, let E(t) denote the 
ow of new entrants

1At this stage, it would be easy to assume that the technology X of an incumbent evolves as

a geometric Brownian motion. The Bellman equation would then become a (second-order) HJB

equation, with the variance appearing as the coe�cient on V fXX : The cross-sectional distribution

of technologies among initially identical �rms, within each age cohort, would be lognormal, with a

growing variance, and the overall distribution would be a mixture of lognormals. When the solution

to the model is actually characterized in section 6, however, the argument relies on technologies

across incumbents having a Pareto distribution. At that point the mixture of lognormals would be

incompatible with the requirement of a Pareto distribution overall, and the variance term would

have to be dropped. Therefore, to streamline the notation and analysis, it is not introduced.
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at t: The success rate of an entrant who invests ie is �xe = �e(ie=ie)= [E= (Np +Ni)],

where

�e(z) =

8>>><>>>:
0; if z < 1� "z;

�e [1� (1� z) ="z] ; if z 2 [1� "z; 1] ;

�e [1 + "z (z � 1)] ; if z > 1;

where �e > 0 and where "z > 0 is small. Thus, the hazard function is very steep for z

just below unity and very 
at to the right. The form for �e re
ects a \patent race,"

with intense competition among potential entrants, and normalizing by E= (Np +Ni)

re
ects the reduced chances for success when the �eld is crowded.

Given �xe; the value Vfe(�; �xe) of a product innovator who enters at t; gross of the

investment cost, satis�es the Bellman equation

[r(�) + �x]Vfe(� ; �xe) = �xe
�
EF (�;�)

�
V f (X; �)

�
� Vfe(� ; �xe)

�
+
@Vfe(� ; �xe)

@�
; � � t:

Taking ie(t) and E(t)=Np(t) as given, an entrant at t chooses its investment ie to solve

max
ie

�
Vfe

�
t;
�e(ie=ie)

E=Np

�
� ieEF (�;�) [�(X; t)]

�
:

Since �xe diverges as E ! 0; in equilibrium there is strictly positive entry at all dates.

All entering �rms choose the same investment level, and their (common) success rate

is �xe = �e= (E=Np). Their (common) expenditure level is bid up to exhaust pro�ts,

Vfe(t; �xe)� ie(t)EF (�;t) [�(X; t)] = 0; all t:

Let IE(t) = E(t)ie(t) EF (�;t) [�(X; t)] denote aggregate spending by entrants at t:

B. Workers: investment in human capital

Each individual inelastically supplies one unit of labor to market activities, work

or human capital accumulation, and his investment decisions maximize the expected

discounted value of his lifetime earnings. All individuals die at the �xed rate �h > 0:
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As for �rms, the investment decision of an individual is a zero-one choice, and

the only cost is the opportunity cost of not working. An individual who chooses to

invest|a retooler|stops working, abandons his old skill and waits to acquire a new

one. Let V w(H; t) denote the value of a worker with skill H at date t, and let Vwi(t)

denote the value of a retooler.

Success for retoolers is stochastic, arriving at rate �hi > 0: Conditional on success,

the individual gets a skill level drawn from the distribution 	(�; t) across the current

workforce. Hence Vwi(t) satis�es the Bellman equation

[r(t) + �h]Vwi(t) = �hi
�
E	(�;t)[V

w(H; t)]� Vwi(t)
	
+ V 0

wi(t); all t;

where the term in braces is the expected gain in value conditional on success.

Clearly V w(H; t) is nondecreasing in its �rst argument: higher human capital can

only raise the worker's expected lifetime income. Hence at any date t; all individuals

with skill below some threshold Hm(t) become retoolers, while those with skill above

the threshold continue working. It follows that at date t; the value of a worker with

skill H � Hm(t) is Vwi(t); and the irreversibility of investment implies that Hm(t) is

nondecreasing.

While a worker is employed, his human capital H grows (or declines) at a constant

rate �h; which can be interpreted as on-the-job learning. Hence the value V
w(H; t)

for a worker with skill H > Hm(t); satis�es the Bellman equation

[r(t) + �h]V
w(H; t) =W (H; t) + �hHV

w
H (H; t) + V w

t (H; t); all t:

As for �rms, value matching and smooth pasting hold at the threshold Hm(t); so

V w[Hm(t); t] = Vwi(t);

V w
H [Hm(t); t] = 0; all t:

New entrants into the workforce have an investment technology like the one for

retoolers, except that their hazard rate for success, call it �he; may be di�erent.They
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have no investment costs, so their value function Vwe(t) satis�es the Bellman equation

[r(t) + �h]Vwe(t) = �he
�
E	(�;t)[V

w(H; t)]� Vwi(t)
	
+ V 0

we(t); all t:

The arrival at rate at any date, �N(t) is proportional to population.

C. Flows of �rms, the evolution of technology

Next consider the evolution of Np; Ni; Ne; and the distribution function F: The

number of producers Np(t) grows because of success by innovators of both types, and

declines because of exit and decisions to switch to process innovation. The producers

that switch to innovating around date t are those with technologiesX(t) that are close

enough to the threshold Xm(t) so that growth in that threshold overtakes them. Since

technologies for producers grow at the rate �x; there is a positive level of switching

at date t if and only if

X 0
m(t)� �xXm(t) > 0; all t; (16)

and

N 0
p(t) = �xiNi(t) + �xeNe(t)� �xNp(t)

�max f0; [X 0
m(t)� �xXm(t)] f [Xm(t); t]Np(t)g ; all t:

The number of process innovators Ni grows because producers switch to innovating,

while the number of product innovators Ne grows because new entrants join. Each

declines because of exit and success, so

N 0
i(t) = max f0; [X 0

m(t)� �xXm(t)] f(Xm(t); t)Np(t)g � (�x + �xi)Ni(t);

N 0
e(t) = E(t)� (�x + �xe)Ne(t); all t:

As a check, sum the three laws of motion to �nd that the total number of �rms N

grows because of entry and declines because of exit.
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The distribution function F for technology among producers evolves because their

technologies grow at rate �x; they exit at the rate �x; innovators of both types succeed,

and �rms at the threshold Xm(t) switch to process innovations. As shown in the

Appendix, F (X; t) satis�es

�Ft(X; t) = f(X; t)�xX + [1� F (X; t)]

�
�
N 0
p(t)

Np(t)
� �x + �xi

Ni(t)

Np(t)
+ �xe

Ne(t)

Np(t)

�
;

all X � Xm(t); t � 0:

D. Worker 
ows, the evolution of skill

Similarly, the number of workers Lw grows because of success by retoolers and

entrants, and declines due to exit and decisions to switch to retooling. Workers who

switch to retooling around date t are those whose human capital H(t) falls below the

(moving) threshold Hm(t); despite growth at the rate �h: Hence workers are switching

at date t if and only if

H 0
m(t)� �hHm(t) > 0; all t; (17)

and

L0w(t) = �hiLi(t) + �heLe(t)� �hLw(t)

�max f0; [H 0
m(t)� �hHm(t)] [Hm(t); t]Lw(t)g ; all t:

The number of retoolers Li grows because workers switch to to retooling, while the

number of entrants Le(t) grows as individuals enter the labor force. Each declines

because of exit and success, so.

L0i(t) = max f0; [H 0
m(t)� �hHm(t) [Hm(t); t]Lw(t)]g � (�h + �hi)Li(t);

L0e(t) = (� + �h)L(t)� (�h + �he)Le(t); all t:

As a check, total population L(t) grows at rate �:

19



The distribution function 	(H; t) for skill among workers evolves because their

skills grow at rate �h; they exit at the rate �h; investors succeed at rate �h, and

workers at the threshold Hm switch to retooling. Hence the law of motion for skill 	

is like the one for F;

�	t(H; t) =  (H; t)�hH + [1�	(H; t)]
�
�L

0
w(t)

Lw(t)
� �h + �hi

Li(t)

Lw(t)
+ �he

Le(t)

Lw(t)

�
;

all X � Xm(t); t � 0

E. Consumption

Individuals are organized into a continuum of identical, in�nitely lived households

of total mass one, where each dynastic household comprises a representative cross-

section of the population. Newborns enter at the �xed rate �h+ �; so each household

grows in size at the constant rate � � 0; and total population at date t is L(t) = L0e
�t:

Members of a household pool their earnings, so they face no consumption risk. The

investment decisions of �rms and workers, both incumbents and entrants, maximize,

respectively, the expected discounted value of net pro�ts and wages, discounted at

market interest rates. Hence no further investment decisions are required at the

household level.

The household's income consists of the wages of its workers plus the pro�ts from

its portfolio, which sum to output of the �nal good,

YF (t) = Lw(t)E	(�;t) [W (H; t)] +Np(t)EF (�;t) [�(X; t)] ; all t:

That income is used for consumption and to �nance the investment (entry) costs of

new �rms. Total investment costs for entrants are

IE(t) = E(t)ie(t)EF (�;t) [�(X; t)] ; all t;

and the household's net income at date t is YF (t)� IE(t):
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All household members share equally in consumption, and the household has the

constant-elasticity preferences

U =

Z 1

0

L0e
�te�r̂t

1

1� �
c(t)1��dt;

where r̂ > 0 is the rate of pure time preference, 1=� > 0 is the elasticity of intertem-

poral substitution, and c(t) is per capita consumption.

Given interest rates r(s); s � 0; de�ne the cumulative interest factor

R(t) =

Z t

0

r(s)ds; all t:

The household's consumption/savings decision, given interest rates and its net income

stream, is to choose per capita consumption c(t); t � 0; to maximize utility, subject

to a lifetime budget constraint,Z 1

0

e�R(t)
�
L0e

�tc(t)� [YF (t)� IE(t)]
	
dt � 0:

The condition for an optimum implies that per capita consumption grows at the rate

c0(t)

c(t)
=
1

�
[r(t)� r̂] ; all t;

with c(0) determined by budget balance.

Final output is used for consumption and for the investment costs of entering �rms.

Hence market clearing for goods requires

YF (t) = L0e
�tc(t) + IE(t); all t:

5. COMPETITIVE EQUILIBRIA, BGPS

This section provides formal de�nitions of a competitive equilibrium and a BGP.

We start with the de�nition of a (dynamic) economy.

Definition: An economy E is described by
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i. parameters (�; �; !; �; �; r̂; �) ; with � > 1; � 2 (0; 1=�); ! 2 (0; 1) ; � 2 (0; 1) ;

� > 0; r̂ > 0; � � 0;

ii. parameters �j; �ji > 0 and �j; j = h; x; and �he > 0;

iii. an investment function �e;

iv. initial conditions Np0; Ni0; Ne0 > 0; Lw0; Li0; Le0 > 0;

v. initial distribution functions F0(X) with continuous density f0(X) and lower

bound Xm0 on its support, and 	0(H) with continuous density  0(H) and

lower bound Hm0 � 0 on its support.

A. Competitive equilibrium

The de�nition of a competitive equilibrium is standard.

Definition: A competitive equilibrium of an economy E consists of the following,

for all t � 0:

a. the numbers of producers, process innovators, product innovators, workers, and

investing individuals, [Np(t); Ni(t); Ne(t); Lw(t); Li(t); Le(t)] ; and the in
ow E(t) of

product innovators;

b. distribution functions F (X; t);	(H; t);

c. prices and allocations [W (H; t); P (X; t); H�(X; t); Y (X; t);L(X; t);�(X; t); YF (t]);

d. value functions
�
V f (X; t); Vfi(t); Vfe(t)

�
for �rms in each category, an invest-

ment threshold Xm(t) for process innovators, an investment level ie(t) and success

rate �xe(t) for product innovators;

e. value functions [V w(H; t); Vwi(t); Vwe(t)] ; for individuals in each category, and

an investment threshold Hm(t) for retoolers;

f. aggregate investment costs IE(t); per capita consumption c(t); and interest rate

r(t);

such that for all t � 0;
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i. [W;P;H�; Y;L;�; YF ] ; is a production equilibrium, given [Np; Lw; F;	] ;

ii.
�
V f ; Xm

�
solve the investment problem of producers, given [r;�; Vfi] ; the success

rate for product innovators is �xe(t) = �e(1)= [E= (Np +Ni)] ; ie satis�es the entry

condition, and [Vfi; Vfe] are consistent with
�
r; V f ; F;�xe

�
;

iii. (V w; Hm) solve the investment problem of workers, given r;W; Vwi; and [Vwi; Vwe]

are consistent with [r; V w;	] ;

iii. [Np; Ni; Ne; F ] are consistent with [Xm; E] ; and the initial conditions [Np0; Ni0; Ne0; F0] ;

and Xm(0) = Xm0;

v. [Lw; Li; Le;	] are consistent withHm and the initial conditions [Lw0; Li0; Le0;	0] ;

and Hm(0) = Hm0;

vi. the investment cost IE is consistent with ie; E;�; F ; and c solves the consump-

tion/savings problem of households, given [r; L; YF ; IE] ; and

vii. the goods market clears.

B. Balanced growth

The rest of the analysis focuses on balanced growth paths, competitive equilibria

with the property that quantities grow at constant rates, and the normalized distri-

butions of technology and skill are time invariant.

Let Q(t) � EF (�;t) (X) ; t � 0; denote average technology at date t. On a BGP

Q grows at a constant rate, call it g; and the distributions of relative technology

x = X=Q(t) and relative human capital h = H=Q(t) are constant. By assumption

total population L grows at the �xed rate �; on a BGP the number of �rms N also

grows at a constant rate, call it n; and the shares of �rms and individuals in each

category, [Np=N; Ni=N;Ne=N ] and [Lw=L; Li=L; Le=L] are constant. The growth

rates g and n are endogenous.

It follows from Lemma 2 that on a BGP the labor allocation in terms of relative

technology and relative skill is time invariant. The growth rates for wages, prices,
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output levels, and so on are then described by Lemma 3. In particular, average

product price grows at rate 
n; where 
 is as in (8), average output per �rm at rate

g+ ��n; and average employment per �rm at rate ��n: Aggregate output, gY ; the

average wage, gw; and the average pro�t per �rm, g�; grow at rates

gY = g + 
n+ �; (18)

gw = g + 
n = gY � �;

g� = g + (
� 1)n+ � = gY � n;

Per capita consumption grows at rate gw: Aggregate consumption grows at rate gY ;

as do total investment costs EieEF [�]: If 
 > 1; then love of variety is strong enough

so that an increase in the number of producers actually raises the pro�ts of each

incumbent. In a dynamic model with free entry, this feature poses obvious problems.

In the rest of the analysis we will assume that � � 2, which implies 
 < 1:

These observations lead to the following de�nition.

Definition: A competitive equilibrium for E is a balanced growth path (BGP) if

for some g > 0 and n; with gY ; gw and g� as in (18), the equilibrium has the property

that for all t � 0:

a. the numbers of �rms and individuals satisfy

Np(t) = entNp0; Ni(t) = entNi0; Ne(t) = entNe0;

Lw(t) = e�tLw0; Li(t) = e�tLi0 Le(t) = e�tLe0;

and for some E0 > 0; the number of entrants satis�es

E(t) = entE0;

b. for Q0 � EF0 [X] ; average technology satis�es

Q(t) � EF (�;t) [X] = egtQ0;
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and for some
h
F̂ (x); 	̂(h)

i
; the distribution functions satisfy

F (X; t) = F̂ (X=Q(t)); all X;

	(H; t) = 	̂(H=Q(t)); all H;

c. for some [w; p; h�; y; `; �; yF ] ; the production equilibria satisfy

W (H; t) = egwtQ0w(H=Q(t)); all H;

P (X; t) = e
ntQ0p(X=Q(t));

H�(X; t) = egtQ0h
�(X=Q(t));

Y (X; t) = e(g+��n)tQ0y(X=Q(t));

L(X; t) = e(��n)t`(X=Q(t));

�(X; t) = eg�tQ0�(X=Q(t)); all X;

YF (t) = egY tQ0yF ;

d. for some [vfp(x); vfi; vfe; xm] ; the value functions and optimal policies for �rms

satisfy

V f (X; t) = eg�tQ0vfp(X=Q(t)); all X;

Vfi(t) = eg�tQ0vfi;

Vfe(t) = eg�tQ0vfe;

Xm(t) = egtQ0xm;

and �(t) = �xe and ie(t) = ie0 are constant;

e. for some [vw(h); vwi; vwe; hm] ; the values and optimal policy for workers satisfy

V w(H; t) = egwtQ0vw(H=Q(t)); all H;

Vwi(t) = egwtQ0vwi;

Vwe(t) = egwtQ0vwe;

Hm(t) = egtQ0hm;
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f. for ie0 in (d) and some c0; aggregate investment costs and consumption satisfy

IE(t) = egY tQ0ie0;

C(t) = egY tL0Q0c0;

and the interest rate satis�es

r(t) = r � r̂ + �gw:

BGPs arise|if at all|only for initial conditions [Np0; Ni0; Ne0; Lw0; Li0; Le0; F0(X);	0(H)]

that satisfy certain restrictions. The rest of the analysis focusses on a class of

economies for which BGPs exist, and studies the determinants of the growth rates

(g; n) :

6. CONDITIONS FOR BALANCED GROWTH

In this section we will show that if an economy E has initial distribution functions

F0 and 	0 that are Pareto, with shape and location parameters that satisfy the

requirements of Proposition 4, then the normalized value functions vfp(x) and vw(h)

for producers and workers inherit the isoelastic forms of the normalized pro�t and

wage functions, and simple closed form solutions can be found. Moreover, (g; n)

and the values [vfi; vfe; xm; vwi; vwe; xm; c0; r] can be solved for explicitly, as well as

the required ratios [E=N;Ni=Np; Ne=Np;Li=Lw; Le=Lw] for a BGP. The arguments are

summarized in Proposition 5, which provides su�cient conditions for a existence and

uniqueness of a BGP.

A. Production equilibrium

Suppose the initial distributions F0 and 	0 are Pareto, with parameters (�x; Xm0)

and (�h; Hm0) : Assume (9) holds, de�ne " and ah by (10) and (11), and assume that
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Hm0 = ahXm0: Average technology under the initial distribution is

Q0 � EF0 [X] =
�x

�x � 1
Xm0: (19)

Use Q0 to de�ne the normalized distribution functions

F̂ (X=Q0) � F0(X); all X � Xm; (20)

	̂(H=Q0) � 	0(H); all H � Hm:

By construction EF̂ (x) = 1; so the location parameters for F̂ and 	̂ are

xm =
Xm0

Q0
=
�x � 1
�x

; hm �
Hm0

Q0
= ahxm: (21)

Hence the hypotheses of Proposition 4 hold for F̂ ; 	̂; and given Np0; Lw0; the produc-

tion equilibrium [w; p; h�; y; `; �; yF ] for the normalized distributions is as in (13)-(15).

B. Firms, investment in technology

Given xm and F̂ ; the Bellman equations for the three types of �rms, together with

the optimization condition for producers and the entry condition, determine vfp(x);

vfi; vfe; and ie; as functions of (g; n) ; and also provide one additional equation relating

(g; n) : For convenience, de�ne

� � 1� (�� 1) ": (22)

Note that � can have either sign, and that 1� � = " (�� 1) 2 (0; �� 1) :

Consider the investment decision and value of a producer. As shown in the Appen-

dix, if � and V f have the forms required for a BGP, and �(x) has the isoelastic form

in Proposition 4, then the normalized value function vfp(x) for a producer satis�es

the Bellman equation

(r + �x � g�) vfp(x) = �1x
1�� + (�x � g)xv0fp(x); x � xm;
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where

�1 � �0x
�
mLw0=N

1�

p0 :

A BGP requires positive process innovation, which in turn requires g > �x; so that

the investment threshold grows faster than producers' technologies. Suppose this

condition holds.

The normalized Bellman equation is a �rst-order ODE. Optimization by producers

implies that at the investment threshold two conditions hold: value matching and

smooth pasting. Using value matching for the boundary condition of the ODE, the

solution is

vfp(x) = Bx�1x
1�� +

�
vfi �Bx�1x

1��
m

�
(x=xm)

Rx ; x � xm; (23)

where the constant Bx > 0 and characteristic root Rx < 0 are known. The �rst term

in (23) is the value of a producer who operates forever, never investing. The second

term represents the additional value from the option to invest in process innovation.

The smooth pasting condition

vfi = Bx�1x
1��
m

�
1� 1� �

Rx

�
; (24)

determines vfi as a function of �1:

On a BGP the normalized value vfi for a process innovator satis�es the Bellman

equation

(r + �x � g�) vfi = �xi fEF̂ [vfp(x)]� vfig :

Substituting for EF̂ [vfp(x)] and vfi from (23) and (24), and factoring out �1Bxx
1��
m ,

gives

r + �x � g� =
�Rx (1� �)�xi

(�x � 1 + �) (�x �Rx)
: (25)

Recall that r; g� and Rx involve (g; n) ; while all of the other parameters in this

expression are exogenous. Hence (25) is one equation in the pair (g; n) :
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For an entrant, a product innovator, the normalized value vfe satis�es the Bellman

equation

(r + �x � g� + �xe) vfe(�xe) = �xeEF̂ [vfp(x)] ; (26)

where the success rate �xe and investment ie0 are determined as follows.

Fix ie and � = E= (Np +Ni) : Then an entrant who invests less than (1� "z) ie has

no chance of success, and one that invests ie � (1� "z) ie has success rate

�xe =
�e
�
�

8<:
�
1�

�
1� ie=ie

�
="z
�
; if ie=ie 2 [1� "z; 1] ;�

1 + "z
�
ie=ie � 1

��
; if ie=ie > 1:

The entrant chooses its investment to maximize vfe(�xe) � ieEF̂ [�(x)] : Conditional

on entering, the unique optimal choice is ie = ie if and only if

"z �
v0fe(�e=�)

EF̂ [�(x)]

�e
�

1

ie
� 1

"z
;

and for this investment level �xe = �e=�: Entering is preferred to staying out if and

only if the value from doing so covers the sunk cost, and strictly positive pro�ts would

encourage more entry, an increase in E: Hence the entry holds with equality,

vfe(�e=�) = ieEF̂ [�(x)] :

In this case, calculating v0fe(�xe) from (26), and evaluating at �xe = �e=�; we �nd that

an optimum at ie = ie requires

"z �
r + �x � g�

r + �x � g� + �e=�

�e
�
� 1

"z
; (27)

which holds for "z > 0 su�ciently small. The investment rate ie0 = ie is determined

by the entry condition,

ie0 =
vfe(�xe)

EF̂ [�(x)]

=
�xe

r + �x � g� + �xe

EF̂ [vfp(x)]

EF̂ [�(x)]
: (28)

The success rate is �xe = �e=�; where the entry 
ow rate � is determined below.
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C. Workers, investment in skill

The argument for workers is analogous except that entry is exogenous, as is the

hazard rate �he. Hence the normalized value function vw satis�es the Bellman equa-

tion

(r + �h � gw) vw(h) = w1h
1�" + (�h � g)hv0w(h);

where

w1 � w0h
"
mN



p0:

A BGP requires positive retooling, which requires g > �h: Suppose this condition

holds. Using value matching for the boundary condition, the solution to this ODE is

vw(h) = Bhw1h
1�" +

�
vwi �Bhw1h

1�"
m

�
(h=hm)

Rh ; h � hm; (29)

where the constant Bh > 0 and characteristic root Rh < 0 are known. The �rst

term in (29) is the value of a worker who never invests, and the second represents the

additional value from the option to retool. The smooth pasting condition

vwi = Bhw1h
1�"
m

�
1� 1� "

Rh

�
; (30)

determines vwi:

The value vwi for a retooler satis�es the Bellman equation

(r + �h � gw) vwi = �hi fE	 [vw(h)]� vwig :

Using (29) and (30) to substitute for E	̂ [vw] and vwi; and factoring out w1Bhh
1�"
m ;

gives

r + �h � gw =
�Rh (1� ")�hi

(�h � 1 + ") (�h �Rh)
; (31)

a second equation in the pair (g; n) :

The value vwe of an entrant to the workforce is determined by the Bellman equation

(r + �h � g� + �he) vwe = �heE	̂ [vw(h)] : (32)
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D. Flows of �rms and workers, the evolution of technology and skill

On a BGP the number of �rms grows at a constant rate n: Hence the entry rate is

the sum of the growth and exit rates,

E = (n+ �x)N: (33)

The shares of �rms engaged in production and the two kinds of innovation are

constant over time. Given �xe, the laws of motion for Np; Ni and Ne imply that the

ratios of process and product innovators to producers are

Ni
Np

=
�x (g � �x)

n+ �x + �xi
; (34)

Ne
Np

=
n+ �x
�xe

�
1 +

�x (g � �x)

n+ �x + �xi

�
:

Similarly, the laws of motion for Lw; Li; and Le imply that the ratios of retoolers

and those acquiring initial skill to workers are

Li
Lw

=
�h (g � �h)

� + �h + �hi
; (35)

Le
Lw

=
� + �h
�he

�
1 +

�h (g � �h)

� + �h + �hi

�
:

It is easy to check that if Xm and Hm grow at rate g; as required on a BGP, then the

distribution functions F (�; t) and 	(�; t) evolve as required.

The pair (�; �xe) is determined as follows. By de�nition

� =
E

Np +Ni
=
E

N

N

Np +Ni

= (n+ �x)

�
n+ �x
�xe

+ 1

�
;

where the second line uses the expressions above for the two ratios. On a BGP

�xe = �e=�; so � satis�es

� = (n+ �x)

�
(n+ �x)

�

�e
+ 1

�
:
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Hence

� =
(n+ �x)�e

�e � (n+ �x)
2 ;

and

�xe =
�e

n+ �x
� (n+ �x) : (36)

E. Consumption, the interest rate

On a BGP per capita consumption grows at the rate gw; so the interest rate is

r = r̂ + �gw: (37)

Aggregate income grows at the rate gY ; so its present discounted value is �nite if and

only if r > gY ; or

r̂ > gY � �gw = � + (1� �) (g + 
n) : (38)

Using (28) for ie0; market clearing for goods in the normalized production equilibrium

requires

yF = L0c0 + ie0; (39)

which determines the initial level of per capita consumption, c0:

F. Existence of a BGP

The growth rates (g; n) are determined by (25) and (31). Substituting for gw; g�; r;

and the roots Rx and Rh; those two equations are

g =
1

�x

�
� � n+ �x�x +

1� �

�x � 1 + �
�xi � �x � r̂ � (� � 1)
n

�
; (40)

g =
1

�h

�
�h�h +

1� "

�h � 1 + "
�hi � �h � r̂ � (� � 1)
n

�
;

where

�x � �x � 1 + � > 0; �h � �h � 1 + � > 0;
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and the signs follow from the fact that �x; �h > 1.

Propositions 5 and 6 both use the assumption � � 2, which implies 
 < 1: One

additional joint restriction on �; �h is also imposed if � < 1. Although stronger than

required for existence, it will be needed for the comparative statics results.

Proposition 5: Let E be an economy with:

a. � � 2; and � > �h= (�h � 1) if � < 1;

b. initial distributions F0;	0 that are Pareto, with shape and location parameters

(�x; Xm0) ; (�h; Hm0) satisfying the hypotheses of Proposition 4.

De�ne " and � by (10) and (22). Then the pair of equations in (40) has a unique

solution (g; n) ; and there are unique [Q0; F̂ ; 	̂]; [w; p; h
�; y; `; �; yF ] satisfying con-

ditions (b)-(c) for a BGP; [vfp(x); vf0; vfe; xm; �xe; ie0] satisfying (d); [vw(h); vw0; hm]

satisfying (e); and [c0; r] satisfying (f).

If in addition:

c. the initial ratios [Ni0=Np0; Ne0=Np0] and [Li0=Lw0; Le0=Lw0] satisfy (34) and (35);

and

d. g > �x; g > �h; (27) holds, (38) holds and c0 > 0,

then E has a unique competitive equilibrium that is a BGP.

Proof: For existence and uniqueness of a solution to (40), it su�ces to show that

the two equations are not collinear. Here we will prove a slightly stronger result, that

1

�x
[1 + (� � 1)
] > 1

�h
(� � 1)
;

or

�h > (� � 1) [(�x � �h) 
� 1] : (41)

Since � 2 (0; 1=�] implies 
 2 [0; 1= (�� 1)); and (9) implies �x � �h 2 (�1; �� 1) ;

it follows that

(�x � �h) 
� 1 2
�
� �

�� 1 ; 0
�
:
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If � � 1; the term on the right in (41) is zero or negative. If � < 1; then by assumption

�h > �= (�� 1) : In either case (41) holds, and there exists a unique (g; n) satisfying

(40).

De�ne [Q0; F̂ ; 	̂]; xm; hm by (19)-(21). Since (21) implies (12) holds, by Proposition

4 the normalized production equilibrium [w; p; h�; y; `; �; yF ] is described by (13)-(15),

so the price and allocation functions are isoelastic.

Then (23), (24) and (26) determine [vfp; vfi; vfe] ; (28) determines ie0; (29), (30)

and (32) determine [vw; vwi; vwe] ; (33) determines E0; (36) determines �xe; (37) and

(39) determine r and c0; and (d) implies that the growth rates satisfy the required

inequalities and that c0 > 0: Hence the solution describes a BGP. �

7. GROWTH RATES ON THE BGP

In this section we will look at how various parameters a�ect the growth rates (g; n) :

We will assume throughout that the hypotheses of Proposition 5 hold. We will start

with three special cases, where � = 1 or 
 = 0 or �x = �h; and then look at the

general case.

A. Special cases

Suppose preferences are logarithmic, � = 1: Then �h = �h; and the second equation

in (40) simpli�es to

g = �h +
1

�h

�
1� "

�h � 1 + "
�hi � �h � r̂

�
:

In this case g is a weighted sum of the parameters (�h; �hi; �h; r̂) governing skill accu-

mulation and the rate of time preference, and the parameters (�x; �xi; �x) governing

technology accumulation do not enter. Faster human capital growth �h among on-

the-job workers raises g; as does a higher success rate �hi for retoolers. A higher exit

rate �h or a higher discount rate r̂ reduces g:
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The weights depend on the elasticity parameters �h and 1� ": A higher value for

1� " increases the elasticity of the wage with respect to skill, increasing the returns

to investment and increasing g.

Recall that " is in turn increasing in 1=� and �x; and decreasing in �h: Since 1=�

measures the monopoly power of �rms, an increase in monopoly power reduces g. An

increase in �x; which decreases the mean of the technology distribution and makes

the Pareto tail thinner, also reduces g: An increase in �h decreases the mean of the

skill distribution, and the direct e�ect is to reduce g: The indirect e�ect, through ";

is in the reverse direction, but presumably smaller.

Next, suppose that variety is not valued, so � = 1=� and 
 = 0: In this case, too,

the growth rate g is determined by the second equation in (40),

g =
1

�h

�
�h�h +

1� "

�h � 1 + "
�hi � �h � r̂

�
;

and the solution is qualitatively like the logarithmic case.

Finally, suppose that the two Pareto distributions have the same shape parameter,

�x = �h: Then " = 1=� and � = "; and subtracting the second line in (40) from the

�rst gives

n = � + �h (�x � �h) +
�� 1

� (�h � 1) + 1
(�xi � �hi)� (�x � �h) :

Thus, the growth rate n of variety is equal to the rate of population growth �, adjusted

for di�erences in the exogenous rates of growth, success, and exit between �rms and

workers, �x � �h; �xi � �hi; and �x � �h. A higher rate of population growth, or a

larger di�erence in the rates of growth or success, �x � �h or �xi � �hi; increases the

rate of variety growth, while a larger di�erence in the exit rates, �x� �h; decreases it.

B. General case

Proposition 6 extends these comparative statics results to the general case.
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Proposition 6: Let E be as in Proposition 5. Then

a. an increase in �h; �hi or a decrease in �h raises g and reduces n;

b. an increase in �; �x; �xi or a decrease in �x raises n; and

|raises g if (� � 1)
 < 0;

|has no e�ect on g if (� � 1)
 = 0; and

|reduces g if (� � 1)
 > 0;

c. a decrease in r̂ raises g if (� � 1)
 � 0; and has otherwise ambiguous e�ects.

Proof: First we will show that the equations in (40), plotted in n-g�space, are as

shown Figure 1: the line de�ned by the �rst equation is downward sloping; the line

de�ned by the second equation has a positive, zero, or negative slope as (� � 1)
 < 0;

= 0; or > 0; and in all case the second line crosses the �rst from below.

For the �rst claim, note that � � 2 implies 
 2 [0; 1); so [(� � 1)
 + 1] > 0: The

second claim is obvious, and the third follows from (41).

Then claims (a) - (c) follow directly from Figure 1. As shown in panel (a), an

increase in �h or �hi; or a decrease in �h; shifts the second line upward, increasing g

and decreasing n: As shown in panel (b), an increase in �; �x or �xi; or a decrease in

�x; shifts the �rst line to the right, increasing n: The e�ect on g depends on the slope

of the second line. A decrease in r̂ does both, as shown in panel (c). Hence it raises

g if (� � 1)
 � 0; and otherwise the e�ects depend on the relative slopes of the two

lines. �

Changes in the initial population size and number �rms, L0 and N0; do not a�ect

the growth rates, although they do a�ect the levels for pro�ts and wage rates.

C. Policies to increase growth

Competitive equilibria in the model here are ine�cient. Investments by produc-

ers/workers have positive external e�ects, since they improve the pools of technolo-
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gies/skills from which later investors draw. Since this positive externality is not

taken into account by individual �rms or workers, the competitive equilibrium has

too little investment compared with the e�cient level, as in Perla and Tonetti (2014,

Propositions 3 and 4). Subsidies to investment are obvious policies to overcome this

ine�ciency.

A complete analysis of the optimal policies would require looking at the transition

path between the old and new BGPS, and is beyond the scope of this paper. But it

is easy to assess the long-run impact of a small subsidy to either type of investment

on the rates of TFP growth and growth in variety.

Consider a subsidy to process innovators at a �xed rate �x; scaled by the average

pro�ts of current producers, and a subsidy to retoolers at a �xed rate �h; scaled by

the average wage of current workers. Then the normalized Bellman equations for

process innovators and retoolers are

(r + �x) vf0 = �xEF [�(x)] + �xi
�
EF [v

f (x)]� vf0
	
+ g�vf0;

(r + �h) vw0 = �hE	 [w(h)] + �hi fE	[vw(x)]� vw0g+ gwvw0;

and the pair of equations in (40) becomes

g =
1

�x

�
� � n+ �x�x +

1� �

�x (1� �x)� 1 + �
�xi � �x � r̂ � (� � 1)
n

�
;

g =
1

�h

�
�h�h +

1� "

�h (1� �h)� 1 + "
�hi � �h � r̂ � (� � 1)
n

�
:

The subsidies increase the coe�cients on the hazard rates �xi and �hi: Hence by

Proposition 6 a subsidy �h > 0 to retoolers raises g and reduces n; while a subsidy

�x > 0 to process innovators increases n and increases, leaves unchanged, or decreases

g as (� � 1)
 < 0; = 0; or > 0:
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8. WAGE AND EMPLOYMENT/REVENUE DYNAMICS

This section looks at the empirical predictions of the model for wage growth for

individuals and growth in revenue and employment for �rms. Growth for either type

of agent has two components, continuous growth while working/producing, and jumps

from successful investment. Since the jumps are hard to match with data, we will

focus on age cohorts of individuals and �rms.

Each age cohort of individuals has a mix of workers, retoolers, and new entrants,

with proportions that change as the cohort ages. Only workers receive wages. Over

time the share of workers among survivors grows, as entrants succeed in acquiring

skill. Call that share �w(a): As shown in the Appendix,

�w(a) =
�hi
bh
� e�bhia

�he
bh

bh � �hi
bh � �he

+ e��hea
�he � �hi
bh � �he

; a � 0;

where bh � �h (g � �h)+�hi: Thus, the share of workers in the cohort is zero at entry

and grows monotonically as the cohort ages, converging to �hi=bh:

The workers in any age cohort have average wages equal to the economy-wide aver-

age. Since average wages grow at the rate gw; average earnings (across all individuals)

in the cohort at age a is

eAv(a) = egwa�w(a)W0; a � 0;

whereW0 is the average wage in the economy when the cohort entered. Hence average

earnings among survivors grows monotonically as a function of age, at a rate that

declines toward gw in the long run.

The argument for �rms is analogous. Each age cohort of �rms has a mix of pro-

ducers, process innovators, and product innovators, and only producers have revenue

and employees. Call the share of producers �p(a): Then

�p(a) =
�xi
bx
� e�bxa

�xe
bx

bx � �xi
bx � �xe

� e��xea
�xi � �xe
bx � �xe

; a � 0;
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where bx � �x (g � �x) + �xi:

At any date average revenue (average employment) is the same among producers

in any age cohort, growing at rate g� (at rate � � n). Hence average revenue and

average employment among all surviving �rms in the cohort at age a are

RAv(a) = eg�a�p(a)R0;

`Av(a) = e(��n)a�p(a)`0; a � 0;

where R0 and `0 are average revenue and employment across all �rms when the

cohort entered. Hence the average revenue among survivors grows monotonically as a

function of age, at a rate that declines toward g� in the long run. Average employment

among survivors grows when the cohort is young. It continues to grow in the long

run if and only if population growth exceeds variety growth, if and only if �� n > 0:

The absolute number of survivors in the cohort declines over time as �rms exit, so

cohort totals for revenue and employment are scaled by e��xa:

9. CONCLUSION

The contribution of this paper is to develop a model in which both technological

change and human capital accumulation are required to sustain long run growth. The

main results are to provide conditions for the existence of a BGP, and to show how

the rates of TFP and variety growth depend on various parameters of the model.

On a BGP, skill and technology grow at a common rate. Nevertheless, the parame-

ters governing skill accumulation are more important than those governing technolog-

ical change in determining that rate. The parameters for skill and technology enter

more symmetrically|but with opposite signs|in determining growth in product va-

riety. Thus improvements in the parameters for technological change encourage entry,

while improvements in the parameters for skill accumulation encourage investment in

both skill and technology, but discourage growth in variety.
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The production function here is log supermodular, so in equilibrium there is posi-

tively assortative matching between technologies and skills. As a consequence, con-

tinued investment in either factor remains worthwhile only because the other grows.

If investment in one factor were to cease for some reason, investment in the other

would eventually cease as well.

Thus, there is no `race' between technology and skill: they grow together. Although

transitional dynamics are not studied here, the results suggest that if one factor

started out with a distribution that was `ahead' of the other, investment in that

factor would slow down|and perhaps would cease altogether, while the incentive to

invest in the lagging factor would be exceptionally strong. In this general sense, the

analysis suggests that the system would converge to a BGP. Obviously, convergence

is possible only if the initial distributions are themselves Pareto|or at least have

Pareto tails, since the dynamics of investment do not change the shape of the tails.

In the model here, TFP growth comes from imitation of incumbents. Hence invest-

ments in skill and technology have positive external e�ects, improving the distribution

o�ered to later investors. It follows that the competitive equilibrium is ine�cient: in-

vestment is too low, for both factors, as in Perla and Tonetti (2014).

The model suggests a number of questions for further work. In terms of theory,

the model could be used to analyze the e�ects of a change in the (exogenous) rate

of population growth or the transition path for an economy that received an in
ow

of technology from outside. On the empirical side, the implications for wages and

revenue, sketech in section 8, could be further developed, and one could ask if the the

transition paths in rapidly developing countries look like the model's prediction for

an economy where technology gets \ahead" because of in
ows from abroad.
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APPENDIX A: PRODUCTION AND PRICES

A. Production equilibrium

Proof of Proposition 1: Use (5) to write labor demand as

`(x) = N���
p

�
�� 1
�

��
�(h�(x); x)��1

w(h�(x))�
yF ; all x � xm; (42)

and di�erentiate (7) to write labor market clearing as

Lw (h
�(x))h�0(x) = Np`(x)f(x); all x � xm; (43)

Lw = Np

Z 1

xm

`(�)f(�)d�: (44)

For any �xed yF ; (4) and (43) are a pair of ODEs in w(h) and h�(x); with `(x)

given by (42). The price normalization (2) is a boundary condition for w; and (6) is

the boundary condition for h�: Then (44) determines yF ; and (5) determines p; y; �.

�

Proof of Proposition 4: For the wage function in (14) and the CES function �

in (3), optimal labor quality in (4) is as in (13), with ah as in (11). Then (5) simpli�es

to (15), where the constants w0; p0; �0; involve only exogenous parameters. Hence by

Lemma 1 it su�ces to show that (2), (6), (43) and (44).

Using the fact that F is a Pareto distribution, the prices p in (15) satisfy (2) if

1 = N1���
p N
(1��)

p p1��0 x(1��)"m �xx
�x
m

Z 1

xm

x(��1)"x��x�1dx

= p1��0 x(1��)"m �xx
�x
m

x
(��1)"��x
m

�x � (�� 1) "
= p1��0

�x
�h � 1 + "

;

which holds for p0 as above. Similarly, `(x) in (15) satis�es (44) if

Lw = Lw
�h
�x
x1��"m �xx

�x
m

Z 1

xm

x�"�1x��x�1dx

= Lw
�h
�x
x1��"m

�xx
�"�1
m

�x + 1� �"
;
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which holds.

Clearly (12) implies (6) holds. Then since (44) holds, (43) is satis�ed if

�x
�h
x�"�1m 	0(h�(x))ah = x�"�1fp(x); all x � xm;

or using the Pareto densities,

�x
�h
x�"�1m �h (ahxm)

�h (ahx)
��h�1 ah = x�"�1�xx

�x
m x

��x�1; all x � xm;

which holds for " in (10). The value for yF follows from (1). �

B. The evolution of technology

The distribution function for technology among producers evolves as follows. As

noted above, Xm(t) is nondecreasing. Let �t > 0 be a small time increment. For any

t � 0 and any X � Xm(t + �t); the number of producers with technology above X

at t +�t consists of incumbents at t; adjusted for exit, plus successful innovators of

both types, selected to include only those with technology greater than (1� �x�t)X

at date t;

[1� F (X; t+�t)]Np(t+�t)

� f1� F [(1� �x�t)X; t]g [(1� �x�t)Np(t) + �xi�tNi(t) + �xe(t)�tNe(t)]:

Taking a �rst-order approximation gives

[1� F (X; t)]
�
Np(t) +N 0

p(t)�t

�
� Ft(X; t)�tNp(t)

� [1� F (X; t)] [(1� �x�t)Np(t) + �xi�tNi(t) + �xe(t)�tNe(t)]

+f(X; t)�x�tXNp(t):

Collecting terms and dividing by �tNp(t) gives the equation in the text.
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APPENDIX B: BGPS WITH PARETO DISTRIBUTIONS

A. Firms: process and product innovation

If � and V f have the forms required for a BGP, then factoring out Q0e
g�t; the

Bellman equation for a producing �rm is

(r + �x) vfp(X=Q(t)) = �(X=Q(t)) + �x
X

Q(t)
v0fp(X=Q(t))

+g�vfp(X=Q(t))� v0fp(X=Q(t))
X

Q(t)

_Q(t)

Q(t)
;

or

(r + �x � g�) vfp(x) = �(x) + (�x � g)xv0f (x);

where x = X=Q and _Q=Q = g: For � as in (15), the normalized Bellman equation is

as claimed.

De�ne

Bx � [(r + �x � g�) + (g � �x) (1� �)]�1 ; (45)

Rx � �r + �x � g�
g � �x

;

where Bx > 0 and where the Rx < 0 is the characteristic root of the ODE. It is

straightforward to verify that a particular solution of the ODE is vP (x) = Bx�1x
1�� :

As usual, vP (x) is the value of the �rm if it never invests, operating with its evolving

technology until the exit shock arrives.

In addition, there is a homogeneous solution, of the form vH(x) = cxx
Rx ; where

the coe�cient cx > 0 is determined by the value matching condition: the value of a

�rm at the threshold xm must equal to the value of an investor, limx!xm vfp(x) = vf0:

Hence

cx = x�Rxm

�
vfi �Bx�1x

1��
m

�
;

and vfp(x) is as in (23).
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Di�erentiate (23) to get the smooth pasting condition, which represent the optimal

choice of the investment threshold xm by incumbent producers,

0 = v0fp(xm) = (1� �)Bx�1x
��
m +Rxx

�1
m

�
vfi �Bx�1x

1��
m

�
:

This condition determines vfi; as in (24).

Substituting for vfi in (23) gives

vfp(x) = Bx�1x
1��
m

"�
x

xm

�1��
� 1� �

Rx

�
x

xm

�Rx#
; x � xm;

For any q > �x; integrating w.r.t. the density f(x) = �xx
�x
m x

��x�1 gives EF̂ [(x=xm)
q] =

�x= (�x � q) : Hence

EF̂ [vfp(x)] = Bx�1x
1��
m

�
�x

�x + � � 1 �
1� �

Rx

�x
�x �Rx

�
;

EF̂ [�(x)] = �1x
1��
m

�x
�x + � � 1 :

and

EF̂ [vfp(x)]

EF̂ [�(x)]
= Bx

�
1� 1� �

Rx

�x + � � 1
�x �Rx

�
= [(r + �x � g�) + (g � �x) (1� �)]�1

�
1� 1� �

Rx

�x + � � 1
�x �Rx

�
Similarly, if Vfi has the form required for a BGP, then the Bellman equation for the

normalized value vfi is as claimed. Substituting for EF̂ [vfp(x)] and vfi, and factoring

out �1Bxx
1��
m , the Bellman equation requires

r + �x � g� =
�xi
vfi
fEF̂ [vfp(x)]� vfig

=
�xiRx

Rx � 1 + �

�
�x

�x � 1 + �
� 1� �

Rx

�x
�x �Rx

+
1� �

Rx
� 1
�

=
�xiRx

Rx � 1 + �

�
1� �

�x � 1 + �
� 1� �

�x �Rx

�
=

�xiRx (1� �)

Rx � 1 + �
�Rx + 1� �

(�x � 1 + �) (�x �Rx)

=
�Rx (1� �)�xi

(�x � 1 + �) (�x �Rx)
;
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as in (25).

B. Workers: investment in human capital on the BGP

The analysis for workers is analogous, except that there is no entry cost. De�ne

Bh � [(r + �h � gw) + (g � �h) (1� ")]�1 ; (46)

Rh � �r + �h � gw
g � �h

< 0:

Using (30) in (29) gives

vw(h) = Bhw1h
1�"
m

"�
h

hm

�1�"
� 1� "

Rh

�
h

hm

�Rh#
; h � hm;

and the Pareto form for 	̂ implies

E	̂ [vw(h)] = Bhw1h
1�"
m

�
�h

�h � 1 + "
� 1� "

Rh

�h
�h �Rh

�
:

C. Flows of �rms, the DF for technology

On a BGP Xm(t) grows at the rate g; Np(t); Ni(t); and Ne(t) grow at the rate

n; and there is strictly positive process innovation, so (16) holds. Hence the law of

motion for Np requires

nNp = �xiNi + �xeNe � �xNp � (g � �x)
Xm(t)

Q(t)
f(xm)Np

= �xiNi + �xeNe � [�x + �x (g � �x)]Np;

where the second line uses the fact that f is a Pareto density with parameters

(�x; xm) : Hence

[n+ �x + �x (g � �x)]Np = �xiNi + �xeNe:

The laws of motion for Ni and Ne require

(n+ �x + �xi)Ni = �x (g � �x)Np;

(n+ �x + �xe)Ne = E:
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Sum the three laws of motion to get (33), which determines the entry rate E: The

population shares for �rms are

Np
N

=
n+ �x + �xi

(n+ �x + �xi) + �x (g � �x)

�xe
n+ �x + �xe

;

Ni
N

=
�x (g � �x)

(n+ �x + �xi) + �x (g � �x)

�xe
n+ �x + �xe

;

Ne
N

=
n+ �x

n+ �x + �xe
;

and the ratios Ni=Np and Ne=Np satisfy (34).

As a check, note that (34) implies

�xi
Ni
Np

+ �xe
Ne
Np

� n� �x = �x (g � �x) :

Using this expression in the law of motion for F , we get

�Ft(X; t) = f(X; t)�xX + [1� F (X; t)]�x (g � �x) ; all X � Xm(t); all t:

If F has the form required for a BGP, then

f(X; t) = f(X=Q(t)) = Q(t);

�Ft(X; t) = f (X=Q(t)) gX=Q(t); all X � Xm(t); all t:

so the required condition is

(g � �x)xf (x) = (g � �x)�x [1� F (x)] ; all x � xm;

which holds since F is a Pareto distribution with parameters (�x; xm) :

D. Flows of individuals, the DF for skill

The argument for workers parallels the one for �rms, except that the entry rate is

exogenous. On a BGP, Hm(t) grows at the rate g; Lw(t); Li(t); Le(t) all grow at the
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rate �; and there is positive investment by individuals, so (17) holds. Hence the law

of motion for Lw requires

�Lw = �hiLi + �heLe � [�h + �h (g � �h)]Lw:

Then

[� + �h + �h (g � �h)]Lw = �hiLi + �heLe;

the shares of workers, retoolers and entrants in the population are

Lw
L

=
� + �h + �hi

(� + �h + �hi) + �h (g � �h)

�he
� + �h + �he

;

Li
L

=
�h (g � �h)

(� + �h + �hi) + �h (g � �h)

�he
� + �h + �he

;

Le
L

=
� + �h

� + �h + �he
;

and the ratios Li=Lw and Le=Lw satisfy (35).

Since 	 is a Pareto distribution with parameters (�h; hm) ; the law of motion for

	 satis�es the required condition.

APPENDIX C: WAGE AND FIRM SIZE DYNAMICS

As a function of age, the shares of �rms of various types satisfy0BBB@
�0p(a)

�0i(a)

�0e(a)

1CCCA =

0BBB@
��x (g � �x) �xi �xe

�x (g � �x) ��xi 0

0 0 ��xe

1CCCA
0BBB@

�p(a)

�i(a)

�e(a)

1CCCA :

It is straightforward to solve this linear system, and �nd that

�p(a) = c1�xi + e�bxa (c1 + c3)�x (g � �x) + e��xeac3 (�xi � �xe) ;

�i(a) = c1�x (g � �x)� e�bxa (c1 + c3)�x (g � �x) + e��xeac3�x (g � �x) ;

�e(a) = 0 + 0 + e��xea;

where bx � �x (g � �x) + �xi; c1 = 1=bx; and c3 = �1= (bx � �xe) :
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Figure 1a: comparative static (a)
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Figure 1b: comparative static (b)
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Figure 1c: comparative static (c)
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