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1 Introduction

1.1 Overview

The quest for understanding what moves bond yields has produced an enormous literature
with its own journals and graduate courses. Those who want to join the quest are faced
with considerable obstacles. The literature has evolved mostly in continuous time, where
stochastic calculus reigns and partial differential equations spit fire. The knights in this
literature are fighting for different goals, which makes it often difficult to comprehend
why the quest is moving in certain directions. But the quest is moving fast, and dragons
are being defeated. This chapter wants to report some of these victories made by those
working on affine term structure models.

Bond yield movements over time can be captured by simple vector autoregressions
in yields and maybe other macroeconomic variables. Several aspects of bond yields,
however, set them apart from other variables typically used in VAR studies. One aspect
is that bonds are assets, and that bonds with many different maturities are traded at
the same time. Bonds with long maturities are risky when held over short horizons, and
risk-averse investors demand compensation for bearing such risk. Arbitrage opportunities
in these markets exist unless long yields are risk-adjusted expectations of average future
short rates. Movements in the cross section of yields are therefore closely tied together.
These ties show up as cross-equation restrictions in a yield-VAR. Another aspect of
yields is that they are not normally distributed, at least not until recently. This makes
it difficult to compute the risk-adjusted expected value of future short rates.

Term structure models capture exactly these aspects of bond yields. They impose
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the cross-equation restrictions implied by no-arbitrage and allow yields to be nonnormal.
The word ‘affine term structure model’ is often used in different ways. I will use the word
to describe any arbitrage-free model in which bond yields are affine (constant-plus-linear)
functions of some state vector x.1 Affine models are thus a special class of term structure
models which write the yield y(τ) of a τ -period bond as

y(τ) = A (τ) +B (τ)> x

for coefficients A (τ) and B (τ) that depend on maturity τ. The functions A (τ) and
B (τ) make these yield equations consistent with each other for different values of τ . The
functions also make the yield equations consistent with the state dynamics.

Tractability is the main advantage of affine models. Tractability is important, because
otherwise yields need to be computed with Monte Carlo methods or solution methods
for partial differential equations. Both approaches are computationally costly, especially
when model parameters are estimated using panel data on bond yields. The literature
on bond pricing starting with Vasicek (1977) and Cox, Ingersoll, and Ross (1985, CIR
hereafter) therefore has focused on closed-form solutions. The riskless rate in these early
setups was the only state variable in the economy, so that all bond yields were perfectly
correlated. A number of extensions of these setups followed, both in terms of the number
of state variables and the data-generating processes for these variables. Duffie and Kan
(1996) finally provided a complete characterization of models with affine bond yields.

Tractability has to be paid with restrictive assumptions. The functional form of
bond yields is obtained from computing risk-adjusted expectations of future short rates.
Therefore, restrictive assumptions have to be made on the risk-adjusted dynamics of the
state vector. More concretely, the risk-adjusted process for the state vector needs to be
an affine diffusion, a process with affine instantaneous mean and variance. There are no
functional form assumptions on the data-generating process for the state vector. Now
the question is whether this assumption implies data-generating processes for yields that
can be rejected in the data. The answer seems to be ‘yes’ when risk premia imply either
constant or time-varying but strictly positive expected excess returns. Recent research,
however, has made more flexible assumptions on risk premia. The answer now seems to
be ‘maybe not.’ A lot more research is needed before the answer is clear - exciting times
lie ahead!

The rest of this chapter is organized as follows. The remainder of this introduction
argues the importance of understanding bond yields in Subsection 1.2 and the need for
cross-equation restrictions in Subsection 1.3. Section 2 explains the general technique
of how to price bonds in continuous time. Section 3 explains how to specify the short
rate, the dynamics of the state vector and the risk premia in an affine model. Section 4

1New terms such as ‘completely affine,’ ‘essentially affine,’ ‘semi-affine’ and ‘generalized affine’ have
appeared in the literature. The use of ‘affine’ in this paper refers to the way yields depend on the state
variables, not on the data-generating process of the state variables themselves.
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links them to the fundamentals of an economy. Section 6 explains how to estimate affine
models. Section 7 discusses the empirical performance of affine models.

1.2 Why care about bond yields?

Understanding what moves bond yields is important for at least four reasons. One
of these reasons is forecasting. Yields on long-maturity bonds are expected values of
average future short yields, at least after an adjustment for risk. This means that the
current yields curve contains information about the future path of the economy. Yield
spreads have indeed been useful for forecasting not only future short yields (Fama and
Bliss (1987), Campbell and Shiller (1991), Cochrane and Piazzesi (2002)), but also real
activity (Harvey (1988), Estrella and Hardouvelis (1991), Hamilton and Kim (2002), Ang,
Piazzesi, andWei (2002)) and inflation (Mishkin (1990), Fama (1990)), even though these
forecasting relationships may be unstable (Stock and Watson (2001)). These forecasts
provide a basis for investment decisions of firms, savings decisions of consumers, and
policy decisions.

Monetary policy is a second reason for studying the yield curve. In most industrialized
countries, the central bank seems to be able to move the short end of the yield curve.
What matters for ‘aggregate demand,’ however, are long-term yields. For example, U.S.
households base their decision on whether to buy or rent a house on long-term mortgage
rates and not on the rate in the federal funds market which seems to be controlled by
the Federal Reserve Bank. For a given state of the economy, a model of the yield curve
helps to understand how movements at the short end translate into longer-term yields.
This involves understanding both how the central bank conducts policy and how the
transmission mechanism works. The expectations hypothesis is at work in most papers
in this area (for example, Balduzzi, Bertola, and Foresi (1996)). Little work has been
done with more flexible risk premia (Babbs and Webber (1993), Piazzesi (2001), Evans
and Marshall (1998, 2001)).

Debt policy constitutes a third reason. When issuing new debt, governments need to
decide about the maturity of the new bonds. For example, the Kennedy administration
actively managed the maturity structure of public debt in the early 1960s in what is
known as ‘operation twist.’ The treasury at the time was trying to flatten or invert the
yield curve by selling short maturity debt and buying long maturity notes. The outcome
of such operations depends crucially on how bond yields depend on the supply of bonds
with different maturities. Real yields in models with nondistortionary taxation and
perfect markets are independent of the maturity structure of public debt. The reason is
that Modigliani-Miller in these models applies to how the government finances its budget
deficit. Cochrane (2001) characterizes the dependence of the nominal term structure on
debt policy in a frictionless economy. Missale (1997) considers distortionary taxation,
while Angeletos (2001) assumes that markets are incomplete.
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Derivative pricing and hedging provide a fourth reason. For example, coupon bonds
are priced as baskets of coupon payments weighted by the price of a zero-coupon bond
that matures on the coupon date. Even the price of more complicated securities, such as
swaps, caps and floors, futures and options on interest rates are computed from a given
model of the yield-curve (see the references in Duffie, Pan, and Singleton (2000)). Banks
need to manage the risk of paying short-term interest rates on deposits while receiving
long-term interest rates on loans. Hedging strategies involve contracts that are contingent
on future short rates, such as swap contracts. To compute these strategies, banks need
to know how the price of these derivative securities depends on the state of the economy.

1.3 Why care about cross-equation restrictions?

Some of the issues just mentioned, such as forecasting and the impact of Fed interventions
on long-term yields, may be addressed without imposing the cross-equation restrictions
implied by no arbitrage. I can add measurement error ε(τ) to each yield equation

y
(τ)
t = A (τ) +B (τ)> xt + ε

(τ)
t

select specific variables for x, and then run an unrestricted regression of yields y(τ) on x for
each maturity τ separately. Least squares is easy, fast and delivers consistent estimates
of parameters, at least conditional on the linear structure. For example, Fama and Bliss
(1987) forecast changes in short rates without imposing the cross-equation restrictions
implied by the absence of arbitrage. Evans and Marshall (1998) estimate the impact of
policy shocks on long-term bonds outside of a yield-curve model.

More patience is required to estimate a system of yield equations in a way that en-
sures no arbitrage. The cross-equation restrictions have to be derived from parameters
that describe the state dynamics and risk premia. Although the model is affine in the
state vector x, the functions A (τ) and B (τ) are nonlinear functions of the underlying
parameters. Using ordinary least squares is thus no longer possible. Maximum likelihood
is not feasible either, because the density of yields is not available in closed form. There
are a few exceptions for which the density is known, such as normal densities for yields,
but they are easily rejected by the data. New econometric methods have been produced
to solve these estimation problems, and this handbook shows some of these exciting de-
velopments. The implementation of these methods, however, require substantial coding
and computation time. Before rolling up the sleeves and getting into the work of imple-
menting cross-equation restrictions when distributions are nonnormal, I would therefore
like to spend some time explaining why we actually need them.

Cross-equation restrictions have many advantages. First, these restrictions ensure
that the yield dynamics are consistent. A (τ) and B (τ) make yield equations consis-
tent with each other in the cross-section and in the time series. Most bond markets
are extremely liquid, and arbitrage opportunities are traded away immediately by large
investment banks. The assumption of no-arbitrage thus seems natural for bond yields.
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Second, term structure models allow us to separate risk premia from expectations
about future short rates. These models are therefore key to understanding to what
extent investors think of long bonds as safe investments. Sargent (1979) and Hansen and
Sargent (1991) are early papers that explore the expectations hypothesis under which
expected excess bond returns are zero. Modified versions of the expectations hypothesis
have been tested under which expected excess returns are constant. These tests compare,
for example, the ratio of the likelihood function with and without restrictions implied
by the expectations hypothesis (for references, see Bekaert and Hodrick (2001)). The
evidence suggests that expected returns on long bonds are on average higher than on
short bonds, and that they are time-varying. Cross-equation restrictions are then needed
to model these risk premia.

Third, unrestricted regressions imply that the number of variables needed to describe
the yield curve equals the number of yields in the regression. Lower-dimensional systems
have been shown to work well in approximating true yield dynamics. Factor decom-
positions of the variance-covariance matrix of yield changes show that over 97% of the
variance is attributable to just three principal components. Litterman and Scheinkman
(1991) named these three principal components ‘level’, ‘slope’ and ‘curvature’ according
to how shocks to these factors affect the yield curve. This interpretation of the driving
forces of yields seems to be stable across model specifications, estimation samples and
types of interest rates. Measurement errors arising from the data construction meth-
ods, data entry errors and asynchronous data sampling (of LIBOR and swap yields, for
example) are responsible for at least some of the remaining variance of yields.

Fourth, the number of estimated parameters in unrestricted regressions is usually
large. Imposing the cross-equation restrictions from no-arbitrage improves the efficiency
of these estimates. Ang and Piazzesi (2002) show that this helps out-of-sample forecasting
of yields.

Finally, ‘missing bond yields’ can be recovered from a small set of other yields in a
way that is consistent with no arbitrage. Certain multifactor models predict yields that
were not included in the estimation within a couple of basis points. This property of
yield-curve models is important for studies of emerging markets where bonds with only
few maturities are traded at any given point in time. Alvarez and Neumeyer (1999), for
example, apply interpolation methods to construct yields for Argentina. The same issue
arises in the context of the construction of zero-coupon bond yields. Nelson and Siegel
(1987), Fama and Bliss (1987) and McCulloch and Kwon (1993) propose interpolation
methods to infer these yields from observed prices of traded coupon bonds or interest-rate
derivatives. These interpolation methods ignore that bond yields need to be consistent
with risk-adjusted expectations of interpolated future short rates. These methods thereby
admit arbitrage opportunities, which can be avoided with a term structure model.
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2 Basics

2.1 Bond pricing in continuous time

Term structure modelling determines the price of zero-coupon bonds. These bonds pay a
terminal payoff, usually normalized to 1 unit, without risk of default and without paying
any intermediate coupons. A zero-coupon bond that matures τ periods from now trades
at price P (τ). Buying this bond at time t and reselling it at that time t+ n generates a
log holding period return of

hpr
(τ)
t→t+n = logP

(τ−n)
t+n − logP (τ)

t . (1)

The holding period n cannot exceed time to maturity τ , so we have n ≤ τ. The holding
period return is usually random, because it depends on the resale value of the bond
P
(τ−n)
t+n which is generally not known at time t. The resale value is equal to its payoff
when the bond matures, so that holding the bond until maturity (n = τ) generates a
return which is known at time t. The per-period holding period return in this case is the
yield-to-maturity:

y
(τ)
t =

hpr
(τ)
t→t+τ

τ
= − logP

(τ)
t

τ
.

The short rate is the limit of yields as maturity approaches, rt = limτ↓0 y
(τ)
t . Excess

holding period returns hprx(τ)t→t+n = hpr
(τ)
t→t+n − hpr

(n)
t→t+n are returns made in excess of

the riskless return over the holding period.

Bonds are usually priced with the help of a so-called “risk-neutral probability mea-
sure” Q∗. Just like the name of this artificial measure suggests, risk-neutral pricing ap-
plies under Q∗. In other words, asset prices are the expected values of their future
payoffs discounted at the riskless rate, where the expectation is computed using the
probability measure Q∗. When agents are risk-neutral, this pricing result applies under
the data-generating measure Q. In general, the risk-neutral probability measure Q∗ will
be different from Q. The payoff of zero-coupon bonds is 1 unit at maturity, so their price
is

P
(τ)
t = E∗t

·
exp

µ
−
Z t+τ

t

ru du

¶¸
. (2)

where E∗ denotes expectation under Q∗. Standard results show that if there exists a risk-
neutral probability measure Q∗, a system of asset prices is arbitrage free. The converse
is also true under reasonable restrictions on trading strategies. Moreover, the uniqueness
of Q∗ is equivalent to markets being complete. Details and references for these powerful
results can be found, for example, in Duffie (2001).

Under the risk-neutral measure, expected excess returns on bonds are zero. Put
differently, the expected rate of return on a long bond equals the riskfree rate. I think
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the gain in intuition justifies the following abuse in notation:

“E∗t

"
dP

(τ)
t

P
(τ)
t

#
= rtdt”. (3)

This is abuse because “dP (τ)t ” is not even a random variable. Expected values of in-
stantaneous log-holding period returns are only approximately equal to (3), because of
Jensen’s inequality terms.

The pricing relation (2) shows that any yield-curve model consists of two ingredients:

(i) the change of measure from Q to Q∗, and
(ii) the dynamics of the short rate r under Q∗.

In so-called factor models of the yield curve, (ii) is replaced by the following assump-
tion:

(ii)0 the short rate r is a function R(x) of x and
x ∈ RN is a time-homogeneous Markov process under Q∗.

This means that x is the relevant state vector, a vector of factors. This modified (ii)0

assumption implies that the conditional expectation in (2) is some function F of time-to-
maturity τ and the state xt at time t, or

P
(τ)
t = F (xt, τ).

To capture certain features of yield data (seasonalities around macroeconomic news re-
leases, for example), I will later consider functions R that also depend on time t and
time-inhomogeneous Markov processes x, in which case P (τ)t = F (xt, t, τ) separately de-
pends on t and τ (in addition to xt).

The big advantage of pricing bonds (or any other assets) in continuous time is Ito’s
Lemma. The lemma says that smooth functions F of some Ito process x and time t are
again Ito processes (see Duffie (2001), Chapter 5 for details). The lemma thus preserves
the Ito property even if F is nonlinear. Ito’s Lemma allows me to turn the problem of
solving the conditional expectation in (2) into the problem of solving a partial differential
equation (PDE) for the bond price F (x, τ). The trick of computing (2) by solving a PDE
is called the Feynman-Kac approach. I will first explain the local expectations hypothesis
in Section 2.2 and then use it to derive the PDE for bond prices in Section 2.3. Section
2.4 derives the PDE without local expectations hypothesis.

2.2 Local expectations hypothesis (LEH)

The local expectations hypothesis (LEH) states that the pricing relation (2) holds under
the data-generating measure Q. Bond yields are thus given by

LEH : y
(τ)
t = − logEt [exp (−S)] /τ, (4)
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where S =
R t+τ
t

rudu. The LEH therefore amounts to risk-neutral pricing: the data-
generating measure Q and the risk-neutral measure Q∗ coincide. This means that ex-
pected excess returns on long bonds are zero.

The LEH is not the same as the more prominent “expectations hypothesis” (EH)
which states that bond yields y(τ)t are expected values of average future short rates, or

EH : y
(τ)
t = Et [S] /τ. (5)

The difference between the two hypotheses (4) and (5) is due to Jensen’s inequality. For
example, suppose that the short rate is Gaussian under Q = Q∗ which implies that S is
also Gaussian (as the sum of Gaussians). With this normality assumption, equation (4)
becomes

y
(τ)
t = Et [S] /τ − 1

2
vart [S] /τ,

which differs from (5) because of the variance term.

For example, suppose that the short rate is a random walk with normally distributed
shocks. More concretely, the short rate r solves the stochastic differential equation (SDE)

drt = σrdzt

where z is a standard Brownian motion (under the data-generating measure) and σr is
some constant. The shocks dzt are, loosely speaking, independently normally distributed
with mean 0 and variance dt. I can solve for the short rate explicitly as

rt = r0 +

Z t

0

σrdzu = r0 + σrzt,

because the Brownian motion z0 starts at 0 with probability 1. The EH predicts a flat
yield curve in this case,

y
(τ)
t = Et [S] /τ = Et

·Z t+τ

t

rt + σr (zu − zt) du

¸
/τ = rt,

because Et (zu − zt) = 0 for all u ≥ t. The LEH predicts a downward-sloping yield curve,
because2

y
(τ)
t = rt − vart [S]

2τ
= rt − σ2rτ

2

6
.

2The variance can be computed as

vart

·Z t+τ

t

zu − zt du

¸
= var

·Z τ

0

zu du

¸
=

Z τ

0

Z τ

0

cov (zu, zs) du ds

=

Z τ

0

Z τ

0

min {s, u} du ds =
τ3

3
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CIR (1981) argue that the EH is not consistent with no arbitrage. Counterexamples to
this argument exist for some special economies (for example, Fisher and Gilles (1998)).
Longstaff (2000a) argues that market incompleteness may make it impossible to actually
exploit such arbitrage opportunities. Campbell (1986) finds that the Jensen’s inequality
terms tend to be small in the data, except in periods of high volatility such as the end
of the 1970s and for bonds with long maturities.

2.3 Partial differential equation for bond prices with LEH

For now, I assume that the LEH holds. An advantage of the LEH is that there is no
need to know how to change the probability measure in step (i). Another advantage is
that we have some intuition about the parameters that determine the dynamics of the
short rate under the data-generating measure, while we do not have such intuition about
the parameters under the risk-neutral measure. The LEH is therefore a useful starting
point. I will discuss the change of measure in the next subsection.

In continuous time, a Markov process x lives in some state space D ⊂ RN and solves
the stochastic differential equation (SDE)

dxt = µx(xt) dt+ σx(xt) dzt, (6)

where z is an N-dimensional standard Brownian motion under Q, µx : D → RN is the
drift of x and σx : D → RN×N is its volatility. Gaussian processes have an affine drift
µx (x) and their volatility σx (x) is constant. Fat tails in the distribution of the state vector
can be modelled by specifying an appropriate state-dependence for the volatility σx (x) .
Another way to depart from Gaussianity is to model ‘large moves’ in the process x, which
I will add in Section 3.5. The Markov process solving (6) is time-homogenous because
the functions µx and σx do not depend on time. The extension to time-inhomogeneous
Markov processes is straightforward.

Bond prices can now be solved using the Feynman-Kac approach. The idea is to view
the conditional expected value (2) as the solution of the PDE for the bond price F (x, τ).
The PDE can be obtained in four steps. First, the pricing equation (2) implies that the
price of the bond at maturity is equal to its payoff (here the bond price is taken to be
cum-dividend). This means that F (x, 0) = 1 for all x ∈ D. Second, the pricing equation
also shows that the bond price is the expected value of an exponential function, so F (x, τ)
is strictly positive (which makes it possible to divide by F ). Third, Ito’s Lemma implies
that F (x, τ) itself is an Ito process

dF (xt, τ)

F (xt, τ)
= µF (xt, τ) dt+ σF (xt, τ) dzt (7)

with instantaneous expected bond return

µF (x, τ) = −Fτ (x, τ)

F (x, τ)
+

Fx (x, τ)
>

F (x, τ)
µx(x) +

1

2
tr
·
σx(x)σx(x)

>Fxx(x, τ)

F (x, τ)

¸
, (8)
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where Fτ , Fx and Fxx are partial derivatives of F and tr denotes trace. Finally, the
LEH implies that the expected return µF (x, τ) is equal to the short rate r = R (x) . The
following Cauchy problem summarizes these steps:

µF (x, τ) = R(x) (9)

F (x, 0) = 1

for all x ∈ D and τ > 0. A number of regularity conditions are needed for the Feynman-
Kac approach to work. For example, F (x, τ) needs to be smooth enough for Ito’s Lemma.
These conditions are stated in Duffie (2001, Appendix E).

Bond prices can now be computed in different ways. The conditional expected value
in (2) can be computed using Monte-Carlo methods. The PDE in (9) can be solved
numerically. For small dimensional systems (N ≤ 3), solving the PDE is precise and
relatively fast. For larger dimensional systems (N ≥ 3), Monte-Carlo methods tend to
be more attractive. The alternative is to make strong functional form assumptions on
the coefficients µ (x) and σ (x) and the short-rate function R (x) so that the PDE has a
closed form solution. The broad class of exponential-affine solutions for F (x, τ) is called
affine term structure models. The requirements on the coefficients and the short-rate
function are laid out next.

2.4 Without LEH

The last step in the derivation of the PDE (9) for the bond price invoked the LEH to
conclude that the expected return on long-term bonds µF (x, τ) is equal to the riskless
rate R (x) . I will now derive the PDE for the (empirically relevant) case were the LEH
does not hold. The key is to realize that expected returns are always equal to the riskless
rate under the risk-neutral measure Q∗, or

µ∗F (x, τ) = R (x) .

Instead of the state-dynamics (6) under the data-generating measure, the state vector
x solves

dxt = µ∗x (xt) dt+ σ∗x (xt) dz
∗
t (10)

for a Brownian motion z∗ under the risk-neutral measure Q∗. To get some intuition
about risk-neutral coefficients, consider the case of a single state variable equal to the
riskless rate, x = r. Risk-neutral pricing then applies after appropriately adjusting the
distribution of the short rate. For example, the conditional density of the short rate may
be needed to shifted right, towards higher values of r. This would make the risk-neutral
mean of the short rate higher than its actual mean. In this case, yields are roughly equal
to the expected values of average future short rates r, but the expectation is computed
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using a twisted distribution, a distribution with a higher mean. A unique feature of
the continuous-time setting is that the volatility turns out to stays the same under both
probability measures: σ∗x = σx. In other words, changes of probability measure do not
affect the variance of innovations to x, unless we allow for jumps.

Now I can derive the PDE for bond prices by relying on risk-neutral coefficients and
then later link the risk-neutral dynamics of the state vector to its data-generating process.
The SDE for the bond price is the ‘starred’ version of equation (7)

dF (xt, τ)

F (xt, τ)
= µ∗F (xt, τ) dt+ σ∗F (xt, τ) dz

∗
t

where z∗ is a Brownian motion under Q∗ and the formula for the expected rate of return
µ∗F (x, τ) is analogous to (8)

µ∗F (x, τ) = −
Fτ (x, τ)

F (x, τ)
+

Fx (x, τ)
>

F (x, τ)
µ∗x(x) +

1

2
tr
·
σ∗x(x)σ

∗
x(x)

>Fxx(x, τ)

F (x, τ)

¸
,

with the difference of being based on the drift µ∗x (x) and the volatility σ
∗
x (x) of x under

Q∗.

The easiest way to write down a pricing model is to start with a process x under Q∗

and to then link Q∗ to the data-generating measure Q. These two ingredients imply a
data-generating process for x which can be estimated. The change of measure captures
risk adjustment. The change involves the density ξ, which is a strictly positive martingale
(so that Q and Q∗ agree on probability zero events) and starts at ξ0 = 1 (so that Q∗ is
a probability measure). The SDE is

dξt
ξt
= σξ (xt) dzt. (11)

where σξ : D → R1×N . Novikov’s condition makes ξ a martingale.3 Now consider the
process z∗ defined by

dz∗t = dzt − σξ (xt)
> dt.

Girsanov’s theorem (Duffie (2001, Appendix D)) implies that z∗ is a Brownian motion
under Q∗.

3The solution to (11) is ξt = exp
³R t

0
σξ (xu) dzu − 1

2

R t
0
σξ (xu)σξ (xu)

> du
´
. The process ξ is a

martingale if Novikov’s condition is satisfied:

E

"
exp

Ã
1

2

Z T

0

σξ (xu)σξ (xu)
>
du

!#
<∞.

For more details, see Appendix D in Duffie (2001).
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By inserting the definition of z∗ into the SDE (10)

dxt =
³
µ∗x (xt)− σ∗x (xt)σξ (xt)

>
´
dt+ σ∗x (xt) dzt

it becomes clear that the volatility of the state vector is the same under both measures

σx (x) = σ∗x (x) .

This is often called diffusion invariance principle. Only the drift changes:

µx (x) = µ∗x (x)− σx (x)σξ (x)
> . (12)

3 Affine models

Affine term structure models make functional-form assumptions in step (ii)0 of yield-curve
modelling which lead to tractable pricing formulas. The functional-form assumptions are
on the short-rate function R (x) and the process x for the state vector under the risk-
neutral measure. The functional form is affine in both cases:

• R (x) is affine, and

• x is an affine diffusion under Q∗:

— the drift µ∗x (x) is affine, and

— the variance matrix σ∗x (x)σ∗x (x)
> is affine.

These functional form are for coefficients under the risk-neutral measure. In particular,
the drift µx (x) is affine under the data-generating measure only when σx (x)σξ (x)

> is
affine, which can be seen from (12). The next sections make these assumptions more
precise and show that bond prices F (x, τ) are exponential-affine in x. In this setting,
yields are thus affine in x which explains the name of this class of models.4

3.1 Affine short rate

The functional form of the short rate is made precise in the following assumption.

Assumption I. The short rate is given by

r = R(x) = δ0 + δ>1 x.
4Discrete time analogous to affine diffusions are defined in Darolles, Gouriéroux, and Jasiak (2001) and

applied to term structure modeling in Gouriéroux, Monfort, and Polimenis (2002). For an introduction
into discrete time affine models, see Backus, Foresi, and Telmer (1998).
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for δ0 ∈ R and δ1 ∈ RN .

The choice of short-rate parameters δ0 and δ1 depends on the number of factors in the
model. The short rate usually is the factor in one-factor models, which means δ0 = 0 and
δ1 = 1. The short rate in one-factor models is Markov. In N-factor models, the short rate
alone is not Markov, but the short rate together with N − 1 yields is typically Markov.
The short rate often serves as one of the factors in multidimensional models. In this case,
we still have δ0 = 0 and δ1 = (1, 0N−1)

> . Long yields still depend on the other factors
because the expected future path of the short rate depends on the current state x in (2),
when the short rate covaries with these other factors under the risk-neutral measure.

3.2 Affine diffusions

Again, I will start by imposing the LEH, which means that risk-neutral pricing applies
under the data-generating probability measure. I will therefore assume that the state
vector is an affine diffusion under Q, which is more restrictive than necessary to get affine
solutions for yields. The more general case of an affine diffusion underQ∗ with flexible risk
premia will appear in the next subsection. These risk premia may introduce nonlinearities
in the data-generating process for x. I start with the following two assumptions:

Assumption II. The process x is an affine diffusion. This means that x solves

dxt = µx(xt) dt+ σx(xt) dzt,

with coefficients

µx(x) = κ (x− x)

σx(x) = Σs (x)

where s(x) is a diagonal N ×N matrix with i-th diagonal element si(x) =
p
s0i + s>1ix,

and where s0i ∈ R, x, s1i ∈ RN and Σ, κ ∈ RN×N are constants.

Some intuition about affine diffusions is easy to get in the univariate case. The affine
drift µ (xt) makes sure that if the current state xt is above its mean x, the change dxt is
likely to be negative as long as κ > 0. If the current state xt is instead below its mean
x, the change is likely to be positive. In both cases, the process xt is likely to be pulled
back to its mean. The speed of this adjustment is determined by κ. If the speed is zero,
κ = 0, the process is nonstationary. The autoregressive coefficient of discretely sampled
observations is exp (−κh) , where h is the interval length between two observations. Time
is usually measured in years, so that h = 1 is one year. Monthly and weekly observation
intervals then simply mean that h = 1

12
and h = 1

52
, respectively. For daily data, the

choice of h is less obvious. Most papers shorten the year to an average number of 250
business days so that h = 1

250
. Few papers take weekends and holidays seriously and set

h = 1
365

.
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Shocks dzt disturb xt from moving back to its mean. These shocks are normally dis-
tributed with mean zero and variance dt. The effect of these shocks on xt is determined
by the volatility σx (xt) . With constant volatility, the normally distributed shocks dzt
translate into a conditional normal distribution for changes dxt. More generally, shocks
dzt may translate more into dxt during times of high volatility σx (xt) and less in times
of low volatility. This state-dependent amplification effect introduces conditional het-
eroskedasticity. In bond-yield data, the pattern of this heteroskedasticity seems to pos-
itively depend on the level of yields. The half-life H of shocks solves exp (−Hκ) = 0.5.
For example, with κ = 5, the half life is H = − log 0.5/κ = 0.1386 years, about 7 weeks.

Gaussian processes and square-root processes are the best known examples of affine
diffusions. The two classes differ with respect to their assumptions about the variance
matrix σx (x)σx (x)

> . Gaussian processes have a constant variance matrix which requires
that s1i = 0 for i = 1, . . . , N. Without loss of generality, I can set s (x) equal to the
identity matrix (s0i = 1), because the variance parameters Σ are free. The SDE (6) then
becomes a so-called linear SDE (Karatzas and Shreve (1988), Chapter 5.6),

dxt = κ(x− xt)dt+ Σdzt.

Existence and uniqueness of solutions to linear SDEs are not problematic. The solution
x is Gaussian and thus can take on negative values with positive probability.

Square-root processes introduce conditional heteroskedasticity by allowing σx (x) to
depend on the state. Now additional restrictions are needed to ensure that the variance
matrix σx (x)σx (x)

> is positive definite. A univariate square-root process solves

dxt = κ (x− xt) dt+ Σ
√
xtdzt,

where κ, x,Σ are now all scalars. For arbitrary parameter values (κ, x,Σ) the conditional
variance Σ2xt may not be positive. The Feller condition κx > 1

2
Σ2 makes zero an entrance

boundary. In other words, this condition makes sure that zero is never reached. This
is important, because once the process hits zero, its conditional variance Σ2xt collapses
to zero as well. Intuitively, the parameter restriction ensures that the drift term is
strong enough to always pull the process x away from the zero boundary. Note that the
parameter restrictions rule out unit roots (κ = 0). The solution of the last SDE only takes
on positive values (which makes it possible to compute

√
x). The conditional variance

of square-root processes is thus proportional to the level of the process. The larger x,
the higher its variance. For multidimensional but independent square-root processes, the
Feller condition can be imposed equation-by-equation.

More generally, the coefficients µx (x) and σx (x) need to satisfy regularity require-
ments to guarantee the existence of a unique solution to the SDE (6). These solutions x
are called strong solutions, which means that any other Ito process that solves (6) is equal
to x almost everywhere. The regularity requirements make sure that the solution does
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not explode (growth conditions) and is unique (Lipschitz conditions).5 While these con-
ditions may sound like technical details, they severely restrict the correlation structure
of affine diffusions. Moreover, they are not satisfied in even simple cases like square-root
diffusions. (The volatility Σ

√
x does not satisfy the Lipschitz condition, which is why

we need the Feller condition.) The following two standard examples are not affine, but
they illustrate that these conditions are natural in the context of deterministic differen-
tial equations (σx (x) ≡ 0) . The first example is µx (x) = x2 and x0 = 1 which does not
satisfy the growth condition. The unique solution is xt = 1

1−t , 0 ≤ t ≤ 1, which explodes
for t → 1. The second example is µx (x) = 3x

2/3
t and x0 = 0, which does not satisfy the

Lipschitz condition at x = 0. The equation has many solutions which are indexed by a
scalar a > 0 : xt = 0 for t ≤ a and xt = (t− a)3 for t > a.

Duffie and Kan (1996) provide a multidimensional extension of the Feller condition.
Their condition handles general correlated affine diffusions. The condition ensures that
only positive factors enter the volatility σx (x). This involves restrictions on the correla-
tions between state variables which prevent a potentially negative variable from pulling
a variable that enters s (x) into the negative orthant. The condition is sufficient for the
existence of a unique solution to the SDE (6). For necessary and sufficient conditions,
see Theorem 2.7 in Duffie, Filipovic, and Schachermayer (2001).

Condition A (sufficient for the existence of a solution to the SDE):

1. For all x such that si(x) = 0, s>1iκ (x− x) > 1
2
s>1iΣΣ

>s1i.

2. For all j, if
¡
s>1iΣ

¢
j
6= 0, then si (x) and sj (x) are proportional.

The following examples illustrate how condition A restricts the admissible cross-
correlations between state variables.

Example 1. x = (x1, x2) with s01 = 1, s11 =
¡
0 0

¢>
for x1 and s02 = 0, s12 =¡

0 1
¢>
for x2. Suppose first that Σ is diagonal and κ is unrestricted. In particular,

κ21 6= 0 where κ21 is the (2, 1)-th element in κ, which means that the drift of x2 (which
enters the volatility) depends on x1. For condition A.1. to be satisfied, we need that
κ21 (x1 − x1) + κ22x2 > 1

2
Σ222. This inequality cannot hold for all x1 ∈ R (which is a

direction in which s2 (x) = 0), so that the drift of x1 is not allowed to depend on x2 or
5A measurable function f satisfies Lipschitz and growth conditions in x if there exist constants c and

k such that

kf (x)− f (y)k ≤ c kx− yk
kf (x)k2 ≤ k

³
1 + kxk2

´
for all x, y ∈ RN . The norm on matrices used here is kAk =tr¡AA>¢1/2 where “tr” denotes trace.
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κ21 = 0. Suppose now that κ is diagonal and Σ is unrestricted. In particular, Σ21 6= 0.
For the process to satisfy A.2., we need that s1 (x) and s2 (x) are proportional, which
is not true. This implies that it must be that Σ21 = 0. Analogous considerations for x2
show that it is possible to have κ12 6= 0 and Σ12 6= 0.

Example 2. x = (x1, x2) with s01 = 0, s11 =
¡
1 0

¢>
for x1 and s02, s12 as in

Example 1, Σ is diagonal. Suppose κ is unrestricted with κ21 6= 0. Again, condition A.1.
requires κ21 (x1 − x1)+κ12x2 >

1
2
Σ222 for all directions in which s2 (x) = 0. The difference

to example 1 is that x1 can only take on positive values. If κ21 < 0, it is now possible to
choose parameters such that A.1. is satisfied for all x1 ∈ R+. Condition A.2. rules out
any off-diagonal terms in Σ.

The examples show that the main restriction coming from condition A is on the
dependence of variables entering the volatility s (x) on other variables. These volatility-
determining variables may not be correlated through κ with other variables that do not
enter s (x) (as shown in example 1). Volatility-determining variables may, however, be
correlated with each other through κ, provided this correlation is positive (κ12 < 0 and
κ21 < 0 in example 2). Variables in s (x) cannot be conditionally correlated through
Σ with any variable (examples 1 and 2). Other variables (that do not determine the
volatility) are free to be correlated with variables in s (x) .

Mean

For the univariate case, we can rewrite the SDE (6) for affine diffusions as

xt = x+ exp {−κ (t− s)} [xs − x] +

Z t

s

exp {−κ (t− u)}Σs (xu) dzu. (13)

for any value xu, 0 ≤ s ≤ t. The same formula applies to the multivariate case, where
e−κ(t−s) is a matrix exponential. These are coded in MATLAB as “expm”. The condi-
tional expected value can be computed immediately

Es [xt] = x+ exp {−κ (t− s)} (xs − x) . (14)

The unconditional expected value E [xt] solves

E [xt] = x+ exp {−κ (t− s)} (E [xt]− x)

for stationary processes, which implies that E [xt] = x. Again, these are matrix exponen-
tials.

Variance

The conditional variance of affine diffusions is

vars (xt) =
Z t

s

exp {−κ (t− u)}Σs (Es [xu]) s (Es [xu])
>Σ> exp

©−κ> (t− u)
ª
du. (15)
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For Gaussian processes, the conditional variance is

vars (xt) =
Z t

s

exp {−κ (t− u)}ΣΣ> exp©−κ> (t− u)
ª
du.

For univariate Gaussians, this reduces to

vars (xt) = Σ2
(1− exp {−2κ (t− s)})

2κ
. (16)

For univariate square root processes, the conditional variance boils down to

vars (xt) = xΣ2
(1− exp {−κ (t− s)})2

2κ
+ xtΣ

2 (exp {−κ (t− s)}− exp {−2κ (t− s)})
κ

.

(17)

3.3 Affine bond pricing with LEH

To compute bond prices, I now add the assumption of risk-neutral pricing under Q.

Assumption III. The local expectations hypothesis holds.

Under the assumptions I, II, and III (and additional integrability conditions on the
SDE coefficients for the Feynman-Kac approach to work stated in Duffie, Filipovic, and
Schachermayer (2001), Section 11), Duffie and Kan (1996) guess a solution F (x, τ) for
the PDE (9) of the form

F (x, τ) = exp
³
a (τ) + b (τ)> x

´
(18)

where the coefficients a (τ) ∈ R and b (τ) ∈ RN solve the ODEs

a0 (τ) = −δ0 + b (τ)> κx+
1

2

NX
i=1

h
b (τ)>Σ

i2
i
s0i (19)

b0 (τ) = −δ1 − κ>b (τ) +
1

2

NX
i=1

h
b (τ)>Σ

i2
i
s1i

starting at a (0) = 0 and b (0) = 0. This guess can be verified as follows. Given the
exponential affine form (18), the instantaneous bond return for equation (8) is

µF (x, τ) = −a0 (τ)− b0 (τ)> x+ b (τ)> µx (x) +
1

2
b (τ)> σx (x)σx (x)

> b (τ) . (20)

The PDE in (9) and therefore equation (20) hold for all x in an open set D, so that the
method of undetermined coefficients leads to the system of ODEs above.
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The coefficients a (τ) and b (τ) can be computed in closed form only for a few cases.
For example, the coefficients for a 1-factor model based on a square-root process are in
CIR (1985), page 393. The coefficients for the 2-factor case with independent square-root
processes are in Chen and Scott (1992), page 616. The coefficients for a 1-factor model
based on a Gaussian process are in Vasicek (1977), page 186. More generally, the system
of ODEs (19) can be solved fast and efficiently numerically using Runge-Kutta methods.
The MATLAB command “ode45” performs the computation.

The bond-price equation (18) shows that the LEH together with a short rate which
is affine in an affine diffusion (assumptions I, II, III) imply that yields are given by

y
(τ)
t = − logF (xt, τ)

τ
= A (τ) +B (τ)> xt (21)

for coefficients A (τ) = −a (τ) /τ and B (τ) = −b (τ) /τ.

3.4 Without LEH

I will now drop assumption III and modify assumption II in the following way.

Assumption II’. The process x solves

dxt = µ∗x (xt) dt+ σ∗x (xt) dz
∗
t

for a Brownian motion z∗ under Q∗ and coefficients

µ∗x(x) = κ∗ (x∗ − x)

σ∗x(x) = Σ∗s∗ (x)

where s∗(x) is a diagonal N ×N matrix with i-th diagonal element s∗i (x) =
p
s∗0i + s∗>1i x,

and where s∗0i ∈ R, x∗, s∗1i ∈ RN and Σ∗, κ∗ ∈ RN×N are constants.

To obtain exponential-affine bond-price solutions, the risk-neutral drift µ∗x (x) and
variance-covariance matrix σ∗x (x)σ

∗
x (x)

> need to be affine. Because of diffusion invari-
ance, the variance-covariance matrix σx (x)σx (x)

> under the data-generating measure
needs to be affine as well. But the data-generating drift

µx (x) = µ∗x (x)− σx (x)σξ (x)
>

may be nonlinear, depending on the functional form of σξ (x) . The data-generating drift
is only affine if the product σx (x)σξ (x)

> is affine. Many examples of affine yield-curve
models in the literature described in Section 5 take the drift to be affine under both
measures.
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Assumptions I and II’ (and again integrability conditions from Duffie, Filipovic, and
Schachermayer (2001), Section 11) then imply that the ODEs for the bond-price coeffi-
cients become

a0 (τ) = −δ0 + b (τ)> κ∗x∗ +
1

2

NX
i=1

h
b (τ)>Σ

i2
i
s0i (22)

b0 (τ) = −δ1 − κ∗>b (τ) +
1

2

NX
i=1

h
b (τ)>Σ

i2
i
s1i

where the risk-neutral parameters κ∗ and x∗ replace κ and x in (19). Finally, the drift-
equation (20) has to be “starred” as well to hold under Q∗.

3.5 Jumps

Up to now, the state vector has been an affine diffusion under the risk-neutral probability
measure. Diffusions evolve continuously through time. Large movements in yields, how-
ever, happen around macroeconomic news releases and Federal Reserve policy moves - at
discrete points in time. These large movements can be modelled as discontinuous moves,
or jumps, in the state vector. These jumps occur at arrival times t1, . . . , tn as in Figure
1. These arrival times are either stochastic or deterministic. Counting processes start at
0 and then record the number of jumps, as illustrated in the lower graph in Figure 1. The
value of the state vector x “right before” a jump at time t is the left limit xt− = lims↑t xs.
The jump in x at t is ∆xt = xt − xt−. The process x is right-continuous, as in the upper
graph in Figure 1.

In principle, the conditional probability λtdt of a jump during the interval [t, t+dt] and
the distribution of the jump size ∆xt conditional on a jump at time t may both depend
on the state xt−. In affine models, however, it turns out that there is a dichotomy under
the risk-neutral measure between specifying the jump timing to be state dependent and
specifying the jump size distribution to be state dependent. The two cannot be mixed
together without giving up on tractability, so one of them has to be state independent.
Either the conditional jump distribution depends on the state, but then the jump timing
has to be deterministic, or the conditional probability of a jump depends on the state,
but then the size distribution needs to be state independent. Taken together, these two
types of jumps can be used to accommodate release calendars, central bank meetings
and surprising events such as the Gulf war. Jumps at stochastic jump times have been
introduced by Duffie and Kan (1996, Section 11), while jumps at deterministic jump
times have been introduced by Piazzesi (2001).

Formally, jump-diffusions x solve

dxt = µx (xt−) dt+ σx (xt−) dzt + dJt
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Figure 1: The upper graph illustrates jumps in the state variable x at jump arrival times
t1 and t2. The lower graph illustrates the corresponding counting process N .

where J is a pure jump process and the other terms are as before in (6). The jump
process J can be activated in two possible ways. First, jumps may be caused by a
Poisson process NP with stochastic intensity λ (see Brémaud (1981)). Heuristically, λtdt
is the conditional probability of a jump in the interval [t, t + dt]. For tiny intervals, we
can therefore intuitively think of a Poisson process as a 0-1 coin flip with conditional
probability λtdt of observing 1 and probability 1− λtdt of observing 0. We may observe
more than one jump during longer intervals. Second, jumps may happen at deterministic
points in time. These jump times are recorded by a deterministic counting process ND.
The processesNP andND each start at 0 and count up in increments of 1. I use one jump
process of each type to save on notation. The extension to multiple jump processes is
immediate (it only involves summing up different jump processes in the formulas below).

Affine jump-diffusions make the same functional form assumptions on the coefficient
µx (x) and the volatility σx (x) as in the case without jumps. In addition, functional-
form assumptions are needed for the jump intensities and the distribution of jump sizes
conditional on information “right before” the jump. These assumptions are stated next.

Assumption IV.
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1. (Stochastic intensity). The stochastic intensity λ of the Poisson process is affine

λ (x) = λ0 + λ>1 x

for λ0 ∈ R and λ1 ∈ RN .

2. (Conditional jump distribution). Given a Poisson jump at a stopping time t, the
distribution of the jump size ∆xt is independent of xt−. Given a deterministic jump
at t counted by the deterministic counting process, the distribution of the jump size
∆xt conditional on xt− has an exponential-affine Laplace transform. More precisely,
for any given α ∈ R and β ∈ RN , there exist coefficients a (α) ∈ R and b (β) ∈ RN

such that

Et− [exp (α+ β∆xt)] = exp
³
a (α) + b (β)> xt−

´
.

Calendar time does not matter

Consider first the case without deterministic jump counterND. LetM be the compen-
sated Poisson process dMt = dNP

t − λtdt. Intuitively, the compensated Poisson process
is a demeaned version of the Poisson process, because we are taking out the conditional
mean change λtdt. This leaves us with a mean 0 shock process dM , similar to Brownian
shocks dz. Then we can rewrite

dxt = µx (xt−) dt+ σx (xt−) dzt +∆xt dMt

where the drift of x is now

µx (x) = µx (x) + λ (x)E [∆x]

= κ (x− x) +
¡
λ0 + λ>1 x

¢
E [∆x] .

The new term in the drift is the expected jump in x, which is simply the probability
λ (x) dt of a jump in the interval [t, t+dt] times the expected jump size E [∆x] conditional
on a jump. The expectation has no subscript because the distribution of the jump size
∆x is state-independent by Assumption IV.2. Since E [∆x] is a constant, and µx (x) and
λ (x) are both affine in x, the drift µx in the case of Poisson jumps is again affine.

Now suppose again that the LEH holds. Ito’s Lemma for the case with Poisson jumps
(Duffie (2001, Appendix F)) implies that the bond price is itself an Ito process

dF (xt, τ)

F (xt−, τ)
= µF (xt−, τ) dt+ σF (xt−, τ) dz + JP

F (∆xt, τ) dMt (23)

and the size of the jump in bond returns is

JP
F (∆xt, τ) =

F (xt, τ)− F (xt−, τ)
F (xt−, τ)

.
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The jump size JP
F is a function of the jump ∆x in the state vector and the time-to-

maturity τ of the bond. The instantaneous expected bond return now is

µF (x, τ) = µF (x, τ) + λ (x)E
£
JP
F (∆x, τ)

¤
,

where µF (x, τ) is the return in the case without jumps given by (8) . The additional
term reflects that bond returns now also compensate for jumps in the state vector. The
compensation is equal to the probability λ (x) dt of a jump in the interval [t, t + dt]
times the expected return E

£
JP
F (∆x, τ)

¤
conditional on a jump. Again, the expectation

has no subscript because the distribution of the jump size ∆x is state-independent by
Assumption IV.2.

The guess for the bond price is again of the exponential-affine form (18). This means
that the jump in returns is

JP
F (∆x, τ) = exp

³
b (τ)>∆x

´
− 1.

The bond-price coefficients solve the ODEs:

a0 (τ) = −δ0 + b (τ)> κx+
1

2

NX
i=1

h
b (τ)>Σ

i2
i
s0i + λ0E

£
JP
F (∆x, τ)

¤
(24)

b0 (τ) = −δ1 − κ>b (τ) +
1

2

NX
i=1

h
b (τ)>Σ

i2
i
s1i + λ1E

£
JP
F (∆x, τ)

¤
starting at a (τ) = 0 and b (τ) = 0. When λ0 = 0 and λ1 = 0N , these equations collapse
to the ODEs for the case without jumps (19). For some special cases, the ODEs can be
computed by pencil and paper. Das and Foresi (1996) compute coefficients for two such
cases. The first case has jumps in a mean-reverting short rate with constant volatility.
The sign of the jump size is chosen by a coin flip and the absolute value of the jump size
is exponentially distributed. In the second case, the short rate reverts to a stochastic
mean which is a random walk with i.i.d. jumps.

Calendar time matters

Bond yields are nonstationary when there are deterministic jump arrival times counted
by ND. Thus, calendar time now matters. I therefore change the notation for the bond
price in this subsection: P (T )

t now denotes the price of a bond at time t for a bond that
matures at time T. The price will be given by P (T )

t = F (x, t, T ). The guess for the bond
price is now

F (x, t, τ) = exp
¡
a (t, T ) + b(t, T )>x

¢
.

The computation of a (t, T ) and b (t, T ) proceeds recursively, starting at the time of ma-
turity with boundary condition a (T, T ) = 0 and b (T, T ) = 0. The recursive procedure
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applies two main results from Piazzesi (2001, Appendix B). Result 1 computes the co-
efficients at a deterministic jump time, while result 2 computes the coefficients for the
interim period between two deterministic jump times. More concretely, result 1 says that
if the bond price at the next deterministic jump date t is exponential-affine in the state
vector exp

¡
α+ β>xt

¢
for coefficients α ∈ R and β ∈ RN , then the price P (T )

t− of a bond
“just before” the jump date is of the same form. The proof of this result relies on As-
sumption IV.2. Result 2 states that if the bond price “just before” the next deterministic
jump date ti+1 is exponential-affine exp

¡
α+ β>xt

¢
for some coefficients α ∈ R, β ∈ RN

and t = ti+1−, then the price during the entire interim period [ti, ti+1) between two

deterministic jump dates is given by exp
³
a (s, t) + b (s, t)> xs

´
with coefficients a (s, t)

and b (s, t) for which ba (t− s) := a(s, t) and bb(t− s) := b(s, t) solve the ODEs (24) with
terminal conditions ba (0) = α and bb (0) = β. Together, the two results guarantee that for
every t, the price P (τ) is exponential affine.

Risk adjustment with jumps

Changes of measure with jumps have generally effects on the jump intensity and jump
size distribution. Intuitively, risk-neutral pricing applies under a probability measure
under which jumps counted by NP tend to occur more often and are on average larger
in size once they occur. Jumps at deterministic times counted by ND have the same
timing under both measures, only their size distribution changes. Technically, the risk-
adjustment involves a density ξ as in the case with diffusions, but now the density may
jump as well. The density solves

dξt
ξt−

= σξ (xt−) dzt + JD
ξ (∆xt) dN

D
t + JP

ξ (∆xt) dMt,

starting at ξ0 = 1. For notational simplicity, the jump sizes JD
ξ and JP

ξ only depend on
the jump size ∆xt. The extension to dependence JD

ξ (∆xt, xt−) and JP
ξ (∆xt, xt−) on the

current state xt− is immediate. Assumptions on the coefficients (in addition to Novikov)
are needed for ξ to be a strictly positive martingale. First, both jump sizes JD

ξ and
JP
ξ need to be greater than −1 for ξ to stay positive, because the jump size ∆ξt at the
deterministic jump time t is given by ξt−JD

ξ (∆xt). The same argument holds for Poisson
jump times. Second, the conditional expected value of the jump size at deterministic
jump times must be zero for ξ to be a martingale. For a deterministic jump time t, the
following equalities show why:

Et− [ξt] = Et−
£
ξt−
¡
1 + JD

ξ (∆xt)
¢¤

= ξt−
¡
1 +Et−

£
JD
ξ (∆xt)

¤¢
= ξt−.

Example: Suppose there is only one deterministic jump time t. The jump in the
state is ∆xt = µ + σε where ε ∼ N(0, 1) is a random variable known at time t, and
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JD
ξ (∆xt) = exp

¡−σε− 1
2
σ2
¢ − 1 for some constant σ. This jump size assumption for ξ

satisfies JD
ξ > −1. Also, Et−

£
JD
ξ (∆xt)

¤
= 0. Under the risk-neutral measure Q∗, the

random variable ε is distributed N (−σ, 1) which implies that ∆xt ∼ N (µ− σσ, σ2)
under Q∗.

The jump intensity λ∗ under the risk-neutral measure is given by

λ∗t = λtEt−
¡
1 + JP

ξ (∆xt)
¢
.

which is well defined because JP
ξ > −1. Unlike at deterministic jump times, the expected

jump size in ξ does not have to be zero at Poisson jump times.

Example: Suppose that the intensity λ is affine under the data-generating measure,
λ (x) = λ0+λ>1 x. Also, suppose that Et−

¡
JP
ξ (∆xt)

¢
= v for some constant v > 0. Then

the jump intensity λ∗ under the risk-neutral measure is again affine, but with coefficients
λ∗0 = λ0 (1 + v) and λ∗1 = λ1 (1 + v).

To see where the form of this intensity comes from, consider M∗ which solves

dM∗
t = dNP

t − λ∗tdt

= dMt + (λt − λ∗t ) dt

I want to choose λ∗ to make M∗ the compensated Poisson process under Q∗ and thus
a martingale under Q∗. For M∗ to be a Q∗-martingale, the product ξM∗ needs to be a
Q-martingale. This can be seen from the following sequence of equations:

E∗t [M
∗
s ] =

Et [ξsM
∗
s ]

ξt
=

ξtM
∗
t

ξt
=M∗

t .

Using Ito’s lemma (see Duffie (2001, Appendix E)), the product can be written as

d (ξM∗) =M∗
t−dξt + ξt−dM∗

t +∆ξt∆M∗
t

=M∗
t−dξt + ξt−dMt + ξt− (λt − λ∗t ) dt+ ξt−JP

ξ (∆xt) dN
P
t

Both ξ and M are Q-martingales, so
R
M∗dξ and

R
ξdM are Q-martingales. Now if

λ∗ = λE
¡
1 + JP

ξ

¢
, then the last two terms are

ξt− (λt − λ∗t ) dt+ ξt−JP
ξ (∆xt) dN

P
t = ξt−JP

ξ (∆xt) dMt,

which gives another Q-martingale.

At deterministic jump times, the risk-neutral jump-size distributions satisfy

E∗t− [∆xt] = Et−

·
∆xtξt
ξt−

¸
= Et−

·
∆xt (ξt− +∆ξt)

ξt−

¸
= Et−

£
∆xt

¡
1 + JD

ξ (∆xt)
¢¤
.
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At Poisson jump times, the risk-neutral distributions satisfy

E∗t− [∆xt] = Et−

"
∆xt

¡
1 + JP

ξ (∆xt)
¢

Et−
£
1 + JP

ξ (∆xt)
¤ #

Since the expected jump in ξ at deterministic jump times is zero, Et−
£
JD
ξ

¤
= 0, we can

see that the last two equations are very similar.

Example: Suppose that the jump size ∆x at Poisson jumps, the Poisson intensity
λ and JP

ξ are all constant. Then the risk-neutral jump size is unchanged ∆x, only the
jump intensity under the risk-neutral measure is different: λ∗ = λ

¡
1 + JP

ξ

¢
.

3.6 Negative short rates and jump intensities

Affine models do not constrain the short rate and jump intensities to be positive in gen-
eral. Assumption I specifies the short rate to be affine in the state x which itself may
take on negative values. Assumption IV.1 specifies jump intensities to be affine in x.
Negative nominal short rates are undesirable, because they lead to arbitrage opportuni-
ties in economies with money. Negative intensities (just like negative probabilities) do
not make sense by definition. Within affine models, there are only two ways out of this
problem. The first way is to only include square-root processes in the state vector. Con-
dition A allows these square-root processes to be positively correlated, but not negatively
(see Section 3.1). Thus, the correlation structure in the model is severely restricted. For
example, jump intensities of different Poisson processes can then only be positively cor-
related. But negative correlation in Poisson arrival rates is useful in various contexts.
For example, up and down moves in a central bank’s policy rate come with conditional
probabilities that depend on the business cycle and are therefore negatively correlated.

The second way is to view the affine term structure model as a tool to approximate
true bond prices. The true short rate and the true intensity are nonlinear,

rtruet = max {rt, 0} = max
©
δ0 + δ>1 x, 0

ª
λtruet = max {λt, 0} = max

©
λ0 + λ>1 x, 0

ª
while r and λ are affine in the state x and enter the (now approximate) pricing equation
(2). The approximating model for bond prices ignores the truncation induced by the
max-operators and is therefore affine. To be clear, the approximating affine model may
still allow arbitrage opportunities. For example, in states of the word where r takes on
negative values, long-term bond yields from the approximating model may be negative
as well, again giving rise to arbitrage strategies involving money. The approximation is
good provided that the probability Pr {r < 0} that r takes on negative values is small.
Similarly, Pr {λ < 0} needs to be small for the approximating model to work well. The
accuracy of this approximation at a given parameter vector can be checked, for example,
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by computing true bond yields based on rtrue and λtrue. This computation either involves
Monte-Carlo methods applied to (2) or numerically solving the PDE (8). I am not aware
of any study of nominal bond yields that performs such a check regarding short rates.
Some estimated affine models imply negative short rates on average, which suggests that
such a check would be useful. Piazzesi (2001) performs this check for negative intensities.

Leaving the affine setup is another alternative. This does not necessarily mean giv-
ing up on closed-form solutions for yields. For example, the short rate is quadratic in
Constantinides (1992), El Karoui, Myneni, and Viswanathan (1993), Ahn, Dittmar, and
Gallant (2002). Both the short rate and jump arrival intensities are quadratic in Piazzesi
(2001).

3.7 Expected returns

Expected returns in excess of the riskfree rate in affine models can be computed as follows.
Ito’s lemma implies that the volatility of bond returns is

σF (xt, τ) = b (τ)> σx (xt) .

I insert the definition of the Brownian motion dz∗t = dzt − σ>ξ (xt) dt and compensated
Poisson process

dM∗
t = dMt − λtEt−

¡
JP
ξ

¢
dt

under Q∗ into the SDE for the bond price (23). This leads to a CAPM-type equation
linking expected bond returns under the two measures, µF (x, τ) and µ∗F (x, τ) = R (x),
between any two deterministic jump dates:

µF (x, τ)−R (x) = −b (τ)> σx (x)σξ (x)> − λ (x)E
£
JP
ξ (∆x)JP

F (∆x, τ)
¤
. (25)

Without Poisson jumps (λ (x) ≡ 0), expected excess returns are determined by their
covariance with the density ξ, which in continuous time is just the product of the volatil-
ities. The volatility of bond returns is the factor loading b (τ) times the volatility of
the factor σx (x) . The volatility σξ (x) of the density contains the market prices of risk
for each Brownian motion. These risk prices have the usual mean-variance tradeoff in-
terpretation: The i-th market price of risk measures the percentage change in expected
return that compensates an investor for a 1% increase in return volatility attributable
to the i-th Brownian motion. Typically, b (τ) contains negative numbers (at least in
one-factor models), so that b (τ)> σx (x) is negative. Investors thus want more expected
excess returns in compensation for holding extra risk, measured as −b (τ)> σx (x) . The
next section will show that Lucas models with a representative agent imply that ξ is high
in recessions (when aggregate consumption growth is low). A high covariance between
bond returns and the density means that bonds pay out in recessions, which makes bonds
valuable. Low excess returns are therefore required to compensate the agent to hold the
bond.
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With Poisson jumps, expected excess returns also compensate for jump risk. The com-
pensation is the probability of a jump times the expected jump in returns JP

F weighted
with the market price of Poisson jump risk JP

ξ . Again, since b (τ) usually contains neg-
ative numbers, JP

F is negative.

At deterministic jump times, expected returns under the risk-neutral measure are
zero

E∗t−
£
JD
F (∆xt, τ)

¤
= 0.

To understand why, remember that expected excess returns under the risk-neutral mea-
sure are equal to the short rate. In the instant of a jump, the short rate is zero, and
expected excess returns under Q∗ must be therefore zero. Intuitively, the instant of a
jump is too short for there to be a positive short rate. This implies that expected returns
under Q satisfy an analogous condition to the one for Poisson jumps:

Et−
£
JD
F (∆xt, τ)

¤
= −Et−

£
JD
ξ (∆xt, x)J

D
F (∆xt, τ)

¤
.

Intuitively, expected returns are again the probability of a jump, which is equal to 1 for
deterministic jump times, multiplied with the expected return weighted with the market
price of jump risk for deterministic jump arrival times.

4 Affine general equilibrium models

The pricing equations derived so far did not link fundamentals to the yield curve. More-
over, the transition from the data-generating measure Q to the risk-neutral measure Q∗

was specified exogenously and was not tied to preference parameters. For real bonds, this
link to fundamentals can be achieved within a representative agent endowment economy
along the lines of Exercise 10.3 in Duffie (2001). Suppose the representative agent has a
time-separable utility function

U(c) =

Z ∞

0

e−δtu(ct, ηt) dt with u(ct, ηt) =
(ct − ηt)

1−α

1− α

where δ is the rate of time preference, α is some power and η is an exogenous preference
shock process. The agent eats an endowment process and receives preference shocks such
that

ct − ηt = exp
¡
γ>xt

¢
,

where the state vector x is a diffusion. The coefficient of relative risk aversion

−ctucc (ct, ηt)
uc (ct, ηt)

=
αct

ct − ηt

is time-varying. In the absence of preference shocks (η ≡ 0), the coefficient of relative risk
aversion is the constant α, the aggregate endowment is ct = exp

¡
γ>xt

¢
, the instantaneous
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expected endowment growth rate equals γ>µx (x)+ 1
2
γ>σx (x)σx (x)

> γ and the volatility
of endowment growth is γ>σx (x) .

The time-t price of a bond paying one unit of consumption at time t + τ is the
conditional expected value of the marginal rate of substitution between t and t+ τ,

P
(τ)
t = Et

·
mt+τ

mt

¸
,

where marginal utility is given by

mt = exp (−δt)uc(ct, ηt) = exp
¡−δt− αγ>xt

¢
.

Ito’s Lemma now implies that m is given by

dmt

mt
= µm (x) dt+ σm (x) dzt

with drift and volatility

µm (x) = −δ − αγ>µx (x) +
1

2
α2γ>σx (x)σx (x)

> γ, (26)

σm (x) = −αγ>σx (x) .

No-arbitrage is a necessary condition for an equilibrium to exist, and from Section
2.1, no-arbitrage is also equivalent to risk-neutral pricing. The marginal utility process
m thus provides the link between the data-generating probability Q and the risk-neutral
probability Q∗. The following equations hold:

P
(τ)
t = Et

·
mt+τ

mt

¸
= Et

·
ξt+τ
ξt
exp

µ
−
Z t+τ

t

r (u) du

¶¸
= E∗t

·
exp

µ
−
Z t+τ

t

r (u) du

¶¸
,

where

ξt =
mt

m0
exp

µZ t

0

r (u) du

¶
(27)

is the density of Q∗ with respect to Q (a concept defined in Section 2.4).

Since the process ξ is a martingale, an application of Ito’s Lemma to equation (27)
implies that

µm (x) = −r = −R (x) .
Equation (26) therefore describes minus the short rate. The usual comparative statics
arguments apply to this short-rate equation, at least in the case without preference
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shocks. A higher rate of time preference δ makes the agent want to save less, so that the
real rate must be higher to compensate the agent for saving as much as before. Higher
future expected endowment growth makes the agent want to consume more today. The
real rate must therefore be higher to prevent him from borrowing. Higher endowment
volatility activates a precautionary savings motive, so that the real rate must be lower
to prevent the agent from saving.

The short-rate map R (x) is affine if the drift µx (x) and variance-covariance matrix
σx (x)σx (x)

> are affine. In other words, the data-generating process for x has to be an
affine diffusion for Assumption I to be satisfied. Equations (26) and (27) imply that
market prices of risk are given by σm (x) = −αγ>σx (x). In the absence of preference
shocks, market prices of risk are thus given byminus the coefficient of relative risk aversion
times the volatility of consumption growth γ>σx (x) . A higher volatility of consumption
growth makes recessions worse, and therefore makes bonds which pay out in these bad
times even more attractive. The drift of x under Q∗ satisfies

µ∗x (x) = µx (x)− ασx (x) σx (x)
> γ

which is automatically affine.

To summarize, the real yield-curve is affine if the state x is an affine diffusion under
Q in this model.6 Campbell (1996) computes bond and stock prices in a discrete-time
version of this economy in which consumption growth is a univariate ARMA process of
any order. CIR (1981) discuss the specification of higher-order autoregressive processes
in continuous time. Bekaert and Grenadier (2000) relax the homoskedasticity assump-
tion on the state vector in a discrete time setting. Campbell (1996) and Bekaert and
Grenadier (2000) allow for preference shocks to increase risk premia.7 Campbell, Lo, and
MacKinlay (1997) specify consumption growth as an AR(1) plus noise, which amounts
to an ARMA(1,1). This specification differs from the one in Campbell because the num-
ber of shocks matters, for example, for determining the spanning number of assets.
Wachter (2001) combines an ARMA(1,1) for consumption growth with a ‘surplus ratio’
(c− η) /c = exp (x1) where x1 is a square-root process in discrete time as in Campbell
and Cochrane (1999). The continuous time analogue of the aggregate endowment in her
economy is c = exp (x2) , where x2 (t) = x2 (0) +

R t
0
x3 (s) ds+ z2 (t) and x3 is a Gaussian

autoregressive process. The expected instantaneous endowment growth rate is x3 plus a
constant. In terms of the general specification outlined above, this amounts to choosing
γ>x = x1 + x2. Expected excess returns in the data switch signs over time. Dai (2001)
generates this stylized fact with a model of habit formation.8

6For stock pricing in affine economies, see Bakshi and Chen (1997), Bekaert and Grenadier (2001),
Mamaysky (2002), and Longstaff and Piazzesi (2002).

7Alternatively, Telmer and Zin (1996) investigate the real term structure in an incomplete (non-affine)
setting which also implies higher premia for long-term bonds.

8Seppala (2002) generates the fact using an economy with limited commitment. However, equilibrium
bond prices in his economy do not have tractable solutions.
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Even though there is no role for money in this economy, nominal bonds can still be
priced by specifying an exogenous price process pt. CIR (1985) do this in their Section 7.
To be concrete, the dollar-price PN (τ)

t of a bond that pays out one dollar at τ periods
from now is

PN
(τ)
t = Et

·
mt+τ

mt

pt
pt+τ

¸
.

CIR (1985), Gibbons and Ramaswamy (1993), Pearson and Sun (1994), and Heston
(1991) assume that mt+τ and 1/pt+τ are independent. This assumption leads to

PN
(τ)
t = P

(τ)
t Et

·
pt
pt+τ

¸
,

which is the nominal price P (τ)
t pt of a bond that pays one consumption good at time t+τ

multiplied with how much one dollar at t + τ is expected to be worth in terms of the
consumption good Et [1/pt+τ ] . In this setting, the nominal yield is equal to the real yield
plus expected inflation (plus a Jensen’s inequality term). This is not true in general

PN
(τ)
t = P

(τ)
t Et

·
pt
pt+τ

¸
+ covt

µ
mt+τ

mt
,
pt
pt+τ

¶
due to the covariance of the pricing kernel and the inverted inflation rate. Pennacchi
(1991) and Sun (1992) allow their exogenous inflation process to be correlated with real
variables.

The real value of a dollar at t + τ can be computed conveniently if the price level p
and expected inflation π are specified as in CIR (1985, Section 7)

dpt
pt
= πtdt+ σp

√
πtdz

p
t ,

dπt = κπ (π − πt) dt+ σπ
√
πtdz

π
t .

for constants σp, κπ, π,σπ and independent Brownian motions zp, zπ. Here, expected in-
flation is always positive. This specification boils down to evaluating

Et

·
pt
pt+τ

¸
= Et

·
exp

µ
−
Z t+τ

t

µ
1− 1

2
σ2p

¶
πudu−

Z t+τ

t

σp
√
πudz

p
u

¶¸
.

Since the conditional expected value of the second integral is zero, this expression has a
closed form solution. More generally, any price process pt = exp

¡
ρ>xt

¢
would work.

An endogenous price process can be derived, for example, in models with a cash-in-
advance constraint. The motive for holding money in these models is that good purchases
need to be made with money, so that the agent maximizes utility subject to a budget
constraint and the cash-in-advance constraint

ptct ≤Md.
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This constraint binds as long as the nominal interest rate is positive. This is a serious
restriction within the class of affine yield-curve models, because many affine specifications
allow nominal rates to become negative (Section 3.6 discusses how to maybe deal with
this problem). The model also specifies an exogenous money-supply process Ms and
equilibrium requires the money market to clear, so that Md =M s. Together with good-
market clearing, the price process in this economy is implied by the quantity equation
ptct = Ms. Rebelo and Xie (1999) and Bakshi and Chen (1996) include money in the
utility function. Money lowers the costs of consumption transactions in Wu (2001a).
Taxation of nominal capital makes money nonneutral in the money-in-the-utility setup
of Buraschi and Jiltsov (2001). Wu (2001b) computes an affine model by linearizing a
model with sticky prices.

5 Some famous affine models

First generation affine models were based on one of the two basic diffusions.

1. Vasicek-type models: x is Gaussian.

2. CIR-type models: x consists of independent square-root processes.

3. Mixture models: x consists of possibly correlated affine processes.

These early models were 1-factor models. The factor was called ‘short rate.’ The key
features of the Vasicek model are:

R (x) = x (28)

σx (x) = Σ

σξ (x) = q

for constants Σ and q. Inserting these coefficients into equation (12) shows that the
speed of mean reversion κ = κ∗ in x (and therefore the short rate) is the same under
both probability measures, only the long run mean differs, because x∗ = x−κ−1Σq. The
market price of risk q is usually estimated to be negative. Intuitively, this means that
yields are expected values of average future short rates (apart from a Jensen’s inequality
term) which are on average higher r∗ > r than their historical average. This is therefore
an implicit form of risk adjustment.

The CIR model sets

R (x) = x (29)

σx (x) = Σ
√
x

σξ (x) = q
√
x
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for constants Σ and q. Here, the change of measure not only affects the long-run mean
but also the speed of mean reversion. A negative q implies that under the risk-neutral
measure x mean-reverts more slowly (κ > κ∗) to a higher mean (x > x∗). The Vasicek
and CIR model share the feature that the state is an affine diffusion under both the
risk-neutral and the data-generating probability measure. Vasicek (1977) only contains
the one-factor version of the model, which was later extended to the multifactor case by
Langetieg (1980). CIR (1985) already contains the multifactor case in Section 6.

Duffie and Kan (1996) paved the way for a second generation of mixture models.
Mixture models are built from the two basic building blocks. Duffie and Kan completely
characterize the general class of multifactor affine models. To classify these mixture mod-
els, Dai and Singleton (2000) count the number m of processes that enter the volatility
s (x) . More precisely, m = rank(s1) where s1 = [s11 · · · s1N ]. In their notation, Am(N)
denotes a model with a total of N state variables, of which m enter the volatility. For
example, the 1-factor Vasicek model is A0 (1), the N-factor Vasicek model is A0 (N) and
the multifactor CIR model is AN (N). The classification of models does not depend on
how the risk-adjustment is specified (because of diffusion invariance).

Factor models need to specify what their factors stand for. Duffie and Kan (1996)
propose to explain yields with latent factors. This means that the econometrician does
not get to observe x directly, but may be able to infer x from yields. In other words, the
state x can in this case be thought of as consisting of yields. Most papers with latent
factors still try to give their variables intuitive labels. There are two broad types of
labels. The first type refers to statistical properties of the short rate, while the second
type refers to fundamentals of an underlying general equilibrium model.

5.1 Labels based on moments of the short rate

To be able to identify latent variables as moments of the short rate, these models feature
one state variable which is called the short rate r. The linear map R (x) in these models
thus picks just one component of the state vector, say the first, by setting δ0 = 0 and
δ1 = [1, 0, . . . ]

> . The one-factor Vasicek and CIR models are special cases with δ1 = 1.
Multifactor models with this feature have a short rate which is not Markov under the risk-
neutral probability measure, so that other variables (in addition to rt) help in forecasting
the short rate and thus to compute bond yields.

Stochastic mean models take x = (r, θ) , where the short rate r reverts quickly to a
time-varying mean θ, which reverts slowly to its long-run (unconditional) mean θ. The
relevant SDEs are

drt = κr (θt − rt) dt+ σrdz
r
t (30)

dθt = κθ
¡
θ − θt

¢
dt+ σθ (θt) dz

θ
t
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where κr,κθ, σr, and θ are scalars, with κr > κθ for θ to be interpreted as stochastic
mean. The Brownian motions zr and zθ are independent. Balduzzi, Das, and Foresi (1998)
assume that σθ (θt) does not depend on θt, which makes the stochastic mean normally
distributed. This model is a A0 (2)-model. Market prices of risk σξ are constant in these
models. Chen (1996) assumes that θ is a square-root process, so that σθ (θt) = v

√
θt for

some constant v. This leads to z = (zr, zθ)
>, and

σx (x) = s (x) =

µ
σr 0

0 v
√
θ

¶
,

σξ (x) = q>s (x) ,

which constitutes an A1 (2)-model for some q ∈ R2. Here, the matrix Σ in the volatility
σx (x) = Σs (x) is a 2×2 identity matrix I.

Stochastic volatility models take x = (r, v)> where v is interpreted as the volatility v
of the short rate. To keep volatility positive, it is specified to be a square-root process:

drt = κr (r − rt) dt+
√
vtdz

r
t (31)

dvt = κv (v − vt) dt+ σv
√
vtdz

v
t .

for constants κr, r, κv, v, σv and independent Brownian motions zr, zv. This leads to z =
(zr, zv)> and

σx (x) = s (x) =

µ √
v 0
0 σv

√
v

¶
,

σξ (x) = q>s (x) .

Again, q ∈ R2 and Σ = I. Longstaff and Schwartz (1992) interpret their A1 (2)-model in
this way.

Combinations of these labels can be found in many 3-factor models where the state
x = (r, θ, v) consists of the short rate, a stochastic mean and stochastic volatility. Exam-
ples are the A1 (3) model of Balduzzi, Das, Foresi, and Sundaram (1996) and the A2 (3)
model of Chen (1996). Dai and Singleton (2000) write down the most flexible A1 (3) and
A2 (3) models in which all parameters are just identified. Their model has the general
form:

σx (x) = Σs (x) (32)

σξ (x) = q>s (x)

for a constant vector q ∈ RN . Under this assumption, the state is an affine diffusion
under both measures. The drift parameters κ and x under Q are related to those under
Q∗ in the following way:

κ = κ∗ − ΣΦ (33)

x = κ−1 (κ∗x∗ + Σψ) ,
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where the i-th row of Φ ∈ RN×N is given by qis
>
1i and the i-th row of ψ ∈ RN is given

by qis0i. This shows that both the speed of mean reversion κ and the long-run mean x
may be different under the data-generating measure than under the risk-neutral measure,
where κ∗ and x∗ are responsible for determining the drift of the process x.

5.2 Labels based on fundamentals

Yield curves in general equilibrium models depend on state variables that have natural
interpretations in terms of fundamentals. In principle, the model can then be estimated
using observations on both macro variables and yields. This is, however, not what is
usually done. The reason is that for ‘reasonable’ coefficients of relative risk aversion,
representative agent models can neither match average excess returns on long bonds nor
their time series properties when calibrated to aggregate quantities such as consumption.
This ‘bond premium puzzle’ is documented for real bonds in Backus, Gregory, and Zin
(1989) and Chapman (1997). Den Haan (1995) documents the puzzle for nominal bonds.

When the same models are estimated using asset prices alone, the model implies
dynamics for the macro variables that have little to do with their historical behavior.
In this sense, labels from fundamentals are often empty labels. For example, Pearson
and Sun (1994) use the model of Section 7 in CIR (1985) with exogenously specified
‘expected inflation.’ Their estimation does not use any data on inflation, however, only
data on yields. Similarly, ‘consumption growth’ in Buraschi and Jilsov (2001), ‘expected
aggregate consumption growth’ in Wachter (2001) and ‘labor income’ in Dai (2001) are
labels for latent variables. Sometimes data from outside the bond market are combined
with many, often more than 5, yields. The key in these applications is that yields far
outnumber the macro series, and Kalman filtering tends to match only moments of yields.
In this case, again, the filtered variables usually have little to do with their names.

6 Estimation methods for affine models

To estimate affine models, various choices have to be made regarding measurement errors
and estimation methods. This section is long, because these choices are not obvious. In
thinking about these choices, it is useful to view affine models as state space systems
with an observation equation which links observable yields to the state vector and a
state equation which describes the dynamics of the state:

y
(τ)
t = A (τ) +B (τ)> xt + ε

(τ)
t (34)

dxt = µ (xt) dt+ σ (xt) dzt.

The system (19) of ODEs provides the cross-equation restrictions for this system. Em-
pirical applications start with a choice of how to add ‘measurement errors’ ε(τ), which
I discuss in Section 6.1. I explain moment-based estimation methods in Section 6.3 and
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likelihood-based methods in Section 6.2. Identification of parameters is tricky as in any
state space model, and is discussed in Section 6.4.

6.1 Stochastic singularity

Affine models rely on a low-dimensional state vector to describe what drives the yield
curve. Data on N different yields can therefore be used to back out N state variables.
The N yields y(τ1), . . . , y(τN ) can be used to invert equations (21) for τ = τ1, . . . , τN to
obtain the model-implied state vector x. Any additional yield is predicted by the model
with an R2 of 1. The model can therefore be rejected with a single observation on y(τN+1).
Put differently, the variance-covariance matrix of N + 1 yields in the model is singular,
a feature called stochastic singularity.

Stochastic singularity is a problem, because we have lots of cross-sectional yield data
(many different τ ’s) and want to use models with few state variables. Adding mea-
surement error ε(τ) to the yield equation, as done in (34), breaks this singularity. Now
different assumptions can be made on the properties of these measurement errors. Either
all of the yields are observed with error or only a subset of yields are observed with er-
ror. The variance of the measurement error ε(τ) is nonzero for all τ according to the first
assumption, while some of the var

¡
ε(τ)
¢
may be zero according to the second assumption.

The assumption that all yields are observed with error seems plausible. Data-entry
mistakes and interpolation methods for constructing zero-coupon yields are among the
obvious sources for such errors. When all yields have errors, we cannot invert the yield
coefficients in (34) to compute the state vector. Kalman filtering is useful here, especially
when the state vector is normally distributed (Gong and Remolona (1996), Pennacchi
(1991), Campbell and Viceira (2001)), but also in more general setups (Collin-Dufresne,
Goldstein, and Jones (2002)).

The alternative assumption is that data on N yields is flawless where N also happens
to be the number of factors in the model. This assumption is clearly arbitrary. The
econometrician is even supposed to know which N yields in his dataset are flawless. All
other yields are observed with error, so that the model cannot be easily rejected. Some
estimations include the yields with error in the estimation to exploit all available data
(Chen and Scott (1993)). Other applications leave the contaminated yields out and then
use them for an out-of-sample check of the model. To be clear, the check is ‘out-of-
sample’ only in the cross-section, because these are yields not included in the estimation,
not in the time-series sense (for example, Pearson and Sun (1994), Dai and Singleton
(2000), Piazzesi (2001)).

The measurement errors recovered using any of these approaches are typically highly
autocorrelated. This autocorrelation may be due to the interpolation method used to
construct zero-coupon yields. This does not seem very plausible, however, because one
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would expect data construction methods to generate measurement errors that are corre-
lated with each other in the cross section and not necessarily over time. Moreover, swap
yields are not interpolated and their measurement errors are still highly autocorrelated
(Duffie and Singleton (1997), Collin-Dufresne, Goldstein, and Jones (2002)). Autocorre-
lation in measurement errors is worrisome, because it suggests that these errors might
have in fact nothing to do with measurement issues but with omitted state variables
or functional form assumptions. For example, Table IV in Dai and Singleton (2000)
computes average measurement errors for their 3-factor affine model over periods with
upward or downward sloping swap curve. Their preferredA1 (3)model makes larger errors
when the yield curve is upward sloping. Nonlinearities may account for such a pattern.
Model misspecification is not handled by the estimation methods and the computation
of standard errors. Much more research is needed in this direction.

6.2 Likelihood-based methods

Maximizing the likelihood function relies on being able to compute the density f (xt+1|xt)
of the state vector xt+1 given xt. The conditional density of an N-dimensional vector of
observed yields Y can be obtained by a change of variable. The density of Y is the
product of the conditional density of x and the determinant of the Jacobian

fy (Yt+1|Yt) = f (xt+1|xt)
¯̄̄̄
dxt+1
dYt+1

¯̄̄̄
.

The log-likelihood function of observed yields {Yt}Tt=1 is then constructed as the usual
sum of log densities log fy (Yt+1|Yt) over the sample. To maximize the log-likelihood, the
state xt+1 is backed out from Yt+1 for any given parameter vector. This method works
both with linear zero-coupon yields or invertible nonlinear functions of the state x, such
as coupon-bond prices, because the nonlinearity is absorbed by the Jacobian term.

Closed form densities

The density f (xt+1|xt) is known in closed form for only a few affine processes. For
Gaussian processes, f is multivariate normal. Zero-coupon yields are affine in x and
therefore also Gaussian. Their likelihood function is therefore particularly easy to com-
pute. To implement the procedure, we only need the conditional expected value (14) and
variance (15). For independent Gaussians, the conditional variance is (16).

For independent square-root processes, f is the product of noncentral chi-square den-
sities. The formula for the densities is based on the modified Bessel function of the first
kind of order q (see CIR (1985), p. 391-2). The command “besseli” computes the func-
tion in MATLAB. The conditional mean is given again by (14), but now the conditional
variance is (17).

Quasi-maximum Likelihood
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For general affine diffusions, f cannot be computed in closed form. The temptation is
then to discretize the SDE and apply maximum likelihood to the density of the discretized
process. The discretization assumes that the data is generated from the stochastic dif-
ference equation

∆xt+h = µ (xt)h+ σ (xt) εt+h
√
h, (35)

where εt+h has an N-dimensional standard normal distribution and h is the length of
the observation interval. The density of the discretized process xt+h conditional on xt
is normal with mean µ (xt)h and conditional variance σ (xt)σ (xt)

> h. The conditional
distribution of the discretization (35) converges to the one of the SDE (6) when h tends to
0. The estimator that maximizes the likelihood function of the discretization is, however,
not consistent for any given h. Lo (1988) shows this for explicit examples. The reason
for this inconsistency is that the discretized process has conditional moments µ (xt)h
and σ (xt)σ (xt)

> h, while the true process has moments (14) and (15). Quasi-maximum
likelihood estimation based on the right moments and a normal density, however, is
consistent (Fisher and Gilles (1996)).

Fourier inversion of the characteristic function

The density f of affine diffusions can be computed by Fourier inversion of the char-
acteristic function. The characteristic function φt (u) is defined as the Fourier transform
of the density of xt+1 ∈ D conditional on xt,

φt (u) = Et

£
exp

¡
iu>xt+1

¢¤
=

Z
D

f (xt+1|xt) exp
¡
iu>xt+1

¢
dxt+1

for some u ∈ RN and the imaginary number i =
√−1. Duffie, Pan, and Singleton (2000)

show that the characteristic function φt (u) can be computed in closed form for affine
diffusions. The idea is to apply the Feynman-Kac approach to the conditional expected
value

φt (u) = exp
³
α (1) + β (1)> xt

´
(36)

with coefficients α (τ) and β (τ) that start at α (0) = 0 and β (0) = i u and solve the
complex-valued ODEs

α0 (τ) = β (τ)> κx+
1

2

NX
i=1

h
β (τ)>Σ

i2
i
s0i

b0 (τ) = κ>β (τ) +
1

2

NX
i=1

h
β (τ)>Σ

i2
i
s1i

For more details, see Duffie (2001), Appendix H.

Knowing the characteristic function φt (u) of an affine diffusion means that its condi-
tional density f can be computed by Fourier inversion

f (xt+1|xt) = 1

πN

Z
RN
Re
©
exp

¡−iu>xt+1¢φt (u)ª du, (37)

37



where Re denotes the real part of complex numbers. Maximum likelihood by Fourier
inversion has been implemented in the univariate case. Singleton (2001) estimates a
one-factor CIR model by maximizing the likelihood function obtained with this method.
The conditional density (37) is computed using Gauss-Legendre quadrature. For higher-
dimensional state spaces, this computation becomes costly. The number of grid points
used for the quadrature grows from d for N = 1 to dN for general N. The MATLAB
command “quad” performs these computations.

For general diffusions, not necessarily affine, the density can be computed by numer-
ically solving a PDE, simulation or Hermite expansions. Of these three methods, only
simulation has been applied to the case of many factors so far.

Solving the PDE for the density

The PDE for the conditional density f is given by the usual forward Kolmogorov
equation (see, for example, Lo (1988)). The PDE can be solved numerically. The curse
of dimensionality applies here as well, see Lo (1988) and Jensen and Poulsen (1999).

Simulated maximum likelihood

Pedersen (1995) and Santa-Clara (1995) propose to simulate the likelihood function.
Simulations of general diffusions cannot be based on their true density f , which is un-
known. Instead, the simulations use the Euler scheme (35). Starting with the observed
value xt at time t, the s-th simulated path of the state vector bxxt [s] is taken from (35)
using independent draws bε [s] from an N-dimensional standard normal distribution. The
MATLAB command “randn” takes these draws. The idea is to write the density of xt+1
conditional on the last observation xt , using Bayes’ Rule and the Markov property of x,
as

f (xt+1|xt) =
Z
D

f (xt+1|xt+1−h) f (xt+1−h|xt) dxt+1−h (38)

for any time interval h. The density f (xt+1|xt+1−h) is now approximated with the den-
sity bf of the discretized process (35) for small h. This density is normal with mean
xt+1−h+µ (xt+1−h)h and standard deviation σ (xt+1−h)

√
h. The integral in (38) can then

be computed using Monte Carlo

f (xt+1|xt) ≈ 1

S

SX
s=1

bf ¡xt+1|bxxtt+1−h [s]¢ ,
where the summation is over a total of S simulated paths of the state that start at the
last observation xt at time t. The computer only needs to store the terminal simulated
value bxxtt+1−h [s] for each simulation s, not the entire simulated path. Standard variance
reduction techniques, such as antithetic sampling, can be used to improve the efficiency
of Monte Carlo integration (for a survey, see Geweke (1996)). Brandt and Santa-Clara
(2002) use this simulated maximum likelihood (SML) method to estimate a multifactor
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diffusion model. Piazzesi (2001) extends SML to the case of jumps with time-varying
jump intensities. Honoré (1998) conducts a Monte Carlo to compare the accuracy of the
SML estimator for different discretization intervals h and numbers of simulations S. His
findings suggest that even coarse discretizations and small simulated samples improve
considerably over quasi-maximum likelihood (which amounts to h = 1). Durham and
Gallant (2002) investigate importance-sampling techniques to improve the accuracy of
this method.

Hermite expansions

Aït-Sahalia (2001) approximates f (xt+1|xt) for univariate diffusions x by constructing
a standardized version ex of the process x and then approximating the density of ex by
Hermite expansions. The reason for the standardization is that convergence results for
Hermite expansions only apply to densities that are ‘close to normal’, not for densities
of general diffusions. The standardized version is a diffusion with unity volatility: ex =R x
1/σ (w) dw. For every x ∈ RN , Hermite polynomials are given by

Hj (x) = exp
¡
0.5x2

¢ ∂j

∂xj
exp

¡−0.5x2¢ , j = 0, 1, . . . , J
For large J, the conditional density f of x can be written in terms of the density fex of ex
which can be approximated with Hermite expansions

f (xt+1|xt) ≈ 1

σ (ext+1)fex (ext+1|ext)
≈ 1

σ (ext+1) exp ¡−0.5 (ext+1 − ext)2¢
JX
j=0

η(j) (ext)Hj (ext+1 − ext)
with coefficients

η(j) (ext) = 1

j!
E [Hj (ext+1 − ext) |ext]

which are conditional moments of functions of ex. Aït-Sahalia (2002) computes closed-
form expressions for these coefficients using Taylor approximations. Jensen and Poulsen
(1999) compare the accuracy of Hermite expansions with other methods for the case of a
univariate square-root process. Aït-Sahalia (2002) and Aït-Sahalia and Kimmel (2002)
extend the method to multivariate diffusions.

6.3 Matching moments

The computation of moments for Hansen (1982)’s GMM depends on whether the yield
equation is affine and on whether the data-generating process of the state vector is an
affine diffusion. Moments of affine diffusions can be computed in closed form using
the characteristic function. But this result is only useful for matching moments of zero-
coupon yields, not for nonlinear yield formulas (which arise with coupon bonds and swaps,
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for example.) To avoid nonlinear yield formulas, zero-coupon yields can be constructed
by interpolating swap data or other ‘nonlinear’ yield data. For non-affine dynamics
under the data-generating measure and nonlinear yield formulas, moments can either be
simulated using the methods explained in Gallant and Tauchen (2002) or computed using
operator-methods explained in Aït-Sahalia, Hansen, and Scheinkman (2002).

Higher order moments of affine diffusions can be conveniently computed from the
characteristic function. First and second moments were already computed in Section 3.2.
Conditional cross-moments of the i-th and j-th component of x are given by

Et

¡
xmi,t+1x

n
j,t+1

¢
= im+n

∂m

∂umi

∂n

∂unj
φt (u) |u=0

= im+n
∂m

∂umi

∂n

∂unj
exp

³
α (1) + β (1)> xt

´
|u=0

for 1 ≤ i, j ≤ N. This computation is particularly convenient if the coefficients α (1) and
β (1) can be computed with paper and pencil. For an early estimation of a CIR model
with GMM, see Gibbons and Ramaswamy (1993).

Another set of moments is computed in Singleton (2001) and Chacko and Viceira
(2001). In these papers, the characteristic function is used to set up moment conditions

Et

£
exp

¡
iu>xt+s

¢− φt (u)
¤
= 0.

Each such complex-valued moment condition implies two real-valued moment conditions
based on the real and the imaginary part of the expression. Singleton (2001) shows
that GMM is efficient in this case when the number of grid points u goes to infinity.
Carrasco, Chernov, Florens, and Ghysels (2001) demonstrate how to actually implement
this efficiency result.

6.4 Identification

Just like in a state-space system with latent state dynamics, the conditions ensuring
identification of parameters are tricky. Ideally, we would not have to care about these
conditions, because identification should be an invertibility condition on the information
matrix. In practice, this invertibility condition is not useful for checking whether pa-
rameters are identified. The likelihood function would have to be maximized for many
different trial-parametrization to find out which of the parameters are not identified.
Moreover, numerical gradient-methods for computing the information matrix are impre-
cise, especially when the likelihood function is computed numerically or simulated. The
information matrix may turn out to be numerically invertible, even in cases where para-
meters are not identified. Theoretical results are therefore important. Dai and Singleton
(2000) provide such results.
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7 Empirical evidence on affine models

Empirical studies of term structure models usually pick a set of stylized facts about
yields and tailor their model to match these. There is no benchmark for evaluating the
performance of different models, because different sets of facts are being matched, and
there is no consensus about the relative importance of these facts. I therefore organize
the discussion of the empirical findings of affine models around these stylized facts and,
in particular, around the moments of yields that are being matched. After discussing
data issues in Section 7.1, I focus on factor interpretation in Section 7.2, cross-sectional
fitting errors in Section 7.3, unconditional and conditional first moments in Sections 7.4
and 7.5, unconditional and conditional second moments in Section 7.6 and 7.7, higher
order moments in Section 7.8, seasonalities in Section 7.9 and zoom back in on fitting
the short end in Section 7.10. Then I discuss joint systems of yields with macroeconomic
variables in Section 8.

7.1 Data issues

The choice of suitable data to estimate yield-curve models needs to balance concerns
about measurement errors, sample length, observation frequency, nonlinearities in pricing
formulas and even the documentation quality of different data sets. In this chapter, I use
monthly Fama CRSP zero-coupon bond tapes from 1964:1 to 2001:12. CRSP provides
detailed documentation for this data set. The dataset is problematic, because these yields
are interpolated from traded Treasuries which introduces measurement error. Moreover,
the 1-month T-bill from the dataset looks strange when compared to the other short rates
in the same dataset. For example, the persistence of the 1-month rate decreases after
1985 while the persistence of all other short rates increases. Watson (1999) documents
an increase in persistence in the (overnight) Fed funds rate after 1985, which means that
the behavior of the 1-month rate does not seem to be a special feature of very short rates.
I also omit data from 1952:1 - 1963:12 like Fama and Bliss (1997). The data over this
early period behaves much different from the rest in terms of, for example, predictability
regressions. Then there are data entry errors: September 1987 shows a 0% yield for the
6-month T-bill in the CRSP file for short maturity T-bills. I therefore interpolate that
datapoint. Like ants, errors usually come in company, and this company may be less
obvious.9 Figure 2 plots some of the Fama-Bliss yields used in this chapter.

Short yields

Short-maturity yields are often used as proxies for the short rate. Seasonality in
measurement error is a worry in this context. For example, overnight rates (like fed
funds in Hamilton (1996), repo in Piazzesi (2001)), other short-term rates (like term fed
funds in Balduzzi, Bertola and Foresi (1996), 7-day Eurodollar in Durham (2001)) and

9An example for a less obvious data entry error is the Federal Reserve target-rate change that hap-
pened on February 4, 1994. Datastream assigns this Fed move to February 3.
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Figure 2: Monthly Fama-Bliss data for 3-month, 2-year and 5-year yields, 1964:1-2001:12.

even yields with maturities of a few months (like the 3-month T-bill in Durham (2001),
6-month LIBOR in Piazzesi (2001)) have been shown to be affected by the two-week
reserve maintenance period of banks. These two-week periods start on a Thursday and
ending on the so-called ‘settlement Wednesday.’ During this period, banks must hold
required reserves in accounts at the Federal Reserve. These reserves are associated with
opportunity costs for banks, because the Fed does not pay any interest on these accounts.
Until July 30, 1998, the Fed used a contemporaneous reserve maintenance system. In
this system, the reserve computation period, the period over which required reserves are
actually computed, overlapped with the reserve maintenance period. This overlap implied
that the exact amount of reserves that banks were required to hold was not known until
the very end of the maintenance period. To avoid the opportunity costs of excess reserve
holdings, banks used to hold few reserves until they knew the required amount and then
started borrowing on the day before the settlement Wednesday. The increased demands
for funds at the end of reserve maintenance periods lead to huge seasonal spikes in interest
rates in this contemporaneous reserve system. This seasonality has weakened since 1998,
when the Fed adopted a lagged reserve maintenance system. According to the new rules,
the reserve computation period ends 30 days before the maintenance period, so that banks
know the required amount before they start holding reserves. SettlementWednesdays and
other day-of-the-week effects, such as FOMC meetings, introduce seasonalities in interest
rates which may bias, for example, estimates of mean-reversion parameters (more on this
in Section 7.9). Piazzesi (2001) and He (2001) therefore argue to use the target rate
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set by the Federal Reserve as ‘cleaner’ measure of the short rate. Chapman, Long, and
Pearson (1999) argue that short T-bill rates are good short-rate proxies, at least when
used in 1-factor affine models. Duffee (1996), however, points out that ‘very short’ T-bill
rates behave differently from other short rates. More concretely, T-bills with maturities
less than 3 months do not share much variation with other short-term yields such as
Eurodollar rates or Fed funds rates.

Long yields of zero-coupon bonds

Zero-coupon bonds have the advantage that the yield equation is easy to invert for x.
True zero-coupon bonds are, however, not easy to come by. These bonds are supposed
to be default-free, which may apply to government securities in the United States but
certainly not to those in many other countries such as Italy and Spain (Favero, Giavazzi,
and Spaventa (1997)), or Russia (Duffie, Pedersen, and Singleton (2002)). U.S. Treasury
bills are zero-coupon bonds with maturities up to one year. Duffee (1996) documents
that T-bills with maturities less than three months seem to be disconnected from longer
term Treasuries. Treasury notes have longer maturities (from 2 to 30 years), but they do
pay semiannual coupons. The principal and coupons of these notes can be stripped and
traded as separate securities since 1985. This means that data on prices of some long zero-
coupon bonds exists (Jordan, Jorgensen, and Kuipers (2000), Grinblatt and Longstaff
(2000), Sack (2000)). Various authors have developed interpolation methods to construct
long time series of zero-coupon bond yields. Of course, these data-construction methods
introduce measurement error. The “McCulloch-Kwon” data until 1991 are available on
the website of J. Huston McCulloch at Ohio. Bliss (1999) updates this dataset until
the end of 1998. The “Fama-Bliss” dataset is updated each year and available from the
Fama CRSP zero-coupon bond tapes. Both datasets consist of monthly observations over
the whole postwar period. Estimations of affine models with zero-coupon bonds include
Balduzzi, Das, Foresi, and Sundaram (1996), Duffee (2002), Ang and Piazzesi (2002),
Brandt and Yaron (2001), Wu (2001a), Wu (2001b), and Buraschi and Jiltsov (2001).

Long yields of Treasuries

The U.S. Treasury interpolates the yields of traded securities when computing constant-
maturity Treasury yield data which is released by the Federal Reserve Board in its H.15
release. Daily data since 1962 on these yields are posted on the Federal Reserve’s website
(which also has the short-term Treasury bill data). Treasuries pay semiannual coupons.
Their yields can be computed as par bond rates yc(τ) from

1 =
2τX
j=1

P
(0.5j)
t

yc
(τ)
t

2
+ P

(τ)
t .

Solving this equation for yc(τ)t gives
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The inversion of observed yields for the unobserved state x can no longer be accomplished
by hand with coupon-yields, because the pricing map (39) is nonlinear. Instead, the map
needs to be inverted numerically for each observation t in the sample. The speed of this
loop can be increased considerably by supplying the analytical gradient ∂yc(τ)t /∂xt to
the gradient-based method that inverts the pricing map. For example, Pearson and Sun
(1994) use prices of traded Treasuries in their estimation.

Long yields for swaps

Swap rates are truly constant maturity yields which makes interpolation unnecessary.
Swaps are agreements to exchange fixed and floating rates semiannually for a time of τ
years. The τ -year swap rate is the fixed coupon rate in this contract, while the floating
side is usually specified to be the 3-month or 6-month London Interbank offered rate
(LIBOR). Under the assumption that swap rates can be valued as par bond rates, the
formula (39) also applies to swap rates. Without default risk, the formula follows from
the absence of arbitrage. With default risk, the formula applies if the credit quality in
LIBOR and swap markets is the same. The assumption is somewhat problematic because
of the institutional features of swap markets. For example, netting features imply that
swap rates are minimally affected by credit risk apart from being tied to LIBOR rates
(Duffie and Huang (1996), Collin-Dufresne and Solnik (2001)). Swaps have only started
trading at the end of the 1980s, which means that swap data are silent about periods of
high volatility such as the monetary experiment in the early 1980s in Figure 2. Daily data
on both swap rates and LIBOR can be obtained from Datastream, which only supplies
poor documentation of this data. Moreover, the data are asynchronous, because LIBOR
data are recorded at 11 a.m. London time, while swap data are recorded at the end of
the business day in London. Estimations of affine models usually ignore this issue. See,
for example, Duffie and Singleton (1997), Dai and Singleton (2000), Piazzesi (2001), He
(2001), Collin-Dufresne, Goldstein, and Jones (2002) and Liu, Longstaff, and Mandell
(2002).

Other data

Term structure models can, of course, also be estimated with data on futures, caps,
floors and other derivative securities. For example, Jegadeesh and Pennacchi (1996) use
Eurodollar futures. Attari (2001) looks at options on Eurodollar futures. Jagannathan,
Kaplin, and Sun (2001) include data on caps and swaptions. Data on all these contracts
can be found in Datastream.

7.2 Level, slope, and curvature

Traditional factor analysis already delivers much of the intuition for what drives yields.
Principal components can be computed from levels and changes in yields, I will do both.
Suppose the econometrician has data on K different yields that are contained in the
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vector Yt at time t. The variance-covariance matrix of Yt can be written as

var(Yt) = ΩΛΩ>

where Λ is a diagonal matrix of eigenvalues of the matrix var(Yt) and Ω is an orthogonal
matrix (which means it satisfies Ω> = Ω−1) whose columns are standardized eigenvectors.
Principal components pc are then defined by

pct = Ω>
¡
Yt − Y

¢
, (40)

where Y ∈ RK is the sample mean of the yields. The variance of the kth principal
component is just equal to Λk, the kth eigenvalue of var(Yt) . It is also true that the total
variation in yields tr(var (Yt)) is equal to the total variation of principal components
tr(Λ), where tr denotes trace. Details can be found, for example, in Mardia, Kent, and
Bibby (1979). The same procedure can be repeated for yield changes by replacing Yt
with ∆Yt and Y with 0 in the above formulas.

Looking at principal components of yield changes reveals that much of the variance
in yield changes is explained by the first few principal components. I use K = 11 Fama
and Bliss yields from CRSP with maturities 1, 2, 3, 4, 5, 6 months and 1, 2, 3, 4, 5
years for the months 1964:1-2001:12. Table 1 computes the cumulative percentage in
the variation of yield changes and levels explained by the first k principal components.
The table shows that for the postwar period the first k = 3 principal components already
explain over 96% of the total variation in yield changes. This number is similar for weekly
(Litterman and Scheinkman (1991), Chapman and Pearson (2001)) and even daily yields
(Hull (2000), Chapter 14.10). In the case of yield levels, the numbers are higher.

To use only k ≤ K principal components, I define the K × k matrix eΩ by
eΩi,j =

½
Ωi,j for j ≤ k
0 otherwise

and compute the k principal components of yield levels as

pct = eΩ>(Yt − Y ).

Table 1: % Variation in yield changes and levels explained by the first k principal
components

k 1 2 3 4 5
% explained in ∆Yt 79.7 91.7 96.5 97.5 98.3
% explained in Yt 96.5 99.5 99.8 99.9 100

45



NOTE: The total variation in yields is given by tr (Λ) , where Λ is the
diagonal matrix of eigenvalues of var(∆Yt) = ΩΛΩ> in the first row and
var(Yt) = ΩΛΩ> in the second row. The numbers in the table are the percent-
age variation in yield changes (yield levels) explained by the first k principal
components computed as

100×
Pk

i=1Λi

tr (Λ)

The yields are from the Fama tapes of CRSP. The maturities are 1, 2, 3, 4,
5, 6, 12, 24, 36, 48 and 60 months. The sample is 1964:1-2001:12.

The k principal components are linear combinations of K = 11 yields. Figure 3 plots
the coefficients of these linear combinations (or loadings), which are the k = 3 columns
of eΩ, as function of the maturity of the yields in months. Figure 3 looks very similar
for the loadings of principal components of yield changes, so I do not include them here.
The loadings of the first principal component are horizontal. This pattern means that
changes in the first principal component correspond to parallel shifts in the yield curve.
This principal component is therefore called the level factor. The loading of the second
principal component is downward sloping. Changes in the second principal component
thus rotate the yield curve. This means the second component is a slope factor. The
loading of the third principal component is hump shaped. The hump occurs at intermedi-
ate maturities. The third principal component therefore affects the curvature of the yield
curve, which is why it is called the curvature factor. These three principal components
can be ordered according to their persistence. The level factor is very persistent with
a monthly autocorrelation of 0.98. The slope factor is less persistent with an autocor-
relation of 0.92. The curvature factor is the least persistent with an autocorrelation of
0.47.

The interpretation of these principal components in terms of level, slope and curvature
goes back to Litterman and Scheinkman (1991). These labels have turned out to be
extremely useful in thinking about the driving forces of the yield curve until today.
The latent factors implied by estimated affine models typically behave like principal
components. This empirical finding applies to different sample periods, datasets and
model specifications. More concretely, the coefficients from estimated yield equations
(21) show the same general patterns as in Figure 3 for the case of N = 3 state variables.
This applies to models with only square-root processes as in Chen and Scott (1993), only
Gaussian processes as in Gong and Remolona (1996) and Ang and Piazzesi (2002), or
mixture models like Balduzzi, Das, Foresi, and Sundaram (1996) and Dai and Singleton
(2000). There is no one-to-one mapping between labels such as ‘stochastic mean’ and
‘stochastic volatility’ and the Litterman-Scheinkman labels. For example, ‘stochastic
volatility’ behaves like a curvature factor in some estimated models, but it turns out to
be so persistent that it becomes the level factor in others. Lower dimensional models
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Figure 3: Principal components are linear combinations of yields in the dataset. The
coefficients of these linear combinations are the colums of eΩ. The coefficients of each of
the three principal components are plotted as a function of the maturity of the yields.

with N < 3 feature state variables with yield coefficients that correspond to the first
N principal components. In other words, models with only two state variables find a
level and a slope factor. Again, this empirical finding is robust across specifications. In
particular, it holds for stochastic mean models (30) and stochastic volatility models (31)
alike. The square-root case for N = 2 is in Chen and Scott (1993) and the Gaussian case
is in Balduzzi, Das, and Foresi (1998). Models with only one state variable (namely the
short rate r) have one persistent level factor.

7.3 Cross-sectional performance

Affine models predict yields of any maturity τ with an R2 of 1. Once we fix a time
series of factors, the yields are just linear functions of these factors. Traditional factor
models provide a natural benchmark for the cross-sectional fit. Factor models based on
k principal components predict all K yields in the cross-section asbYt = Y + eΩpct, (41)

where pct is given by (40). The yield coefficients in this prediction do not impose the
cross-equation restrictions from no arbitrage. Unlike in a term structure model, there is
no link between the data-generating process of the factors pc and the way yields depend on

47



pc. The model implies fitting errors for yields which are defined as the difference between
actual yields Yt and model-predicted yields bYt. Table 2 computes the mean, standard
deviation and maximum of the absolute value of these fitting errors for k = 3 principal
components. The absolute fitting errors are less than 11 basis points for all yields in the
dataset. This means that this low-dimensional factor model not only explains much of
the variance in yields by construction, but also performs extremely well according to this
additional metric.

Table 2: Absolute value of fitting errors for yields

maturity 1 3 6 12 24 36 48 60
mean 0.09 0.09 0.06 0.11 0.09 0.05 0.05 0.08
std dev 0.09 0.09 0.06 0.11 0.07 0.05 0.05 0.06
max 0.60 0.80 0.72 1.09 0.50 0.47 0.40 0.48

NOTE: The Table shows the mean, standard deviation, and maximum of
absolute fitting errors |Yt − bYt| where bYt is computed as in equation (41)
with k = 3 principal components of yield levels. The maturity of yields is in
months. The yield data are from the Fama tapes of CRSP for 1964:1-2001:12.

The fitting errors in Table 2 turn out to be hard to beat in practice with an affine
model. In other words, the difference between the yields predicted by an affine model
at the estimated parameter values and the actual yield data can be substantial. Affine
models do not deal with measurement errors explicitly. Such errors are usually tagged
onto yields by the econometrician. But they are usually larger in absolute value than
those in Table 2. Moreover, these errors are usually highly autocorrelated. Affine models
with many Gaussian factors tend to do relatively better in the cross-section than models
with many square-root factors. For example, the fitting errors from the A2 (3) model in
Table IV of Dai and Singleton (2000) are larger than the errors from the A1 (3) model.
The fitting errors from the 3-factor jump model without the Gaussian ‘inertia factor’ in
Table 2 of Piazzesi (2001) are larger than the errors from the 3-factor jump model with
stochastic volatility.

7.4 Unconditional first moments (positive slope)

Yields of bonds with longer maturities are on average higher than those of bonds with
shorter maturities. This means that the yield curve is on average upward sloping. Figure
4 shows this stylized fact by plotting the sample average of the Fama and Bliss yields as
a function of maturity. The solid line of point estimates is shown together with dotted
approximate 95% confidence bounds (two times Newey-West standard errors using 6
lags). The plot shows that the shortest yield is significantly lower than the longest yield
on average.
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Figure 4: The average yield curve is computed using the Fama and Bliss yields with
maturities 1, 2, 3, 4, 5, 6, 12, 24, 36, 48 and 60 months. The sample period is 1964:1-
2001:12. The dotted lines are two times Newey-West standard error bounds computed
using 6 lags.

An upward sloping yield curve is easy to generate with an affine model. To do this,
the risk-neutral long-run mean of the short rate must be higher than its true long-run
mean,

r∗ > r.

From the short-rate equation in assumption I, these parameters are linked to the long-run
mean of the state vector x under Q∗ and Q as follows:

δ0 + δ>1 x
∗ > δ0 + δ>1 x.

The parameters x∗ and x differ only when market prices of risk differ from zero. For
example, constant market prices of risk together with constant factor volatility do the
job. From equation (12), this assumption gives:

σξ (x) = q>

σx (x) = Σ

x∗ = x− κ−1Σq

When R (x) = x, the risk-neutral mean x∗ is larger than x as long as the market price of
risk q < 0. The CAPM-type equation (25) shows that expected excess returns on bonds
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are constant and positive in this example. The Vasicek model makes these assumptions
(see equation (28)).

7.5 Conditional first moments (persistence, predictability, non-
linearity)

Persistence

Yields are highly autocorrelated. Table 3 shows the autocorrelations of Fama-Bliss
yields together with standard errors around the autocorrelation estimates (which are not
corrected for small-sample bias). The monthly autocorrelation coefficient of the 5-year
yield implies that shocks to this yield have a half-life of log(0.5)/ log(0.985) ≈ 46 months,
almost 4 years. This persistence in yield levels is behind the large standard errors around
the mean estimates in Figure 4. Longer yields tend to be more persistent than short
yields, at least judging from the point estimates.

There is some evidence that persistence in short rates has increased over time, again
according to the point estimates. For example, the autocorrelation of the 3-month yield
in the Fama-Bliss file goes from 0.969 before 1985 to 0.993 after 1985. The evidence is not
strong, through. Watson (1999) is unable to detect a change in persistence using a Chow
test for structural break based on distributions that take into account small sample bias.
There is strong evidence that persistence in short rates has increased since the creation of
the Federal Reserve in 1914. Mankiw and Miron (1986) document higher predictability
of short-rate changes for quarterly data from 1880 to 1914 than after 1914.

Table 3: Autocorrelations of yields

maturity 1 3 6 12 24 36 48 60
autocorrelation 0.954 0.975 0.979 0.978 0.982 0.983 0.983 0.985
standard errors 0.019 0.016 0.014 0.014 0.013 0.013 0.012 0.011

NOTE: The maturity of yields is in months. Standard errors (in brackets)
are computed with 6 Newey West lags. The yield data are from the Fama
tapes of CRSP for 1964:1-2001:12.

Affine models describe yields as affine in the factors. This implies that persistence of
yields must come from persistent factors. In fact, all estimations of affine models find a
level factor which is very persistent. This fact was already mentioned in the context of
principal component models (Section 7.2).

Persistence contributes to the practical problems associated with the estimation of
affine models. Consider the simple example of estimating the parameters of an AR(1),
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xt = µ + ρxt−1 + εt, with Gaussian errors εt using maximum likelihood. When the
autoregressive coefficient ρ is close to one, gradient-based optimization methods typically
converge very slowly. They take tiny steps around reasonable values of ρ while still being
far from reasonable values of µ. The reason is that the likelihood function is essentially
flat in µ but very steep in ρ. There is a simple solution to this problem in the univariate
case. Fixing a value for ρ close to one while optimizing over µ typically delivers a great
starting value for µ that can be used in the optimization over both parameters. With
multidimensional AR(1) systems, the same strategy can be applied but often becomes
more tricky.

Predictability of excess returns

Fama and Bliss (1987) investigate whether excess holding period returns on bonds
are predictable using the forward-spot spread. The regressions involve holding periods of
one year. For this horizon, the 1-year rate y(1) is the riskless rate. Holding period returns
are the difference in log prices hpr(τ)t→t+1 = p

(τ−1)
t+1 −p(τ)t , where t ≤ t+1 ≤ t+τ . Fama and

Bliss regress excess holding period returns on the forward-spot spread f
(n−1→n)
t − y

(1)
t ,

where the forward rate is f (n−1→n)
t = p

(n−1)
t − p

(n)
t . Table 4 reports the R2 from these

predictability regressions. R2s are substantial, 14% for bonds with maturities from 2 to
4 years. Excess returns on 5-year bonds are less predictable, with an R2 of 6%. Expected
excess returns are thus not constant over time.

Cochrane and Piazzesi (2002) show that this R2 more than doubles when all forward
rates f (1→2)t , f

(2→3)
t , f

(3→4)
t , f

(4→5)
t are included on the right hand side of this regression.

Moreover, they find that the predictability is mostly due to a single factor. This ‘return-
predicting’ factor turns out to be only weakly related to level, slope, and curvature.
Also, monthly VARs with 1 lag in the yields with maturities 1-5 years do not find the
return-predicting factor.

Table 4: R2 from predictability regressions

n 2 3 4 5
FB (1987) 0.14 0.14 0.15 0.06
CP (2001) 0.34 0.34 0.37 0.34

NOTE: The Table reports R2 from two predictability regressions. Fama-Bliss
(1987) regress hpr(n)t→t+1 − y

(1)
t on a constant and f

(n−1→n)
t − y

(1)
t . Cochrane-

Piazzesi (2002) regress the same variable on a constant and
y
(1)
t , f

(1→2)
t , f

(2→3)
t , f

(3→4)
t , f

(4→5)
t . The sample is 1964:1-2001:12.

This evidence against the expectations hypothesis is of course based on a rather small
sample. Bekaert, Hodrick, and Marshall (1997), Valkanov (2001) and Bekaert and Ho-
drick (2001) stress the importance of taking into account the small sample distributions
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of these R2s and other standard tests of the expectations hypothesis. Tests based on
small sample distributions tend to make a weaker case against the expectations hypoth-
esis. Cochrane and Piazzesi (2002) construct 95% confidence intervals for R2 for the
predictability regressions. Confidence intervals for R2 in the Fama-Bliss regressions in-
deed include 0. Confidence intervals for R2 from the regression on all forward rates are
far away from 0, however, even if the expectations hypothesis is imposed on the boot-
strap. The cross-country evidence about the expectations hypothesis is more mixed. In
some countries like Germany, the expectations hypothesis seems to hold up better than
in the U.S. (Hardouvelis (1994), Bekaert, Hodrick, and Marshall (1997), Gerlach and
Smets (1997), Bekaert, Wei, and Xing (2002)). Finally, the very short end of the yield
curve seems to conform better with the expectations hypothesis (Longstaff (2000b)).

Figure 5 shows the fitted values from the predictability regressions in Table 4 for
n = 3. Excess returns on long-term bonds are small and on average positive. For Fama-
Bliss yields, average excess returns are 0.42%, 0.65%, 0.79%, 0.72% for n = 2, 3, 4, 5.
This stylized fact can be generated even in the simple 1-factor Vasicek model. Inserting
coefficients (28) into the CAPM equation (25) gives expected excess returns −b (τ)>Σq,
where b (τ) > 0 because the short-rate coefficient δ1 is equal to 1. Expected excess returns
are positive provided that q < 0.

However, expected excess returns in the Vasicek model are constant. According to
Figure 5 expected excess returns seem to vary through time. In particular, they switch
signs over time. In other words, expected excess returns are not always positive, but
also sometimes negative. They tend to be positive when the term structure is upward
sloping and negative when the term structure is downward sloping. Time-variation alone
is easy to generate within an affine model, but many popular affine models are unable
to generate the switching signs. The modelling key to this stylized fact is either in the
market prices of risk σξ (x) or in the factors loadings b (τ). I will discuss this in detail
next.

Affine diffusions under both measures

Examples of models with time-varying expected excess returns that are not able to
switch signs are the CIR and Dai and Singleton (2000) models. From the CAPM equation
(25), expected excess returns in the CIR model are −b (τ)>Σrtq, where b (τ) > 0 because
δ1 = 1. The time variation in expected excess returns thus comes through the short
rate rt which is a square-root process and therefore always positive. This implies that
expected excess returns are either always positive or always negative - they cannot switch
signs. The same mechanism is at work in Dai and Singleton (2000). The coefficients (32)
imply expected excess returns −b (τ)>Σs (x) s (x)> q. Condition A allows only square-
root processes to enter the volatility s (x). Together with the assumption that δ1 =
(1, 0, . . . , 0), the model cannot generate expected excess returns that switch signs.

Recent affine models have attacked this problem in different ways. Backus, Foresi,
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Figure 5: Realized excess returns are hpr(3)t − y
(1)
t . FB-Expected excess returns are the

fitted values of the Fama and Bliss (1987) regression in Table 3 for n = 3. CP-Expected
excess returns are the fitted values of the Cochrane and Piazzesi (2001) regression for
n = 3. Returns expected for t are plotted together with returns at t.

Mozumdar, and Wu (1998) make the following assumptions:

R (x) = x1 − x2

σx (x) =

µ √
x1 0
0
√
x2

¶
σξ (x) = q>σx (x)

Both factors x1 and x2 are square-root processes, and the short rate is the difference
between the two. The CAPM-equation (25) shows that the coefficients b (τ) generate the
switch in expected excess returns in this ‘negative CIR model.’ This can be seen from
the fact that yield coefficients B (τ) = −b (τ) /τ go to £ 1 −1 ¤ as maturity τ goes to 0.
Market prices of risk had so far always the form σξ (x) = q>σx (x) . A number of papers

obtain switching signs in expected excess returns with other functional forms for σξ (x) .
El Karoui, Myneni, and Viswanathan (1992) and Ahn, Dittmar, and Gallant (2002)
propose a setting with Gaussian x, affine market prices of risk and a linear-quadratic
short rate r. When the short rate is constrained to be affine in x (no quadratic terms),
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this framework collapses to the affine model10

R (x) = δ0 + δ>1 x
σx (x) = Σ

σξ (x) = q>0 + x>q1

where q0 ∈ RN and q1 ∈ RN×N . This is the model considered in Fisher (1998) and
Dai and Singleton (2002). Ang and Piazzesi (2002) specify a discrete-time version of the
model. In this setup, again, the process x is Gaussian under both measures as in Vasicek
(1977), but now both the long-run mean and the speed of mean reversion differ under
the two measures (unlike in the Vasicek model before, where only the long-run mean was
different). In particular, expected excess returns switch signs because of q1. The setup
is a special case of Duffee (2002) who considers

σx (x) = Σs (x)

σξ (x) = q>1 s (x) + x>q2s (x)
−

with q1 ∈ RN , q2 ∈ RN×N and

sii (xt)
− =

½ ¡
s0i + s>1ixt

¢−1/2
0

if inf
¡
s0i + s>1ixt

¢
> 0;

otherwise.

This definition ensures that s (x)− does not explode as diagonal elements in s (x) go to
zero. Suppose x is Gaussian so that s0i = 1 and s1i = 0, then σξ (x) is affine in x.

Risk-neutral affine diffusions with nonlinear data-generating process

In all setups considered so far, x is an affine diffusion under both probability measures
Q and Q∗. As noted before, there is no reason for x to be an affine diffusion under Q, at
least not for pricing bonds. Duarte (2000) considers this case by specifying

σξ (x) = q0 + q>1 s (x)

σx (x) = s (x) = diag
¡√

x
¢

q0 ∈ R and q1 ∈ RN , and a vector x of square-root processes under Q∗. The data-
generating process for x is no longer affine, because the drift under Q depends on

√
x

and x. Again, switching signs in expected returns are generated through the matrix q1.

More on nonlinearities

The statistical discussion about nonlinearities in the term structure literature has
much to do with the macroeconomic discussion about the policy rule of the Federal
10Constantinides (1992) is an early solution to the problem of switching signs within a quadratic term

structure model. In his model, the short rate is quadratic in Gaussian state variables x. The model does
not collapse to an affine model because the drift of r = x2 depends on both

√
r and r.
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Reserve. I postpone policy rules to Section 8.1 and regime switching models to Section
7.8, and discuss the purely statistical evidence here. Aït-Sahalia (1996), Stanton (1997)
and Conley, Hansen, Luttmer, and Scheinkman (1997) present considerable evidence
against affine conditional first moments of short-term interest rates for univariate settings.
Ghysels and Ng (1998) and Boudoukh, Richardson, Stanton, and Whitelaw (1999) also
find such evidence for 2-factor models. The main empirical pattern found in these papers
is that the speed of mean reversion seems to be higher when the short rate is far away
from its mean. The pattern may, however, be due to small sample biases. Chapman
and Pearson (2000) argue that empirical evidence about what happens in the tails of the
distribution, far away from the mean, is necessarily based on few data points. Moreover,
they simulate short-rate data under the null of an affine conditional mean and find
nonlinearities in the mean using the nonparametric estimators of Aït-Sahalia (1996) and
Stanton (1997). Some of these observations may also be due to seasonal measurement
error. Large spikes in short rates occur on certain calendar days, such as at the end of
calendar years. The verdict is still out on whether there are nonlinearities in conditional
means and, more importantly, whether they matter for long-term bond yields.

7.6 Unconditional second moments (vol curve)

The volatility curve or ‘vol curve’ is the standard deviation of yield changes ∆Yt. Figure
6 plots the volatility curve for the Fama-Bliss data during the Greenspan era (1987:8 -
now). During this time period, the curve is ‘snake-shaped’: high for short maturities
(<6 months), low at 6-months, then increasing with a peak at 2-3 years, and then again
decreasing. The ‘back’ of the snake, or hump, in volatility around 2-3 years can also be
found in swap data or Treasury yield data over this period. The ‘head’ of the snake in
Figure 6 comes from the 1 and 2-month yields from the Fama tapes which may not be
reliable. Data on the federal funds rate, short term repo and LIBOR rates, however,
confirm the overall picture. The ‘snake’ is documented in Piazzesi (2001). Over differ-
ent time periods, the volatility curve looks different. While the volatility of short-term
interest rates is always high, the hump at 2-3 years disappears, for example, during the
monetary experiment of the early 1980s.

The modelling key to the ‘back’ of the snake, the hump in volatility, is correlation
between factors. For example, the multifactor CIR model based on independent square-
root processes is unable to generate the hump in volatility. A stochastic mean model can
generate the hump. Intuitively, the shocks to the stochastic mean do not affect the short
rate directly, and therefore only affect the volatility of longer-term yields. To match the
hump quantitatively, negative correlation between the Brownian motion of the short-
rate and the stochastic mean seems to be needed. Dai and Singleton (2000) document
this finding within their 3-factor setup. More evidence on the importance of negative
correlation between factors is given in Duffie and Singleton (1997). In their two-factor
CIR model, the two model-implied factors turn out to be negatively correlated. The
correlation coefficient of the factors is −0.5 when they are inverted from yield data. The
correlation is thus far from zero, which is what the theoretical model assumes.
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Figure 6: The volatility curve is the standard deviation of yield changes. Yields are from
the Fama tapes, 1964:1-2001:12.

The ‘back’ of the snake can be linked to policy inertia by the Federal Reserve, defined
as positive autocorrelation in target-rate changes. This positive autocorrelation is induced
by the Fed’s tendency to moves its policy rate, the Fed funds target rate, in a series of
small steps. Piazzesi (2001) builds an affine model with interest-rate targeting by the
Fed in which policy inertia generates the ‘back’ of the snake for the period after 1994.
The different look of the snake over different subperiods may be explained by the varying
degree of policy inertia under different Fed chairmen. The ‘head’ of the snake is money
market noise: short-lived deviations of the short rate from the target rate.

7.7 Conditional second moments (stochastic vol)

To gather some evidence about conditional second moments of yields, I estimate a vector
autoregression of all 11 Fama-Bliss yields (with maturities of 1-6 months and 1-5 years)
and compute the squared residuals from this VAR. Figure 7 plots the time series of these
squared VAR-residuals for the 1-year yield (together with the 1-year yield itself). Several
stylized facts about volatility become clear from this Figure. First, volatility varies over
time. In particular, time-varying volatility is really about two episodes: the oil price
shock in 1974 and the monetary experiment in 1979-1982. Any volatility study therefore
has to decide first on how to treat these two episodes. The choice already starts with
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Figure 7: The Figure plots the 1-year Fama-Bliss yield together with the squared residuals
for the 1-year yield estimated from a VAR with all 11 Fama-Bliss yields (with maturities
1-6 months and 1-5 years). The squared residuals are on the bottom of the graph.

the dataset. For example, studies with swap yields are completely silent about these
episodes because swaps only started trading at the end of the 1980s. Stationary A0 (N)-
models of the Vasicek-type are obviously unable to match the volatility experience of the
entire sample, but Figure 7 suggests that a model with 2 regimes - high volatility and
low volatility - may be enough. Another possibility is that the world is not stationary,
and these ‘regimes’ are really structural breaks. To just describe the experience of the
most recent years, constant volatility models may then be enough. More evidence on this
‘return to normality’ is given in the next section in terms of higher order moments.

Second, volatility is positively correlated with the level of interest rates. This becomes
clear from eyeballing the years 1974 and 1979-1982 in Figure 7. More precise evidence
is given in the ‘slope’-row of Table 5 which computes the slope coefficient of regressing
the VAR-squared residuals of any given yield on the level of the same yield. The slope
coefficient is positive for all squared residuals and significant for most (at least judging
from OLS-standard errors which are not adjusted for the 2-step estimation procedure).
The positive correlation between volatility and yield levels motivated the square-root
specification for the short rate in the CIR model and later multifactor models such as
the model by Longstaff and Schwartz (1992) or Chen (1996), which feature volatility as
one of their factors. The residuals from the regression of the squared residuals in Figure
7 on all Fama-Bliss yields still show spikes in 1974 and 1979-82. In other words, yield
levels only explain some of the time-variation in volatility. This can also be seen from
the R2 in Table 5, which range from 10 to 15%.
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Third, volatility is autocorrelated. Table 5 computes the autocorrelation of the
squared VAR-residuals for all maturities. The autocorrelation is positive and signifi-
cant for all maturities but the 5-year yield (again, standard errors ignore the VAR-step
of the estimation).

Table 5: Properties of squared VAR-residuals

maturity 1 3 6 12 24 36 48 60
Regression of squared residuals on yield level

slope 0.17 0.15 0.15 0.13 0.09 0.07 0.05 0.05
standard errors 0.03 0.02 0.02 0.02 0.01 0.01 0.01 0.01

R2 0.10 0.12 0.15 0.14 0.12 0.11 0.11 0.11
Autocorrelations of squared residuals

autocorrelation 0.27 0.37 0.40 0.27 0.25 0.15 0.16 0.12
standard errors 0.05 0.10 0.12 0.10 0.10 0.07 0.07 0.07

NOTE: Squared residuals come form a VAR with 1 lag using all 11 Fama-
Bliss yields (1-6 months, 1-5 years). ‘slope’ is the slope coefficient from the
regression of squared VAR-residuals for yield i on a constant and the level of
yield i. Standard errors for the slope coefficients are standard OLS standard
errors. ‘R2’ is the R2 from this regression. ‘autocorrelation’ is the first-order
autocorrelation of squared VAR-residuals together with Newey-West standard
errors computed with 6 lags. All these standard errors ignore sampling noise
from the VAR. The yield data are from the Fama tapes of CRSP for 1964:1-
2001:12.

Stochastic volatility is a feature of the data that standard affine models may have
problems to match. The problem arises because volatility plays two roles in affine models.
One role is to match the time-series properties of the short rate. Volatility can in fact
be computed from the second moment of some short-rate proxy. For example, Chan,
Karolyi, Longstaff, and Sanders (1992) do this. Another role of volatility is to match the
cross-section of yields. Volatility can be inverted from affine yield equations. Brown and
Dybvig (1986) and Brown and Schaefer (1994) take this route. There is a natural tension
between these two roles in any affine model, and panel data studies of affine models need
to deal with this tension.

In practice, the tension arises when the inversion of affine yield-equations leads to
negative values for volatility. These negative values make some estimation procedures
choke, such as maximum-likelihood, and tricks have to be used to avoid them. For
example, Duffie and Singleton (1997) find that it helps to add a constant to the short
rate equation in a 2-factor CIR model. Other estimation methods are more robust to
negative volatility. Efficient method of moments is an example, because volatility is
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only simulated to evaluate the EMM objective function, not inverted from yields. The
problem remains, however, of how to interpret parameter estimates that lead to negative
model-implied volatility in-sample.

More evidence on this tension is documented by Collin-Dufresne, Goldstein, and Jones
(2002) who estimateA1 (3)models with swap data. Ideally, the stochastic volatility factor
in these models should be highly correlated with conditional second moments of the short
rate implied by the model. Collin-Dufresne et al. proxy the conditional second moment
with a Garch model estimated with the time series of the model-implied short rate.
Garch-volatility turns out to be negatively correlated with the volatility factor from the
affine model.

A way out of this tension is to construct models in which bond markets are incom-
plete in a way that volatility cannot be inverted from the cross section of bond yields.
This is the idea behind the ‘string models’ proposed by Santa-Clara and Sornette (2001),
‘random field models’ by Goldstein (2000) and Kimmel (2001) and ‘unspanned volatility
models’ by Collin-Dufresne and Goldstein (2001). Useful results on how affine models are
related to such more flexible models of volatility are in De Jong and Santa-Clara (1999)
and Collin-Dufresne and Goldstein (2001). Empirical support for these models is given
in Longstaff, Santa-Clara, and Schwartz (2001) who compare option prices computed
from standard affine models with those from string models and find that affine models
underprice options. Also, Collin-Dufresne and Goldstein (2001) regress returns on strad-
dles on swap yield changes for different countries and find low R2s, while affine models
would predict R2s of 1. Straddles are portfolios of caps and floors which are particularly
sensitive to volatility.

When volatility is not invertible from the cross section of bond yields, it is truly latent
when only information about bond yields is used in the estimation. Collin-Dufresne,
Goldstein, and Jones (2002) therefore use Kalman filtering techniques to estimate their
model. Brandt and Santa-Clara (1999) make volatility an observable factor by using data
on at-the-money options.

7.8 Higher order moments (jumps and regimes)

Yields are not normally distributed over the sample 1964:1 - 2001:12. If they were, then
yield changes would have to be normally distributed as well. Table 6 computes the skew-
ness and kurtosis of yield changes. Benchmark normal distributions are symmetric around
the mean, so that their skewness is 0. Their kurtosis is 3, anything beyond that is called
excess kurtosis. The distribution of yield changes shows negative skewness. This means
that the distribution of yield changes is skewed to the left. (The distribution has a long
thin left tail, while most of the probability mass is around and above the mean.) The
evidence for skewness is weak, however, because GMM-standard errors around the esti-
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mates are large. The distribution of yield changes shows clear excess kurtosis, however,
which means that its tails are heavier compared to the normal distribution.

Recently, yields seem to have become ‘more Gaussian.’ Table 6 also computes the
skewness and kurtosis of yield changes for the subsample 1990:1-2001:12. The difference
is striking. There seems to be only weak evidence against normality during the last 10
years. The squared residuals in Figure 7 during this period are, in fact, barely visible to
the eye. Have yields ‘returned to normal’?

Table 6: Higher order moments of yield changes

maturity 1 3 6 12 24 36 48 60
Skewness

full sample -1.00 -1.35 -1.51 -1.01 -0.68 -0.11 -0.16 -0.26
std err (0.80) (0.61) (0.80) (0.69) (0.57) (0.39) (0.31) (0.30)
1990s -0.18 -0.88 -0.60 -0.05 0.05 0.19 0.19 0.13
std err (0.39) (0.32) (0.29) (0.26) (0.18) (0.16) (0.16) (0.17)

Kurtosis
full sample 14.34 13.92 16.93 15.38 11.90 9.16 7.07 6.84
std err (4.48) (3.10) (5.24) (4.78) (3.15) (2.71) (1.22) (1.25)
1990s 5.31 5.47 4.56 3.59 2.73 2.64 2.68 2.72
std err (0.72) (1.08) (0.74) (0.37) (0.24) (0.23) (0.26) (0.26)

NOTE: Skewness is m3/m
3/2
2 and kurtosis is m4/m

2
2, where mi is the i-th

central moment of yield changes. ‘Full sample’ compute the statistic over
the entire sample 1964:1-2001:12, while ‘1990s’ uses the subsample 1990:1-
2001:12. Standard errors (in brackets) are computed using GMM with 6
Newey West lags. The yield data are from the Fama tapes of CRSP for
1964:1-2001:12. Maturities are in months.

Affine models offer two ways to deviate from normality: stochastic volatility and
jumps. The two ways are difficult to distinguish just from first and second moments.
Das and Sundaram (1997) try to distinguish the two with higher order moments. Das
(2002) and Johannes (2001) estimate short-rate models with jumps. The nonparametric
method by Johannes implies jump arrival rates in-sample that place high probability on
jumps occurring at scheduled macroeconomic news releases (which are discussed in the
next subsection).

Regime switching models also generate non-normal distributions and are consistent
with evidence on nonlinearities in conditional first moments. In general, these models
are outside the affine class (Hamilton (1994, Chapter 22), Gray (1996), Ang and Bekaert
(1998), Veronesi and Yared (2000), Bansal and Zhou (2002)). For some special cases,
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affine solutions can be still be obtained (Landen (2000), Dai and Singleton (2003), Ang
and Bekaert (2003)). Estimated regime switching models tend to find two regimes: a
high-persistence low-volatility regime, and a low-persistence high-volatility regime. This
finding is intuitive from Figure 7 which suggests that we are in the high-persistence low-
volatility regime most of the time, with the exception of the oil price shock and the
monetary policy experiment.

7.9 Seasonalities (settlement Wednesdays & macro releases)

Fleming and Remolona (1997), Furfine (2001) and Johannes (2001) go back to see whether
the largest yield-movements over a given time period coincide with certain events. Flem-
ing and Remolona (1999) and Furfine (2001) use 5-minute price changes in the 5-year
Treasury note, while Johannes (2001) uses daily data on the 3-month T-Bill rate. Ta-
ble 7 summarizes the findings of these three studies. The results show that most large
yield-movements happen around employment releases and Federal Reserve policy rate
moves. The bulk of these events are scheduled announcements. Only few happen at
random times, such as the outbreak of the Gulf war which coincides with one of the 10
largest yield movements in the Johannes sample. More evidence on seasonalities around
macroeconomic news releases is documented in Jones, Lamont and Lumsdaine (1996),
Fleming and Remolona (1997), Balduzzi, Elton, and Green (2001), Li and Engle (2000).
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Table 7: Largest moves in bond yields

Daily data on 3-month T-Bill, Jan 1991 - Dec 1993
1. Jan 2, 1992 Fed policy rate
2. Dec 20, 1991 Fed policy rate
3. Sep 4, 1992 Employment
4. Apr 9, 1992 Large Japanese market decline
5. Feb 1, 1991 Employment, Fed policy rate
5-Minute data on 5-year T-note, Aug 1993 - Aug1994
1. Aug 5, 1994 Employment
2. May 6, 1994 Employment
3. Jul 8, 1994 Employment
4. Apr 1, 1994 Employment
5. Jul 29, 1994 GDP
5-Minute data on 5-year T-note, Jan 1999 - Dec 1999
1. Jun 30, 1999 Fed policy rate
2. May 5, 1999 Employment
3. Sep 3, 1999 Employment
4. May 14, 1999 Consumer price index
5. Aug 6, 1999 Employment

NOTE: The three panels show the 5 largest bond-yield moves in their
subsample. The first column indicates the rank of the move, the second
column gives the date of the move, and the third column indicates what
happened during the move. The amount of the move is not available for the
top panel, so it is not included here. The top panel combines information
from Table 4 and Figure 5 in Johannes (2001). The middle panel is from
Table 3 in Fleming and Remolona (1999). The lower panel is from Table 1 in
Furfine (2001).

When large yield movements at macroeconomic news releases are modelled as jumps,
the timing of these jumps is deterministic. Piazzesi (2001) builds an affine model with
deterministic jump times and state-dependent jump size distributions to be able to impose
the release calendar on the estimation.

Another type of seasonality is documented in Hamilton (1996). Large spikes in the
federal funds rate occur on so-called ‘settlement Wednesdays’, which mark the end of
the bi-weekly reserve maintenance period. Less pronounced spikes on these days can also
be found in other short-term interest rates, such as overnight LIBOR or repos (Piazzesi
(2001)). An estimation with data on these very short rates therefore needs to carefully
take into account these seasonalities. High-frequency studies of the effects of monetary
policy are especially affected by these seasonalities, because most target moves happen
around settlement Wednesdays.
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7.10 Fitting errors at the short end

When affine models are estimated with panel data, the fit at the very short end of the
yield curve often turns out to bad. One of the reasons is that estimations typically do not
use any data on extremely short yields. Indeed, seasonalities and other microstructure
noise would make such an estimation difficult, as mentioned in the previous section.
Piazzesi (2001) and He (2001) argue that the Federal Reserve target rate can serve as a
‘clean’ short rate that helps in fitting the short end. These papers use the target rate
to pin down the short end of the swap curve. Another reason for the poor fit is that it
seems like more than three factors are needed to capture the short end of the yield curve.
Evidence of the need of a fourth factor is in Knez, Litterman, and Scheinkman (1994),
Longstaff, Santa-Clara, and Schwartz (2001) and Piazzesi (2001).

8 Joint system with other macroeconomic variables

Macroeconomics often views the Federal Reserve as setting the short end of the nominal
yield curve. Many issues that are being debated in the term structure literature - such
as persistence, predictability, nonlinearities, and structural breaks in short yields - are
therefore also being debated in monetary economics. Section 8.1 links some of these
discussion points. Yields have much to do with other macroeconomic variables. Inflation
in Section 8.2 and the other macro variables in Section 8.3 may teach us something about
yields.

8.1 Monetary policy

Most central banks in industrialized countries target some overnight interbank lending
rate. The Federal Reserve does so by fixing a target rate for the funds rate which is
implemented by the New York Fed using open market operations. The way the Fed sets
the target is usually described with policy rules, which are maps from macro variables
to the target. According to the ‘Taylor rule,’ for example, the Fed sets the target in
response to inflation and the output gap. Policy rules are structural equations which
can be identified in several ways (for a survey, see Christiano, Eichenbaum, and Evans
(1999)). The identification scheme proposed by Christiano, Eichenbaum, and Evans
boils down to taking conditional expectations. The literature on structural breaks in
policy rules and interest-rate smoothing by the Fed is thus intimately related to the
statistical discussion about short-rate dynamics. Monetary policy regimes are usually
associated with Fed chairmen. An example is the 1979-1982 monetary experiment under
Paul Volcker. During this time period, the Fed stopped targeting short-term interest
rates and started targeting nonborrowed reserves instead. The economy underwent two
recessions during this three year experiment, but eventually inflation was under control.
When policy rules are estimated over different regimes, coefficient estimates are very
different. Cogley and Sargent (2001, 2002) address this issue with a random-coefficients
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model. Sims (1999) and Sims and Zha (2002) argue that what looks like nonlinearities
and structural breaks in policy rules may be due to time-varying second moments.

Knowledge about the operations procedures of the Fed can be used for yield-curve
modeling. The model proposed by Piazzesi (2001) explicitly uses the meeting calendar
of the Fed to determine the short end of the yield curve. The Fed meets 8 times per
year and changes its target-short rate mostly at meetings since 1994. The market short
rate fluctuates around the target. Between meetings, the short rate is thus likely to stay
close to the old target level. The target is constant for long periods of time, which can
be captured with counting processes for up and down moves. The yield-curve model
predicts, for example, the reaction of yields to monetary policy surprises, defined as the
difference between the actual target and the Fed’s policy rule. The reaction of yields
to these surprises turns out to be large. Cochrane and Piazzesi (2002) confirm this
finding in a setting that does not impose no arbitrage. Traditional studies in which
the Fed only reacts to macroeconomic variables tend to find small reactions of yields to
policy shocks (Evans and Marshall (1998, 2001)). In fact, the policy rule estimated with
the yield-curve model captures Fed behavior better compared to traditional rules based
exclusively on macro variables. The estimated rule features both interest rate smoothing
(autocorrelation in levels) and policy inertia (autocorrelation in changes).

Mankiw and Miron (1986) find that short rate movements have become much less
predictable since the creation of the Fed in 1914. The reason is that the Fed smoothes
short rates (increases their autocorrelation in levels), which makes changes in the short
rate unpredictable. Mankiw and Miron conclude that rejections of the expectations
hypothesis may be due to the Fed-induced random walk character of interest rates. This
idea can be used to construct a term structure model by estimating the short rate and
then computing long yields with the expectations hypothesis (Balduzzi, Bertola, and
Foresi (1996)). This explanation may be consistent with the fact that the persistence of
short rates seems to have increased in the 1990s (Watson (1999)), a decade during which
the expectations hypothesis has failed spectacularly.

Yield-curve models that incorporate interest-rate targeting by the Fed can be used to
learn about policy rules. For example, the reaction of yields to macroeconomic surprises,
such as nonfarm payroll numbers, seems to be hump-shaped with peaks around 2-3 years.
This evidence is not consistent with a yield-curve model in which the Federal Reserve
reacts to current macro variables (Piazzesi (2001)). The reason is that macroeconomic
release surprises, measured as the difference between actual released number and analyst
forecasts, do not seem to forecast future macroeconomic variables. Since future employ-
ment numbers are unaffected by the surprise, the Fed is likely not move the short rate in
the future. This implies that long yields should not be reacting to release surprises - but
they do. The Fed thus seems to react to some moving average of past release surprises
instead of current macro variables.

Central banks in other countries use different operational procedures. For example,
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the Bundesbank used to make its policy decisions at bi-weekly meetings without an-
nouncing an official target. Yield-curve models can then be used to learn about the
latent target (Piazzesi (2002)).

8.2 Inflation

Central banks need to decompose nominal yields into expected inflation, risk premia
and real yields (which are yields on real bonds, see Section 4 for definitions). The policy
response to high expected inflation is much different from the response to high real yields,
while both situations are characterized by high nominal yields. Holders of nominal bonds
worry about future inflation because that is what determines the real value of the principal
payment at the maturity date. This implies that expected inflation should matter for at
least the determination of nominal yields. Expected inflation may also matter for real
yields in a world in which money is not neutral.

Fama (1990) documents that the correlation between expected inflation and state
variables that drive the real yield curve is negative, at least for horizons up to one year.
More precisely, he defines the real rate as the difference between the nominal one-year
yield and actual inflation over one year. The negative correlation is between the expected
real short rate and expected inflation. Expected values are measured by the fitted values
from regressions of actual inflation and the real short rate on a particular yield spread,
the difference between the 5-year and the 1-year yield. The finding is that regression
coefficients have opposite signs so that high yield spreads forecast higher inflation and
lower real rates. For horizons up to one year, the signs of these forecasts cancel each
other such that the yield spread does not forecast changes in the nominal rate. The R2

from these forecasts are around 20% for inflation and about half that for the real rate.
For horizons beyond one year, the yield spread only predicts inflation and not the real
short rate. The R2 from the real-rate forecasts decrease fast with horizon, while the R2

from the inflation forecasts stay high for several years. This means that yield spreads are
able to predict changes in the nominal short rate for longer horizons.

Barr and Campbell (1996) and Campbell and Viceira (2001) also find negative corre-
lation using affine 2-factor models. Expected inflation and the actual real short rate are
Gaussian and market prices of risk are constant. Expected excess returns on all bonds,
real and nominal, are therefore constant. The model for the real yield-curve is a 1-factor
Vasicek model, while the nominal yield-curve is a 2-factor Vasicek model. Nominal yields
in this model can thus become negative with positive probability. Expected inflation and
the real rate are inherently latent variables, which are estimated using Kalman filtering
with McCulloch-Kwon zero-coupon yield data and CPI inflation. All yields are assumed
to be observed with error. Buraschi and Jiltsov (2001) also find negative correlation with
a 3-factor model. Finally, Barr and Campbell (1996) and Campbell and Shiller (1996)
find the same result with UK data on indexed bonds.
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During the monetary experiment, inflation was high and the Fed under Volcker in-
creased nominal short rates dramatically. This fight against inflation was successful in
the sense that the estimated yield-curve model by Campbell and Viceira (2001) shows
that expected inflation has been much less variable since 1983. Real rates, however,
have become more variable. This is also reflected in the persistence of these variables
since 1983. While expected inflation appears to have a unit root over the whole postwar
period and shocks to the real short rate have a half-live of 5 quarters, these results are
almost reversed for the subperiod after 1983. Expected inflation has become much less
persistent, with shocks to expected inflation having half-lives of only 5 quarters. Shocks
to the real short rate now have a half-live of 12 years!

8.3 Other macroeconomic variables

Ang and Piazzesi (2002) address whether macro variables add to our understanding of
yields by looking at out-of-sample forecasts of yields. The forecasts are computed using
a discrete-time Gaussian yield-curve model with macro variables as observable factors.
Discrete time makes it easy to incorporate higher order autoregressive lags that are of-
ten needed to capture the dynamics of macroeconomic variables. Longer lags can be
incoporated simply by expanding the state space. Hansen and Sargent (1991) discuss
how to do this in continuous time. Market prices of risk in the model are affine in the
Gaussian state variables. The estimation uses data on various inflation measures and
real activity measures. The authors find that yield curve models with macro variables
turn out to do better in out-of-sample forecasting. Ang, Piazzesi, and Wei (2002) es-
timate a 3-factor model based on a short rate, term spread and GDP growth. Their
model completely characterizes the predictive regressions of GDP growth over different
horizons and different term spreads on the right-hand side. Their model recommends the
use of the short rate instead of any term spread for forecasting growth. This finding is
in contrast to unrestricted OLS regressions and is confirmed in out-of-sample forecasts.
Intuitively, arbitrage-free pricing imposes restrictions that improve the efficiency of pa-
rameter estimates. This gain in efficiency leads to vastly different point estimates in the
case of forecasting GDP growth, even though the yield-curve parameters are well within
confidence bounds of the corresponding OLS regression. A lot more research is needed
in this area.
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