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1 Introduction

A number of empirical studies have shown that the usual geometric Brownian
motion model used for the pricing of derivative securities is not appropriate in
many markets. As these products are becoming more and more popular, it is no
longer acceptable for a financial institution to use the geometric Brownian mo-
tion regardless of its drawbacks. In the equities market, the smile phenomenon
stands out amongst the main concerns: as European options have become liquid
and can be treated as primary assets, it is important that a model matches their
prices if this is to be used to price (and hedge) exotic options. Several kinds of
alternative models have been and are still being developed, among which models
with stochastic volatility (e.g. [37], [38]) or Lévy processes: Barndorff-Nielsen
[5] introduced the NIG model, Madan and Seneta [20] proposed the VG model,
extended in [32]. For an argument in favor of using Lévy processes in finan-
cial modelling, see [44]. Some models have also been investigated, which mix
stochastic volatility and jumps ([9], [25], [29], [59]). Some of these models and
their performance are reviews in other chapters of the present handbook [].
Among exotic options, barrier and lookback options have the simplest struc-
ture and were introduced a long time ago; they are today quite popular among
investors since they reduce the unwanted part of the risk carried by vanilla
options. Not only traded on their own, they are commonly involved in more
elaborate structured products.
In the framework of the geometric Brownian motion model, the problem has
been addressed and solved many times. Kunitomo and Tkeda [42] derive prices
for barrier options with general boundaries (see also [3]); Geman-Yor [33] and
Sbuelz [58] use the Laplace transform method to price double barrier options;
Pelsser [52] derives the same formulas using path integration.

Here, we deal with the pricing of barrier and lookback options when the
underlying asset price is modelled as eXt for a Lévy process X. By making
use of purely probabilistic techniques, we obtain results that hold in the most
general case, which embeds many popular models, such as the geometric Brow-
nian motion (!), jump-diffusion, the Normal Inverse Gaussian model and the
Variance-Gamma distribution.

Thanks to the Pecherskii-Rogozin identity, we obtain a formula for the Laplace



transform of option prices in terms of the Wiener-Hopf factors or the Laplace
exponent of the ladder process associated with X.

This work is organized as follows. Lévy processes and their main mathemat-
ical properties, as well as fluctuation theory are introduced in Section 2. We
also give some definitions and notations to be used in the sequel. In Section 3
we review some uses of Lévy processes in finance, before describing barrier
and lookback options, and showing how their prices can be derived through
Laplace inversion. Pricing in particular cases is also studied, but the most gen-
eral method gives some insight about hedging. Some examples are studied in
Section 4, where some formulas —as explicit as possible— are obtained for the
Laplace transform of the option price. Section 5 concludes. Subsequently, a
numerical example illustrates our technique in Appendix A, while Appendix B
points to possible extensions and future research.

2 Lévy processes

In this section, we introduce Lévy processes and review their main mathematical
properties. We put some emphasis on fluctuation theory, as this is the leading
”technology” which enables us to solve our valuation problem.

2.1 Definition and main properties

In this section, we define Lévy processes and give a short review of their main
properties. More details can be found in the books by Bertoin [11] and Sato
[56] (see also [12], [57] for a short introduction) .

We assume a probability space (2, F, P) is given.

Definition 2.1 A real-valued process X = (Xy,t > 0) is called a Lévy process
if it satisfies the following conditions

e for all s > 0, the shifted process (X;ys — Xs,t > 0) is independent of
(Xu7 u S S) 7'

o forall0 < s < t, the distribution of X;— X coincides with the distribution
Of thsy'

e X has a.s. right-continuous paths.

If X is a Lévy process, the distribution of X; is infinitely divisible because of
the identity

X1 = Xy + Xy —Xiyp) +--+ (X1 — Xi_1/n)
law 1 2 n
= X1(/3L+X1(/)n+”'+X1(/ZL

where the Xl(j)n are mutually independent variables, all distributed like X} /,.
Conversely, to any infinitely divisible distribution g on R one can associate a



Lévy process X such that the law of X; is u. Infinite divisibility of the law
of X, is equivalent to the Lévy-Khintchine representation of its characteristic

function:
E[eiqu] — ef¢(u)

where )
(1) o(u) = iau + T2+ / (1— el 4+ iuxl|y <)V (dr).

2 R—{0}
In the above equation, a is a real number (the drift), o > 0 (the diffusion
coefficient) and v is a o-finite measure on R — {0} (the Lévy measure) which
satisfies the condition

(2) /(1 A z?)v(dr) < oo

We then have for each ¢ ‘
(3) Ele'Xt] = e to(w)

¢ is called the characteristic or Lévy exponent of X.
The Lévy-Khintchine representation of the characteristic exponent ¢ has a
corresponding path interpretation: X can be decomposed as

(4) X;=at+0Bi+ Y AX,1jax, 51 + lim Z{”
s<t 40

where
e B is a standard Brownian motion,

e the sum makes sense because X has right-continuous paths hence finitely
many jumps of absolute size > 1 in any finite time interval,

e for each € > 0, Z(9 is the martingale defined by

Zt(G) = ZAX816<\AX3‘S1 - t/ Il/(dl‘),

s<i e<|z|<1

one can show that these martingales converge in L2, uniformly on any
bounded time interval, as € goes to 0; the limit is a pure jump martingale.

Note that the 3 processes above are mutually independent Lévy processes. The
decomposition (4) is called the Lévy-Ito decomposition of the paths of X. More
details are given in [56, §§19-20].

From now on, we denote by (F;,t > 0) the filtration generated by X. Let
us mention two well-known important properties of Lévy processes. The first
one is the strong Markov property in the filtration F;. More precisely, for any
F-finite stopping time T, the shifted process (X714 — X7p,t > 0) is independent
of Fr and has the same law as (X; — Xg,t > 0). The second one is that X is
a special semimartingale (see [48, p. 310]). The semimartingale property can
be read from the Lévy-Ito decomposition; it is a special semimartingale because
the compensator of the jumps is deterministic (cf. [39]).



2.2 Fluctuation theory

We now turn to a branch of the theory of Lévy processes, named fluctuation
theory. Its aim is to study the joint behaviour of a process (here, our Lévy
process) and its maximum. Fluctuations of random walks were first studied, for
which Spitzer obtained many important results. Thanks to the independence of
increments, most of these results can be transposed to Lévy processes. However,
these results can be rediscovered by using excursion theory, an approach we
favor because it involves directly the paths of X. We follow closely Bertoin [11,
Chap. VI] and Greenwood-Pitman [36]. For an account on fluctuation theory
for continuous time processes, see Bingham [13].

Let
(5) M; = sup X,

s<t

the running maximum of the Lévy process X. The key point in the following
is that the reflected process M — X possesses the strong Markov property with
respect to the filtration (F;). Let L be a local time process at 0 of the reflected
process and denote by 7 its right-continuous inverse:

(6) 7, = inf{u > 0, L, > t}.

Put
(7 H(t) = M,y if7(t) <oo, H(t) =00 otherwise.

The process (7, H) is called the ladder process, it is a two-dimensional Lévy
process, each component being a subordinator. Roughly speaking, H is the
process of the successive values of the supremum of X, when the intervals of
time where M is constant have been discarded; this is revealed by the use of
the inverse local time as a time scale instead of the original calendar time.

Let k be the Laplace exponent of the ladder process:

e~thl@B) = gleoT()-BH()]

One of the main goals of fluctuation theory is to compute the function k. Knowl-
edge of this function will be needed in order to apply the main result of this
section, the Pecherskii-Rogozin identity (Theorem 2.1).

We first proceed to give an expression of  in terms of the 1-dimensional distri-
butions of X.

Let @ be a random variable independent of X, exponentially distributed
with parameter ¢ > 0 and denote Gy = sup{t < 6 : X; = M;}. It is easy
to see that My = Mg, = Xg,—. Since the excursion process away from 0
associated with M — X is a Poisson point process, we have that (X¢,t < Gp)
and (Xg,4++ — Xag,_,t < 0 — Gyp) are independent. In particular, the pairs of
variables (Gy, My) and (6 — Gy, X9 — Mpy) are independent. The following result
will be used in section 4 for a number of models.



Proposition 2.1 There exists a constant k > 0 such that:

8) k(e B) = kexp ( /0 Tt /O T 1ot — emat-Be)p(X, € d@)

Proof . We have a decomposition of (6, Xy) as the sum of two independent,
infinitely divisible random variables (Gg, My) and (8 — Gg, X9 — Mp). Denoting
by u, pt, p~ the respective Lévy measures of these variables, we then have
p = pt 4+ p~, with gt (resp. p~) having support in [0,00) x [0,00) (resp.
[0, 00) X (=00, 0]). The Lévy measure of (6, Xy) is given by t e " P(X,; € dx)dt
(see [11, Lemma VI.7]) and can be decomposed as

t7re " P(X; € da)dtl,so +t e 1 P(X; € dx)dtl, <o;

from which we conclude that ut = t~le"®P(X; € dz)dtl,o.
On the other hand, one can show using the theory of excursions, that the Laplace
transform of (Gg, Mp) is given by

(9) E[e—aGg—,BMg] — K(Z(:I: 2)5)

(this can be proved using a decomposition over excursion intervals as done in
the proof of Theorem 2.1 below). Putting pieces together, we have

"”“(‘1’0)5) = exp (— /(1 - e“tm)w(dt,dw))

k(o + g,

because there is no drift term in the distribution of (Gy, Mp). So

(e +q,3) = k(q,0) exp (/000 dt /OOO P(X, € da)t~le~ (1 — e—at—ﬁw))

for all a,3,q > 0. Setting ¢ = 1, we get the result for « > 1 and § > 0. A
standard argument of analytic continuation entails that the proposition is true
for all a > 0. a

Remark 2.1 The constant k = k(1,0) is arbitrary as it depends only on the
normalization of the local time process L. Upon multiplying this process by some
positive constant, we can choose k = 1. However, we keep this kind of constants
in our general formulas; they will automatically (and consistently) be discarded
in the pricing formulas.

We now turn to prove the Pecherskii-Rogozin identity, which expresses the dou-
ble Laplace transform of the joint distribution of hitting times and the value
of the process at such times in terms of the function k. This will be our main
tool for pricing barrier and lookback options in a general setup. This identity



has been known for quite a long time and was first proved in [51] using Wiener-
Hopf techniques of analysis. The proof we give here is based on the theory of
excursions and avoids the original analytic arguments. See also [56, §49] for an
alternative proof.

From now on, we suppose that 0 is regular for (0,00) relatively to X, i.e.
inf{t > 0: Xy > 0} = 0 a.s., and also that 0 is instantaneous for the reflected
process M — X, i.e. if inf{t > 0: My — X; # 0} = 0 a.s. If 0 is irregular, or is
not instantaneous, the set {t : X; = M,} is discrete, and elementary arguments
based on the strong Markov property at the successive passage times at 0 of the
process M — X suffice to prove Theorem 2.1. For more details, see [11, Chap.
Iv].

Theorem 2.1 (Pecherskii-Rogozin) For z > 0, define T'(z) = inf{t > 0 :
X > x} the first passage time above x and K(z) = Xp(,) — = the so-called
overshoot. For every o, 3,q > 0, the following formula holds:

e e e—aT(z)—ﬁK(z) T = K(OQQ) - H(Oé,ﬁ)
1o f, e e = = Brtana)

Before we prove the Pecherskii-Rogozin identity, we need the following re-
sults:

Proposition 2.2 For x > 0, let n, := inf{t : H(t) > z}.

1. The process Z, = H(n,)—x is a Markov process in the filtration (F,,,x >
0).

2. For all x > 0, it holds a.s. that T'(z) = 7(n,) and K(z) = Z,.

Remark 2.2 The identity in the above proposition is easy to understand from
the intuitive interpretation of the process (1, H) given above. Indeed, the time
T(z) is an increase time point for M. The equality T(z) = 7(n,) is just the
change of time-scale between M and H; the overshoot is expressed, in the new
time-scale, as

K(x) = My —x = H,, — .

Proof .

1. This follows immediately from the general theory of time changes for
Markov processes.

2. We first show that T'(z) is in the range of 7. Since T'(x) is a zero of M — X
it is enough to show that it is not the left end-point of an excursion interval
—it will then be a right end-point. We will therefore have T'(z) = 7(I(z))
and also I(z) = L(T(x)).

Suppose on the contrary that T'(z) is the left end-point of an excursion
interval (7(a—),7(a)) (so (T'(x) = 7(a—)). We then have M > X on an



open interval (T'(z),7(a)). On the other hand, T'(z) is a stopping time
and the strong Markov property yields

d
(Mr(2)+t — X1(2)+,t > 0) = (My — Xy, ¢ > 0).
This is in contradiction with the fact that 0 is regular for M — X, relatively
to [0, 00).

Let us now show that I(z) = 7,, which will end the proof. We distinguish
between two cases:

e H(I(x)) > x. Then H(l(z)) = Mr(l(z)) = MT(:E) = XT(QE) > z. On
the other hand, X; < z for all ¢t < T'(z) = 7(I(x)) and for ¢ < I(x)
we have 7(t) < 7(I(z)). If H(t) > x, then T(x) < 7(¢), which does
not hold, so that H(t) < z for ¢t < I(z), meaning that I(z) = ;.

e H(I(z)) = x. As in the previous case, we have H(t) < z for t < l(z).
On the other hand, the Markov property implies that X visits [0, 00)
immediately after 7'(z) a.s. So for ¢ > I(z), we have H(t) = M, >
Mr(l(z)) =T, i.e. l(:I,‘) = Tz-

O

Lemma 2.1 For allu >0, ny, ) =N,y =
Proof . We have:
N, ., = inf{t: H(t) > H(u)} = u

and
NM,,_, =inf{t: H(t) > H(u—)} > u

because H is increasing. Also, we have na, < nar, ,, so the proof is complete.
O

Lemma 2.2 7, is continuous, and v, the Lévy measure of H satisfies

/OOO 7 (dir) = +o0.

Proof. We have that H(s) < H(t) for any s < t; it follows that 7 is continuous.
Now, the jump part of H is not a compound Poisson process because of the
hypothesis that 0 is a regular point for (0, o) relatively to M — X. Hence its
Lévy measure cannot be finite. |
Lemma 2.3 The following identity between measures holds a.s:

drlp(y, )= = d"dn,

where d¥ is the drift of the Lévy process H.



Proof . For a > 0, denote by l;(a) the size of the first jump of H which is
greater than a. Fix ¢ > 0, then for a < ¢, since the jump part of H is a Poisson
point process with intensity measure v :

v ([, 00))

Plli(a) > c] = m

-0, a—0

so that 0 is a regular point for the process Z introduced in Proposition 2.2. On
the other hand, for a > ¢,

v ([a,0c
P[ll(c)>a]:yH(([[c:o.g))—>O, a— 0o

so that 0 is also recurrent for Z. It is easily seen that the sets {z : Z; = 0} and
{z : H(n,) = x} coincide, and that 7 increases only on the set {z,3t : H(t) =
H(t-) =z} = {z : H(n,) = z}. So n is a local time process for Z (see [11,
Chap. IV]). Hence, ([11, Prop. IV.6])

/ L(z,-0ydy = d"'n,
0
where d is the drift of H. This concludes the proof. O

There is a more intuitive argument for the above result. Indeed, as a subordi-
nator, H has the Lévy-Ito representation

H, :dHt+/0t/h(p—uH)(ds,dh)

where v is the Lévy measure of H and p is a random Poisson measure with
intensity v . It follows that n has locally a representation

Nz = d?xlzeA

where A = {x : H(n,) = x} and is constant on the set corresponding to jumps
of H. We conclude that d"dn, = 1g(;, )= dw.

Proof of Theorem 2.1. First we split the quantity of interest over the
excursion intervals of the process Z in the above lemma:

o0
/ e 1 Ele= T @) =B @) gy = [ 4+ IT
0

where -
[:=E {/ e—qwe—af(nm)—ﬁ(H(nm)—w)1H(n )>zd4
0

and oo
IT:=F [/0 e—qwe—ar(nz)—B(H(nm)—z)1H(nz):md4 )



The first term I may be split over the excursion intervals according to

H(u)
3 / o az—ar(n(@)~B(H (1)~ w>dx]
u>0

Let us perform the change of variables = H(u) — (h — H(u—)), so that

I_

E|Y / —h+H(u >1m(nH(u)_M(u_))ﬁ[H(nH(u)_HH(u_))H<u>+hH<u>1dh]
u>0

Z/ )(h—H (u—))—ar(u) dh]
u>0

since according to Lemma 2.1, we have ng () = Nru—) = U = NH(u) = (h—H(u-))
for all h € (H(u—), H(u)). So

H ()~ H (u-)
E |3 elo=MH () —ar(us)=a(um) ~a(r(w)=r(u=)=4(H(u) ~H(u-) / la—Bhgp,
0

u>0

Let ®(t,h) = e~**~9" and apply the compensation formula ([11, Chap. 0])to

get
/ du®(7(u), H (u ))/V(dt,dh)e—(at+qh) /h e(q_ﬁ)”dv]
= W/ v(dt, dh)e= (e=BF — ¢=ah)

where v(dt,dh) is the Lévy measure of the bivariate Lévy process (7, H). The
Lévy-Khintchine representation for x reads

ko, ) =d"a+dip + /(1 — e By (dt, dh)
wherefrom we deduce that
[ vtdtdneet (e - et = k(a,) ~ w(a, 5) + (5 - "

and we finally obtain

(11) 7 Blaq) — K@, f) dt

(q_ﬂ)ﬁ"(aaq) H(Oé,ﬁ)‘

Let us now consider the second term. According to Lemma 2.3:

II = E [/OO e—av—ar(n=)—B(H(n-)— )1H dx]
0

E |:/'OO e_qw—ar(nm)denz] X
0




Since n is continuous, we can perform the change of variables u = 7, in the
integral; this yields

II = d"E Uwe—qﬁ’(“)—“(“)du
0

dH
Ko, q)

(12) S

Combination of Equations (11) and (12) entails the Pecherskii-Rogozin identity.
|

Remark 2.3 When the process X has no positive jumps, we have Xp) =
a.s. This case is considered in a simpler manner in the next section.

Denote by X the dual Lévy process of X, namely X, = —X; and by &
the Laplace exponent of the ladder process associated with X. According to
Proposition 2.1, we have

k exp (/ dt/ tet —e B P(—X, € dm))
0 0
R 00 0
= kexp (/ dt/ t et —e " PP(X, € dx)) .
0 —00

In particular, we have

k(a, B)

K(a,0) = kexp </000t1(et — e ) P(X; > 0)dt>

~

R(a,0) = kexp </ t et —e)P(X, < O)dt)
0
so that

K, 0)i(,0) = khexp ( /0 Ootl(et—eat)dt>
(13) = kka

where the last equality follows from using the Frullani integral: aln(1+ A\/b) =
Joo (1 — e )at=te=Pdt. On the other hand, it is an easy consequence of the
1ndependence of My and Xy — My that the followmg holds:

.
(14) =,

where ¢} (resp. ¢, ) is the characteristic function of My (resp. Xy — Mp).
This identity is known as the Wiener-Hopf factorization. From equation (9) we
deduce that

£(g,0)

+ () =
(15%) o) = o s

10



and using duality, we have similarly

k(g,0)
k(q,iu)’

(157) by (u) =

So combining equations (13), (14), (15%) and (157 ), & can be deduced from &
by the formula

(16) K(q, —iu)i(g, iu) = kk(g + ¢(w)).

2.3 Lévy processes with no positive jumps

We now turn to the case when the Lévy process X has no positive jumps (X is
then called spectrally negative); in this case, the support of the Lévy measure
is contained in (—o0,0). Note that by considering the dual process, this study
applies to the case when X has no negative jumps. The results we present here
already appear in e.g. [62], where they are obtained by a fine analysis of the
Laplace exponent 1); we use quite different techniques that rely on martingale
theory; see also [11].

Since there are no positive jumps, we can consider the Laplace exponent 1),
defined by
(17) E[eM =N x> 0;

1) is well-defined because X has no positive jumps and the Laplace transform of
a Gaussian variable is finite. This formula holds indeed for all complex A such
that (A\) > 0.
The equation ¥(A) = 0 has at least one solution; denote the largest one by
®(0). Then ¢ is a bijection when restricted to [®(0),00) and we denote by
® the inverse bijection. Standard martingale arguments will yield the Laplace
transform of the first passage times T'(z).

Indeed, since ¢)(\) < oo, it is clear that e?X:~t¥(M) ig a martingale; because
T(z) is a stopping time, the optional sampling theorem gives

(18) Bl re=T@s0 0 =1,

Now because X has no positive jumps, the equality X;(,) = = holds a.s. on
{T'(z) < oo}, so that the preceding equation can be written

(19) Ele™ TV g o] = e
or, considering the inverse bijection:
(20) Ele (<o) = e,

Note that the set {T(x) = oo} is not necessarily P-negligible: it has positive
probability if and only if ®(0) > 0, and then the law of T'(x) has an atom at
+o00: P[T(z) = +00] = 1 — e~ 2®(0),

In the case of no positive jumps, we have the following nice property of the
running maximum.

11



Proposition 2.3 Let 6 be an exponential variable with parameter q, indepen-
dent of X. Then My has an exponential distribution with parameter ®(q).

Proof . For x > 0, we have the following chain of equalities

P(My>z) = P(T,<9)

[ee]
= / qe” " P(T, < t)dt
0

= E [ / qe‘qtdt} by Fubini’s theorem
T

= Ele " 11, <o0)]

— 7%

as required. a

We end this section by the following remark. The absence of positive jumps
ensures that the ladder height process is given by H; = M, ;) =t for 7(t) < co.
The bivariate Laplace exponent x is now especially simple.

Theorem 2.2 The bivariate Laplace exponent k of the ladder process is given
by

(21) k(a, ) = ®(a) + 6.
The bivariate Laplace exponent of the dual ladder process is given by
5 ca—P(B)
22 kla, B) = kk————=.
(22) (@.8) = kh g™
Proof . Because X has no positive jumps, its supremum functional M is

continuous and additive for M — X. Moreover it is easy to see that M increases
exactly on the set {t : X; = M;}. Therefore M can be used as a local time for
the reflected process M — X (see [11, Th. VIL.1]). It follows immediately that
the ladder height process is simply H(t) = ¢. The inverse local time is then seen
to coincide with the passage time process T'(z), and we have shown above that

E[e—aT(w)] — e—w‘i(a)_
It follows that k(a, 8) = 8 + ®(«). Now recall identity (16) to get

. _ gt o(=if)
kla,B) = kk @ —B)

- p(8)
8 a) — 5
O

Hence, to deal with the case when the Lévy process X has no negative jumps,
we may simply consider that it is the dual process of a Lévy process X with no
positive jumps.

12



2.4 Esscher transforms (or: Exponential tilting)

In this section we introduce a family of measure transformations that preserve
the Lévy property, i.e. X is still a Lévy process under the new measure. Fix
A > 0, and assume that for some (hence all) ¢ > 0:

EleM1] < .
Then e*Xt~#¥(V) is a P-martingale, where E[e*Xt] = ¢/ and we can define
a probability measure P by the formula
AX,

€

Nl
(23) P()|ft—W'P|ft

For a general view on Esscher-type transforms of probability measure, see e.g.
[40] or [16]. The interesting point in the Esscher transform is the following

Theorem 2.3 Let A > 0 such that E[e**T] < oo and define the probability
measure PP by the formula (23). Then X is a Lévy process under PO

Furthermore if the characteristic exponent of X under P has a Lévy-
Khintchine representation (1):

2
(u) = iau + %ug + /(1 — "™ — juzljy<p)v(de),

then the characteristic exponent of X under P is given by

(24) oM (u) = ¢(u —iX) — p(—i)),

and has a Lévy-Khintchine representation

1 . .
(25) oM (u) = iaMu + §J2u2 + /(1 — e 4 iuwl‘m|<1)u(>‘) (dx)

where
(26) aV = a4o+ /(em —1)v(dx)
(27) vW(de) = eNv(de)

Theorem 2.3 is a special case of Theorems 33.1 and 33.2 in [56] which describe,
in general, the Radon-Nikodym density —when it exists— between two Lévy
processes. The Esscher transform occurs when the density between the two
Lévy measures is of the form e*.

By Theorem 2.3, we will be able to study the functionals of X in which we
are interested in this paper under the measure P(). In particular we will have
access to the distribution of T'(z) under POV, We will then be able to use the
technique of a change of numéraire which will be quite useful when computing
the price of options, see Section 3.6.2.
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3 Pricing of Barrier and Lookback options

In this section, we present barrier and lookback options, and explain how The-
orem 2.1 can be used to derive their price in a fairly general setting. We begin
by introducing the framework in which this will be done.

3.1 The model

We consider a financial market the uncertainty of which is described by a prob-
ability space (Q,F,P) and that consists of one riskless asset with a constant
(risk-free) rate of return r and a risky asset whose price process S; satisfies

(28) St = S()@X75

where X is a Lévy process. Using the Esscher transform, the Lévy process X in
Equation (28) can be considered under a locally equivalent measure such that
e~"S,; is a martingale in its natural filtration (F;), which coincides with the
natural filtration of X. We assume that P is used as a pricing measure and the
market contains no arbitrage opportunities, so that the price of a contingent
claim with maturity 7" is given by the expectation under P of its discounted
payoff.

Such a model has been considered in [24], [15], [61] among others. However
most of this work is dedicated to abstract valuation of contingent claims and
the only example provided is that of vanilla options —except [15] who use ana-
lytic techniques and whose results do not cover all cases. Special cases will be
studied in Section 4, and include well-known models such as the Normal Inverse
Gaussian and the Variance Gamma distribution.

3.2 Difference with Brownian / diffusion models

Before we turn to our main results, let us explain what changes dramatically
when Lévy processes are used in financial modelling. Until recently, processes
used to model the price of an asset in view of the valuation of derivative in-
struments were essentially diffusion processes, that is, processes solution to an
SDE

(29) dSt - btdt + O'tth,

where W is a Brownian motion. The first such example is the most famous
Black-Scholes model [14], where by = b and 0; = o are constant over time.
However, this model turned out to be unsatisfactory, because market observa-
tions highly contradict the hypotheses. In particular, the volatility is not the
same for all strikes and maturities of vanilla options, contrary to what the model
postulates. Extensions have been investigated, letting b and o be stochastic pro-
cesses; the most famous ones are probably Dupire’s model, where ¢ is assumed
to be a function of ¢ and S;, and b; = 0, and, otherwise, stochastic volatility
models, where o is taken to be the solution to another SDE

dO’t = atdt + ’)/tdBt
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where again B is a Brownian motion, independent or not of W.

Let 3; be the discount factor for date ¢ (i.e. investing $§ §; today (¢ = 0) will give
$ 1 at time ¢), most often supposed to be deterministic in equity models. Risk-
neutral valuation of derivatives (or: options, or: contingent claims) consists in
choosing a probability measure P under which £,S; is a local martingale, and
in computing the price as the expectation under this probability. Let H be the
payoff, at time 7, i.e. a non-negative, Fr-measurable random variable, the price
of an option with payoff H is given by Ep[SrH]. When the solution .S to (29)
is a Markov process (e.g. if by = b(t, S;) and oy = o(¢,.S¢) with some regularity),
the Feynman-Kac theorem implies that the price process Ep[frH/f:|F] is a
function u(t, S;), where u solves the partial differential equation associated with
the diffusion (29), namely

Atf =0

where A; is the generator of the process S,

Af(2) = b(t,2) () + o6, (3), S E€C?

The situation is even more favorable if one knows the transition semi-group (P;)
of S explicitly, because it is then enough to write

E[h(ST)] = Prh(Sp).
For instance in the Black-Scholes model, the semi-group of S is given by
W
Yo/ ot

where s; = Soe(T"’z/z)t. The Feynman-Kac formula holds as well for discon-
tinuous Markov processes, and in particular for Lévy processes. In fact, a Lévy
process with Lévy-Khintchine representation (1) has generator

Puf(s)= [ slypesosto tosteor
0

2

Af@ =af @+ GI@ ¢ [ () = 5@ = Lyauf @) vy

hence the price process of an option with payoff h(S7) is a function u(S;), where
u solves

Au=20

with appropriate boundary conditions. However, contrary to the case of con-
tinuous processes, the generator is not a differential operator (operators like A
are called integro-differential, or pseudo-differential operators); to solve Au = 0,
even numerically is more difficult than when A is a differential operator.

The following example illustrates the role of the Lévy measure in option
pricing. Consider for instance, in the model described in Section 3.1, a European
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call option, with payoff H = h(St) = (S — K)T. Also assume there are no
interest rates, so that the price is given by

E[(St - K)*] = /: P(Sp > z)dx

/OO P(Xp > In(z/Sy))dz
K

So/ P(Xp > y)evdy
k

where k = In(K/Sp) and X is Lévy. Suppose for the sake of the argument that
X has no drift, no Brownian component and finite Lévy measure v. Then, by
the compensation formula, we get

T
P(Xr>y) = losy+ E/ dS/ v(de)(Ix,+a>y — 1x.>y)
0 R—{0}
T 0 T oo
= 1y<0+A dSE/ V(d$)1m+y<xs<y—A dS.E/Ov l/(dl’)].y<Xs<y+m
T
= Lo+t /0 ds (Elx, <y (X, — y) — Elx, 5y (X, — y)

where v (2) = [*__v(dz) for z < 0 and v+ (z) = [ v(dz) for z > 0 are the
tails of v. This shows the role played by the Lévy measure.

Despite the difficulties underlined above, efficient methods exist to price Eu-
ropean options with Lévy processes. Since a Lévy process X is most often known
via its Lévy exponent ¢, one can use Fourier inversion to compute P(Xp > y);
the following formula can be found in e.g. Lukacs [45]

PXy>yl==-——

du.
2 7 Y

1 1 [ e—tuyp—To(u) _ givy,—To(—u)
/0 1

Based on these and other considerations, several families of models have
been developed that use Lévy processes and derive prices of vanilla options, and
general studies have also been made. A theoretical argument is developed in [44]
that explains why Lévy processes could remedy some drawbacks of modelling
with continuous processes.

Chan [24] examines European option pricing when the underlying price pro-
cess is modelled as

dSt == St,(btdt + O'tdY;)

where Y is a Lévy process satisfying certain technical conditions, and b and o
are deterministic functions. This model is more general than the one we will
consider, since S is then the exponential of a process with independent, but not
stationary, increments (these processes are called additive processes in [56]). As
a choice of a pricing measure, Chan examines a generalized Esscher transform
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and the minimal variance measure of Follmer and Schweizer. He is then able
to derive an integro-differential equation for the price process of a European
option.

Yan et al. [61] study a model similar to, but slightly more general than the
one considered by Chan. They deal with the options pricing problem by using
the "numeraire portfolio” approach of Bajeux and Portait [2], thereby going
around the problem of choosing a pricing measure. They also derive an integro-
differential equation for the price process of a European option, similar to the
one of Chan. In the case when S is the exponential of a Lévy process (the same
model as in our case), they are able to give an explicit solution by using an
approximation with compound Poisson processes.

In this chapter, we restrict attention to the case S; = exp(X;) for a Lévy
process X. Several ”families” of such models have been studied, beginning with
Merton [47]. Although not stated in these terms, Merton’s model falls in our
framework, as well as the model of Bellamy and Jeanblanc [10] in the case of
constant coefficients.

A second family of models is based on Brownian motion, time-changed with
an independent subordinator. Barndorff-Nielsen [5] introduces the so-called
Normal Inverse Gaussian (NIG) model in finance. The NIG model can be gen-
eralized into the Generalized Hyperbolic (GH) model. These distributions have
first been studied in [6], while the financial applications have been considered
by Eberlein and co-authors [31], [53], [54].

A third family was initiated by Madan and Seneta [46], who study the so-called
Variance Gamma (VG) model. This has been further generalized by Carr,
Madan, Geman and Yor [32], [21](the CGMY model), and models built on this
are currently investigated ([22]).

Let us note that more general models have also been considered, which
embed a jump process. Bellamy and Jeanblanc [10] consider the special case
when the jump part is a Poisson process with stochastic intensity. Aase [1]
proposes a multi-dimensional model where asset price processes are driven by a
combination of Ito and point processes (see also [4]). Lastly, we mention that
Lévy processes can be used to build stochastic volatility models: Barndorfi-
Nielsen [8] studies a model where S is driven by a standard SDE

dSt = St[’f'dt + Utth]
and the squared volatility o? is a generalized Ornstein-Uhlenbeck process
do} = =)Ao} +dX;

where X is a Lévy process.

However, in this set of works, the main properties being studied are distri-
butional and statistical properties of the asset price process S and the possible
definition of a martingale measure. The only option pricing problem which
appears reduces to vanilla options.

Some work has been done about the valuation problem for some exotic op-
tions. Gerber and Shiu [34] concentrate on perpetual options. They have also
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been (among) the first to propose the use of Esscher transforms for the purposes
of option pricing. However, their results are limited to the case when the jump
part of X is a compound Poisson process (i.e. the Merton model).
Boyarchenko and Levendorskii [15] mimic the techniques used in the case of
diffusion processes, where differential operators are at hand, to the case of Lévy
processes that induces integro-differential operators, to address the valuation
problem for barrier options. Their results encompass a wider range of processes
than those of Gerber and Shiu, but are still not fully general.

Here we consider the case when S; = exp(X;), for a general Lévy process X.
However, let us note that for the sake of financial modelling, attention should
be restricted in practice at least to those processes such that the exponential
functional A4; = fot S, du makes sense for all £, in order to be able to consider
e.g. Asian options. Some properties of A are given in [17, 18, 19], but closed
form formulae for the distribution of A are extremely rare. In the case t = oo
(which is of interest in Insurance and ruin theory), a number of results have
been obtained by Paulsen [49, 50] and Gjessing and Paulsen [35].

In the framework described above, we take up the problem of the valuation
of barrier and lookback options. Using fluctuation theory, we give a method that
allows to compute the price of such options in great generality. In particular,
our methodology applies to the family of VG models.

3.3 Barrier options

Barrier options have been introduced to remove an unwanted part of the risk
present in plain vanilla options. Also, the barrier feature yields a lower price than
standard options for an otherwise identical behavior, allowing investors to bet
on their beliefs (whether the barrier will be crossed or not). More sophisticated
contracts have been built by financial engineering teams that make use of this
feature. According to the definition of the contract, we will distinguish between
several types of barrier options. For all of them, the final payoff is that of a Call
or a Put option, conditionally on the underlying (not) crossing a level specified
at the inception of the contract. In the sequel, S will denote the price process
of the underlying security. The different kinds of barrier options are given by
their payoff, where K is the strike price and H the barrier level:

Up and In Call: (S7 — K)* Lsup, ;. 80> 83

Up and Out Call: (St — K)* Lsup, _, s,<H;
e Down and In Call : (Sy — K)+1inft§T S.<H;
e Down and Out Call: (St — K)+1inftST S, >H-

We abbreviate these payoff functions by UIC, UOC, DIC and DOC respectively;
these notations will also be used to denote the price of the option. For the
corresponding Put option, replace (St — K)T with (K — S7)T. In order to
discard the trivial cases, we will always suppose that SoVK < H (SoAK > H)
for Up (Down) options. See also [26] for other types of related options.
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Before going further, let us point out the following relations between the
payoffs of barrier options and vanilla options:

UIC(K,H)+UOC(K,H) = Cdll(K)

DIC(K,H)+ DOC(K,H) = Cdll(K)
which allow us to consider only the family of ”In” options. Also, it is clear
that the pricing formula for ”Down” options can be deduced from the pricing
formula for ”Up” options by considering the ”dual” price process 1/S in place
of S. Lastly, because of the well known parity relation between Call and Put

options, it is enough to deal with Call options. Hence we will give details only
for the ”Up and In Call” option.

Reduction to Binary options

Having restricted attention to the case of the Up and In Call option, we now
show how to reduce the problem of pricing this option to that of pricing a Binary
(or: Digital) option.

The payoff of an Up and In barrier Call option is

(30) (St — K)"'lsuptg S,>H-
Differentiating this expression with respect to the strike price K, we obtain
(31) _IST>K1suptST Sy>H -

which is the negative of the payoff of a Binary Up and In Call option with strike
price K and barrier H (abbreviated as BinUIC(K,H)). By arbitrage, the same
relation must hold between the prices:

Proposition 3.1 For all K and H

(32) UIC(K,H) = / BinUIC(k, H)dk.
K

Note that this relation does not depend on the model under consideration.
Similar relations hold for other types of (barrier) options.

3.4 Lookback options

Lookback options have been introduced to keep track of the minimum (or max-
imum) level reached by the asset price during the time interval of interest. The
fixed strike lookback options call and put, have payoff

t<T

(33) (maxS; — K)* and (K — Itrélqg St
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denoted by LBCallf{(K) and LBPut/'(K); the floating strike lookback call
and put have payoff

~\min S ot
(34) (St — A ?%171} ST and (A rtnga%( S¢ — St)

denoted by LBCall/t()\) and LBPut’'()).
Also of interest are the variable notional call and put options with respective
payoffs

(35) (maXtST St — ST)Jr

(ST — mintST St)Jr

and

mintST St maxi<r St

however we will restrict interest on the first two types.

To compute the price of fixed strike lookback options, all we need to know
is the distribution of the supremum or infimum functional. Let us consider the
case of the supremum, the case of the infimum being completely analogous. The
distribution of the supremum functional can be deduced from that of the first
passage times, since

maxS; >z <= T, < T.
t<T

The distribution of 77 is characterized by a special case of the Pecherskii-
Rogozin identity, by setting 8 = 0 in Eq. (10):

™ o Bloxn(—aTS Vde — (@0 — £, 0)
| e Blexp(-oTS, s = ML =00,

Inverting this Laplace transform is then enough to compute the price of the
fixed strike lookback call.

Alternatively, we can consider the following strategy for pricing the fixed
strike lookback call. We have

max;<T St
(max S; — K)* = / dk
t<T K

o
- / ]-maxtST St>kdk
K

The integrand can be seen as the payoff of a binary Up and In call option with
barrier level k£ and strike price 0. The prices must also satisfy this relationship:

Proposition 3.2 For all K, it holds that

(36) LBCalll{(K) = / BinUIC(0, k)dk
K

We shall now show that the floating strike lookback options can be expressed
in terms of Binary barrier options. Consider for instance the floating strike
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lookback put option. It is clear that

Amaxi<T St

(Amax S; — Sp)t = / dk
<7 S

T

o0
= / 1sr<k<rmax,<r S, dk
0

o0
/ Lsy<tlmax, o 5,5 Ak
. <

and by the absence of arbitrage, the prices must stand in the same relationship:

Proposition 3.3 For all A\, we have

o k
(37) LBPut''(\) = / BinULP(k, 5)dk
0

Note that if Sy > f, the barrier feature is meaningless, so that BinUIP(k, f)
= BinPut(k) where BinPut(k) is the price of a binary put option, that pays
off 15, <. Hence,

k/X 00
LBPutf'(\) = / BinUIP(k, g)dk + BinPut(k)dk.
0 k/A\

As we will see later in section 3.6, it is not the most efficient way of pricing op-
tions to write them as integrals of appropriate related digital options. However,

this is a totally general method and gives some insight on a possible hedging
strategy.

3.5 Pricing of the BinUIC option

All that we need now is to compute the price of the BinUIC option. For this
purpose we will use the Pecherskii-Rogozin identity (10).

First, rewrite the payoff in terms of the running maximum. The digital
barrier option with barrier level H and strike K pays at maturity 7'

(38) Lsr>rlyssn

where M} = sup,<; Ss. Denoting by M the process M; = sup,<, X5, k =
log(K/Sp) and h = log(H/Sop), this payoff can be expressed in terms of the
Lévy process X:

(39) Lxpsklap>h-

Writing ¢ = inf{t, MY > H} = inf{t, M; > h} = T(h) with the notation of
section 2 the first exit time from the interval (—oo, h] for the process X, we can
also write this payoff as

(40) Ixr>relo<r.
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Let us now compute the price:

p = e "TE[lx,srlo<r]
= e "TE[E[lx,>klo<r|F,]]
= E[eiralgSTE[eir(Tig)1XT>’€|F<T]]

On the event {o < T'}, the inner conditional expectation is the price of a Binary
Call option when the spot is SpeXs and the maturity is T — o. Because of the
Markov property of the process X, this is a function of (o, X,) which we will
denote by BinCall(o,X,). This type of options can be valued by inverting
the Fourier transform of the log of the asset price —in our case, the Lévy
process X (see e.g. [37] or [23]). The method consists in decomposing the
payoff into appropriate pieces and then performing a change of numéraire on
each piece so that the price of the options is expressed through different measures
(probabilities) of the exercise set of the option. See subsection 3.6.2 for a direct
application of this technique to the case of barrier options.

The case of a European Digital Call option is especially simple, since the price
of such an option whith maturity ¢ and strike e is

(41) ppe’t = E[lx,5:] =1— P[X; <k].

It is then immediate to obtain the price by inverting the characteristic function
of X: uk g —t6(u) _ giuk g —té(-u)
1 1 [ e tukemtolu) _ giubo—tol—u
PIX, <kl==-+4+ — . du
2 27T 0 (A7)

In order to end the computation of the barrier option price, we need the
joint law of ¢ and X,. This law is characterized by its Laplace transform given
in Theorem 2.1. Mathematically, we have just stated the well-known fact that a
distribution is characterized by its Laplace transform. This Laplace transform
can be inverted numerically to retrieve the distribution function of (o, X,),
which can in turn be used to compute the price of the digital barrier options;
hence the integrals giving the price of barrier and lookback options can —at
least in principle— be computed numerically. However, due to the dimension of
the problem, this method is likely not to be very efficient from a computational
point of view, especially if naive algorithms are used. An alternative to the
numerical integration required to invert the Laplace transform would be to use
an expansion with respect to some appropriately chosen functions.

In the next section we study some special cases when the formulas found before
can be simplified —the numerics are then simplified accordingly.

Remark 3.1 A parallel can be made with the technique employed in [33] to
compute the price of barrier options in the Black-Scholes model. They compute
the Laplace transform in time (i.e. with respect to the maturity) of the random
variable of interest. This amounts to making the maturity an independent ez-
ponential time. The same approach can be taken here —and has actually been
one of the steps taken to derive the preceding formulas. Let 6 be an exponen-
tial variable with an exponential distribution with parameter ¢ > 0. Ezcursion
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theory teaches us that the variables My and X9 — My are independent and their
Fourier transforms are the Wiener-Hopf factors. So the Laplace transform, with
respect to the maturity, of the price of a fixed strike lookback option is readily
linked to the Wiener-Hopf factor ¢ .

3.6 Simplifications in special cases

As mentioned above, the pricing formulas can be simplified in some cases, lead-
ing to reduction of the dimension of the numerical problem. However, to express
the prices of options as integrals of elementary payoffs (namely digitals) pro-
vides some insight about the hedge of these options.

We first study the case when the background Lévy process has no positive
jumps, in which case the overshoot is 0 a.s. Then we show how to use the Ess-
cher transform in order to reduce the numerical cost of computing the price of
a barrier option.

3.6.1 The case with no positive jump

As noted in section 2.3, the problem we study is greatly simplified when X has
no positive jumps since standard martingale arguments can be used.

Since X has no positive jumps, the barrier level A can only be crossed con-
tinuously. Therefore if we still denote by o the first hitting time of the interval
(h,o0), we have necessarily X, = h. This simple fact allows for huge simplifi-
cations.

As noticed in Section 2, the Laplace transform of ¢ is given by (Equation

(20)):

E[ef)\a] — efh<I>()\)
where @ is the inverse bijection of the Laplace exponent of X. The problem
has one dimension less than the general case, a significant improvement from a
numerical point of view.

Let us turn to the concrete example of a fixed strike lookback option. Propo-
sition 2.3 asserts that if § is an exponential variable with parameter ¢, indepen-
dent from X, then My has an exponential distribution with parameter ®(q).
Hence,

E[(e™ - eb)t] = /Ooo(em—ek)Jr(I’(q)e_m‘b(’l)dm

= &(q) (/ efm(é(q)fl)dm—ek/ emq>(‘1)dm)
k k

N
- (q)<<1>(q)—1 T 2(g) )

Ch@(g)-1) L
®(q) — 1

this formula being true for all ¢ such that ®(q) > 1, i.e. ¢ > 1(1).
Hence, the Laplace transform in the maturity of the price of a fixed strike

= e
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lookback call option is given by —we denote by k the log-moneyness, k =
In(K/Sy):

/ e *LBCall’i(t, K)dt Sy / e (It E[(eM — ) dt
0 0

1
qg+r

E[(e™ — )T

where 7 is an exponential variable with parameter ¢ + r, and by the foregoing,

this is equal to
1

(g+7)(@(g+r)-1)
So in this special case, we only have to invert a one-dimensional Laplace trans-
form. We give in Appendix A some numerical results based on this technique.

o~ k(@(g+r)—1)

3.6.2 Change of numéraire

In order to avoid the integration required to obtain the price of e.g. a Knock-
in Up barrier option or a Lookback Put option from the price obtained for
the corresponding digital option, one can use a change of measure in order to
decompose the expectation we wish to compute into two similar pieces. To do
this, we have to make an additional hypothesis on X; however this hypothesis
is not really restrictive and is quite reasonable from a financial point of view.

Suppose that E[e*!] < oo; this implies that X, which represents the log-
arithm of the returns has moments of all orders, which is quite sensible from
a financial point of view. This hypothesis allows us to consider the Esscher
transform of P defined by

Xr

42 PX|p = - Pl
(42) |7, Ele¥r] |75

for all t > 0. By Theorem 2.3, X remains a Lévy process under PX, and its
Lévy exponent ¢X under PX is given by

(43) ¢ (u) = d(u — i) — ¢(~i)

Consider for instance the case of a Knock-in Up barrier call option and suppose
for simplicity that Sy = 1 and r = 0. Its payoff is
(eX" — K)1x,silrgy<r-
Hence the price is given by:
E[(eX" — K)1xpsklrny<t) = EleX" 1xpsilrgy<r] — KP(Xp >k, T(h) < T).

The last term is exactly the price of a digital knock-in option and can be com-
puted as explained before. We can deal with the first term in the following way.
Applying the Esscher transform mentioned above, it can be written as

PX[X7 > k,T(h) < T
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This can be interpreted as the price of digital option with respect to a different
pricing measure. Because X remains a Lévy process under P~ the same com-
putations as before can be made, leading to a similar result, only with different
parameters.

This method can be applied to reduce the computational cost of the nu-
merical computation, since it gets rid of a numerical integration. We have put
it here separately because it requires a supplementary hypothesis on the Lévy
process X (still keeping a good generality). However the general method de-
velopped above, by decomposing the payoff into elementary products (namely
digitals) provides some insight on the hedging which is lost in this more efficient
method.

4 Examples

In this section we give a few examples where the function £ can be computed
in terms of known functions. They include

e the usual geometric Brownian motion;

e 3 jump-diffusion model, which is a particular case of the model considered
by [10];

e The case when X is a subordinator and particularly the Gamma process;
e the case of a NIG model, introduced by [5] and also studied by [15];

e the variance-gamma model introduced by [20], to which the method in
[15] does not apply.

4.1 The usual geometric BM

The geometric BM falls into our class of models and therefore we can apply the
results developed before. A first approach could be to compute x from formula
(8) (see Proposition 2.1) since when X is a brownian motion with drift v, we
have

(1) P(X, € dz) = P(N(vt,t) € dz) = gy 1(x)dz

where g,, ;> denotes the density of a Gaussian variable with mean m and vari-
2
ance s°.

Now since X has continuous paths, and a fortiori no positive jumps, the sim-
plified approach of section 3.6.1 can be used. Indeed, this amounts to applying
the well-known reflection principle for brownian motion. Specializing equation
(20), we recover the well-known formula for the hitting times of Brownian mo-
tion with drift v:

E[ef)\T(z)] — e*ZE(*l/Jr\/VZJrz)\).
The change of numéraire technique in this setting is also well-known thanks to

the Cameron-Martin formula. In fact, S remains a geometric brownian motion
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under the new probability, with the only difference that its drift coefficient is
modified. Using this and the explicit knowledge of the semigroup and resolvent
operators for the Brownian motion, [33] have obtained very explicit formulas
for the Laplace transform in time of the price of a barrier option; specializing
their results to L = 0 & a = +o00 (with their notation):

[oe]
®() = E/ e " (S — K) lps < du
o <
= e g (")
where
eb(u—i—l) Kebl/ e—ubKV—i-l—u
aie) =2{ . ,
p—w+1)? p—=v?]  ppt+v)(p+rv+1)

b=log(H/So) and p?/2 =6 + v?/2.

4.2 Jump-diffusion

Here we consider a special case of the model studied by [10]. Let the process S
be given by the SDE

(2) dSt - St_ [,udt + O'th + CdNt]

where W is a standard Brownian motion, IV is a Poisson process with constant
intensity A and ¢ > —1. The drift p is chosen so that e="*S; is a martingale:

2
o
M:T_i—)\g

It is well known that S is the Doléans-Dade exponential, multiplied by a drift
term:

2
S; = Sexp [(r—é—k()tﬁ—aWt-{—ln(l-{—C)Nt
= SeXt

where X is the Lévy process

(3) X; = <r— %2 —AC) t+ oWy +1n(1 + ¢)Ng.

Choose first ( > 0, and according to Section 2.3, let 1 be the Laplace
exponent of —X, E[e %] = e/¥(¥); we have

(4) 1[1(u):—<r—02—A§>u+;azu2—)\(1—(1+()“).
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Let @ be the inverse of 1; according to Theorem 2.2, the ladder exponent & is

given by
Q o 8) =g

The Laplace transform of the pair (T'(z), X7(,)) is then given by

/°° e 17 Bl 0T @) ~8(Xr@) ~2) |4y =
0

1 _(a—y(B))(2(a) —q)
(6) —B {1 (@(a)—ﬂ)(a—lb(Q))}

The price of a Up and In Call option with strike price K, barrier H and maturity
T is given by

T poo
(7)  BinUIC(K,H,T) = / / BinCall(Se¥, K, T — )dF (t,y)
0 h

where h = In(H/Sp) and F is the joint distribution function of (T'(z), X7 (a)),
that can be obtained from the above Laplace transform.

If we choose ¢ < 0, the results of section 3.6.1 apply. Alternatively if we try
to follow the steps of [33], we find that the resolvent operators are given by

Vogp(z) = E[/we—9"¢(xu)du|xoz4

0

®) - =/ dw(y)fj ! (2“) Ry (zal2,))

n!
=0

with ¢ = /202(0 + A\) + p?, z,(z,y) = % (nln(1+¢) —z—y), K, are the
Macdonald functions and K, (z) = \/2/72" K, (x). The complexity of the ex-
pression of the resolvent operators makes it impossible to carry on the pro-
gramme worked out in [33].

Remark 4.1 In the case of the Merton model, which generalizes the jump-
diffusion model studied above, Kou and Wang [41] have obtained some results

about T'(z) when
N,

X :ut-l-aWt-{-ZYi
i=1
and the Y; have density

pnre” "0 + (1 — p)me” ™Y1, 0

for some 0 <p<1,1m >0,n >0.
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4.3 The case of a subordinator

We consider the case when X is a subordinator. Although not very interesting
in practice, this simple case sheds light on our study. When X is a subordinator,
the space integral in formula 8 has a very simple expression in terms of the Lévy
exponent of X. Indeed,

/ e P*P(X, € da) = e tolB)
0

Hence & is simply given by

K(a, B) = kexp ( / t! (e—t - e—t<a+¢><w>>) dt)
0

and this can be evaluated by the Frullani integral:

k(a, B) = kexp (In(a + ¢(if))) = k(o + ¢(if)).

Note that because X is a subordinator, we have & = 1 and the Wiener-Hopf
factorization (formula (16)) reduces to the equality above.
In particular if X is a Gamma process, whose characteristic exponent is given

by
d(u) = o In <1 — iuy> ,
v 1
we find that

9) H(a,ﬁ):k<a+5ln<1+ﬁz>>.

We now turn to the cases when the 1-dimensional laws of X are known
explicitly. In such cases, formula (8) can be used to compute the bi-variate
Laplace transform x. In principle, this is already possible as soon as the Lévy
exponent is known explicitly, since then the density (if it exists) can be computed
by Fourier inversion. The cases of real interest though are those when the density
itself is known explicitly, since then the integral in (8) may have a nice form.
Among others are:

1. the Normal Inverse Gaussian (NIG) model;

2. the Variance-Gamma (VG) model.

4.4 Normal Inverse Gaussian

The NIG distribution with parameters («a, 8, d, i), introduced by [5] has density

(ad =)
(10) dyra(z) = ge‘s\/mﬂﬂx—u (ady/1+ ( 52
™ 1 + (I(sp,)

28



where K7 is a modified Bessel function; the corresponding characteristic function

is:
/0127 2
(11) brrglu) = eV
6(5\/042—(54-1'11)2
The increments of length h of the Lévy process with ¢x7c as a Lévy exponent
have a NIG distribution with parameters (a, 3, dh, uh); this means that X; has

distribution NIG(«, 3, 0t, ut). In order to apply the results of Section 3 we need
to compute the integral from formula (8):

/ dt/ dz t7 et — em Y dn g (2)
0 0
= / dtt! (etP(Xt >0) — efat/ ebszjg(x)dJ;>
0 0

for a,b > 0. Using the following integral representation for the function K; (see
[43]):

o0 22 G
Ki(z) = Z/o e i 72y

we find after a few manipulations that

K, <a6\/1+ (mg“)Q)

/ eb® . dx
: L+ (55%)
—bu o] 2 w252 _ 2
(12) — 66\/7?/ y_?’/ze(ijfl)yf o N M dy
2 0 a2y

where IV stands for the cumulative distribution function of the standard Gaus-
sian law. Alternatively, the integral in the right side of Eq. (12) can be written
as

v 2W€\/§a5(%71)P[W1 S 2bHZ — aﬂz]
ad av/2H,

where H, is the first hitting tine of z = % by a Brownian Motion W with drift

m= -2 (2—22 — 1) and W is a Brownian Motion independent of W .
The probability P(X; > 0) can be computed as

w205 ()

where H is the process of first hitting times for a Brownian motion with drift o
and variance 2. Note that the preceding approach does not apply to the more
general Generalized Hyperbolic model (see, e.g. [31]) because the law of X; is
not known explicitly for ¢ # 1.
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4.5 The Variance-Gamma model

Let b be brownian motion with drift
(13) b(t;0,0) = 6t + oW,

and v = 7(¢; u,v) a Gamma process independent of W. « is a Lévy process
whose increment (¢t + h; p; v) — y(t; p; v) has density

I-‘zh 1

(14) o) =(7) "

v
v

© u2h_1

e vig v T g > 0.

The characteristic function of the process v is given by

ut
v

1—iu?
m

o 1
(15) Br () (u) = Ble" 0] = ( )
and its Lévy measure is k,(z)dz, where

|
1 _ _
(16) k- (z) e x>0

The VG process is then defined as
(17) X(t;o,v,0) = b(y(t;1,v),0,0).

Alternatively, the VG process can be expressed as the difference of two inde-
pendent Gamma processes.

Hence the VG process is a Lévy process with no drift and no Gaussian
component. Its Lévy measure has density

1 Oz 7‘$| Z+£
1 k(z) = % S+iz
(18) (z) u|x|e e

For each t, the law of X (¢) has the density given by

Fron (@) /OO L =g 1
i - —e 204g — ve v
X(t) . oving ST g

V42t
1 =t v
= —_———— Vv e

V2rol(t/v) <3 - i) h

v42t
o2\ T A [22 [2 2
(19) <$2> K—t/y—1/2 ( P Vi + 02>

and characteristic function

Qo
&

(20) ¢X(t) (u) — E[eiuX(t)] _ ( 1 ) v |

. 2
1 —ifvu + S2u?
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In [46], [20], [23] the underlying stock is modelled as S; = Spe** where X
is a VG process. The general results we have derived apply to this situation
and all we need now is to compute the bivariate Laplace exponent x(«, 3). By
equation (8), this amounts to computing the integral

/ dt/ 1(e*t—efmtfm)fX(t)(a:)dx.
0 o 1

Here again we can express P(X; > 0) in terms of known functions. By using
Fubini’s theorem, it can be shown that

1 1 e 2, dx o2x® t
P(X;>0) =~ —xo/2 T2 e -
20 =54 [ ()
if 8 > 0, while

1 o 2,0 dT o?z? t
P(X;>0) = —— —etf2 22 po (22 2
Xe20 = [ g ()

if 8 < 0, where I'; is the incomplete Gamma function,

Li(z,2) = / e “u T du
0
and I'¢ is the complement I'(z,z) = I['(z) — I'i(z, 2).

4.6 Stable processes

Stable processes are those Lévy processes which possess, just as the Brownian
motion, the scaling property: for some a €]0, 2]

(law)

(21) VE > 0, (Xp,t > 0) =" (KX, > 0).
This property implies that P(X; > 0) does not depend on ¢; the common value
p is called the positivity parameter. Formula (2.7) then reduces to

k(a, f) = kexp {/000 % <pe_t —e /000 e PTP(X; € dm)) } .

Unfortunately, except in the special cases of the Brownian motion and its hitting
times, and the Cauchy process, the law P(X; € dz) is not known explicitly,
although a lot of information can be found in [30] and [63].

However, some quantities related to the fluctuation theory have simple ex-
pression in the case of stable processes. It is shown in [55] that

. a/2
(22) P(X, € dy) = sin(ra/2) 1 ( z ) dy, y>z
s y\T—y

for a symmetric stable process, where we recall o = inf{t : X; > z}.
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In the case p+ k = [/a for some integers k and !, Doney [28] shows that the
Wiener-Hopf factors are determined in the following way. First,

fea(a, (=)' (=iu)®)

F(u u ¢ iR _
W= e PR
(23)
_ fl_l(l/a,(—l)k"'liu) .
o1 (1) Felan (D) F e
with .
fulew) = TLCut ==297), £y (eu) = 1.

Now if  is an exponential variable with parameter ¢ > 0, ¢f is an exponential
variable with parameter 1. Thanks to the scaling property of X, we get:

¢y (u) = Ble™M]
= E[eiUMtﬁ/q]

= E[equ_l/ane]

Similarly,
G () = Bl
= ¢y (ug /).

5 Conclusion

In this paper we have shown how the theory of fluctuations can be applied to
derive the price of barrier and lookback options when the underlying security
is modelled as the exponential of a Lévy process. The general method we used
also gives some insight on a possible hedging strategy. Special cases have been
studied, where more efficient methods can be used. Some examples have been
studied and the general formulas have been simplified to some extent.

We note that similar results, that also rely on the Wiener-Hopf decomposi-
tion, have been obtained in [15], using purely analytic techniques; the proba-
bilistic methods used in this paper give completely general results.

A drawback of our method is the complexity of numerical calculations re-
quired, since in general numerical n-fold integrals (n = 3,4) are needed. In ad-
dition, computational cost may arise when computing the inverse of the Laplace
exponent of the Lévy process: this inverse does not necessarily have a closed
expression and may need to be evaluated numerically. In such cases, because
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the integrand requires itself numerical analysis, it is not clear whether invert-
ing the Laplace transform is better than using e.g. Monte Carlo techniques.
We hope to be able to simplify further these formulas and obtain more explicit
expressions, so as to reduce the computational drawbacks of our method.

A Numerical example

In order to illustrate the method discussed in this paper, we provide in this
appendix a numerical example, and compare the results with those which come
out from the standard Black-Scholes model. We shall examine the case with no
positive jumps —as mentioned earlier this reduces the computational complex-
ity.

We consider the jump-diffusion model studied in Section 4.2:

2
X, = (r— % —,\g> t+ oW, +1In(1 + )N,
for a Brownian motion W and an independent Poisson process N with intensity
A. We make the following choice for the parameters: » = 0.03, 0 = 0.2, A = 0.1
and ¢ = —0.3. These parameters are representative of parameters implied from
equities markets today. The Laplace exponent of X is given by

z/J(u):u(r—a;—A<>+§“202—A<1—<1+o“) >0

We compare the results with those obtained in the Black-Scholes model, namely
by considering a Lévy process

52 .
Y;g: (T—2>t+&Wt

In order the comparison to be significant, we choose & so that the two processes
X and Y have the same predictable quadratic variation; namely

62 = 0% + MIn(1 + ¢))?

A.1 Hitting times

First we compute the hitting times probabilities when there are no positive
jumps, i.e. P[T(z) < t]. Recall that for z > 0, T(z) = inf{¢, X; > z}, and that
in the case when ¢ < 0, we have X7,y = = a.s. To compute the distribution
function of T'(x), we inverted its Laplace transform by numerically evaluating
the Bromwich integral: let £f(q) be the Laplace transform of a function f, such
that f and Lf are integrable, then f is given by

1 Y+ico
t) = Brf(s)d
£(t) / ' L (s)ds

2@7{‘ oo
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where 7 is chosen so that all the singularities of £f lie in the half plane {Re(z) <
~v}. To compute the distribution function of the first hitting times of ¥, we
integrate their density, which is given by

PITY (z) € dt] = \/%e*z%(%mzdt

with, of course, TY () = inf{t,Y;/6 = z}, * > 0 and v = r/G — /2. Results
are reported in Table A.1.
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t ‘ Jump Diffusion ‘ Black-Scholes

1 month 0.002 0.006
2 months 0.030 0.052
3 0.080 0.114
6 0.228 0.265
9 0.334 0.364
1 year 0.410 0.433
1.5 years 0.509 0.524
2 0.572 0.582
2.5 0.617 0.623
3 0.650 0.655
3.5 0.677 0.680
4 0.698 0.700
4.5 0.716 0.717
5 0.731 0.731
5.5 0.744 0.744
6 0.755 0.755
6.5 0.765 0.765
7 0.774 0.774
7.5 0.782 0.781
8 0.789 0.789
8.5 0.796 0.795
9 0.802 0.801
9.5 0.808 0.807
10 0.813 0.812

Table 1: Probability of hitting the level H, H/Sy = 1.2 (so # = In(1.2)) before
t, for jump-diffusion and Black-Scholes models
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A.2 Lookback options

As a second example, we compare the price of fixed strike lookback call options
in the Jump-diffusion model and in the Black-Scholes model. We consider the
case when ¢ < 0 and invert the Laplace transform in time again thanks to the
Bromwich integral in order to obtain option prices. Recall from Section 3.6.1
that the Laplace transform of the price of the fixed strike lookback call option,
with strike price K is given by

1 o k(@(gtr) 1)
(g+r)(®(g+r)—1)

where k = In(K/Sy), provided ®(q + r) > 1. Hence, we use the Bromwich
integral only for the case k > 0. When k < 0, since M; > 0 a.s., we simply have

q—

LBCall*i(t,k) = e~ (E[eM] — €¥)

The results are summarized in Table A.2. We use the same values of the
parameters as in the previous example.
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Maturity — Strike (% of Sp) Price (% of Sp)
Jump Diffusion Black-Scholes

80 28.6140 29.7317

90 18.6887 19.8070

3 months 100 8.7634 9.8823
110 2.4097 3.0844

120 0.4501 0.7079

80 32.8369 34.0523

90 22.9858 24.2024

6 months 100 13.1347 14.3525
110 5.6975 6.7485

120 2.0728 2.7927

80 38.8138 40.3247

90 29.1094 30.6202

1 year 100 19.4049 20.9158
110 11.9472 11.4414

120 6.6501 6.2641

80 47.8724 49.7077

90 38.4547 40.2900

2 years 100 29.0371 30.8724
110 20.7653 22.5405

120 9.0224 16.1850

Table 2: Prices of fixed strike lookback call option, in the jump-diffusion and
the Black-Scholes model
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B Extensions

We have established the Wiener-Hopf factorization for Lévy processes. However,
it appears from empirical works that Lévy processes may not be suitable for the
modeling of financial data series. In particular, the implied volatility surface
from Lévy processes is not consistent with those which are observed for many
stocks and indices.

Hence, in order to give our technique a wider range of applicability, it would
be desirable to extend it to other processes, in particular:

1. additive processes, i.e. processes with independent, but not stationary,
increments;

2. Lévy processes, time-changed with an independent increasing process.

The second case is in some sense a particular instance of the first one, since by
conditioning on the time-change process, we find ourselves left with a process
that has independent, but not necessarily stationary, increments.

B.1 Extension to additive processes

In the first case, the difficulty comes from the fact that the processes we deal
with are not homogeneous in time. However, some work can be done, but the
results we get are far less explicit than in the case of Lévy processes. We only
outline them here.

Specifically, let X be an additive process. Thus, X is a non-homogeneous
Markov process. Define as before the reflected process M; = M, — X;, where
M; = supy<, Xs. Then, it is easy to see, thanks to the independence of the
increments of X, that M enjoys the simple Markov property (in the filtration of
X). But M is not homogeneous, and does not enjoy the strong Markov property
in the filtration of X. Hence excursion theory cannot be applied directly.

However, as is well-known, the time-space process Z; = (¢, Mt) is a homoge-
neous Markov process. In fact, as we end up working jointly in time and space
already in the case of a Lévy process, it is reasonable to think that we will be
able to derive some results also in the present case, by working directly on the
time-space process. However, all the properties will have to be “translated” in
a convenient manner.

We first note that the semi-group of (t, M;) is a Feller semi-group (this can
be shown in much the same way as [11, Prop. VI.1]), so that Z possesses the
strong Markov property!.

Next, consider the set J = R4 x {0}. This is a closed set, with empty interior
in Ry x Ry, the state space of the time-space process. We make the hypothesis

IThis can be stated another way: M enjoys a kind of “non-homogeneous strong Markov
property”. Retaining the notations in [27], E¥[f o 7] = F(T,Xr) for any finite stopping
time 7', any starting measure g, any time starting point a, and any bounded F,, measurable

f, where F(t,z) = Eg+t[f]
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that every point in J is regular for J, namely
(24) Ve = (t,0) € J Plinf{u>0,Z,€ J}=0=1.

In other words, for all ¢ > 0, P[M; = 0 and inf{u >t : M, = 0} = 0] = 1. This
corresponds to the assumption that 0 is regular for itself in the Lévy case. We
also assume that

(25) P,[inf{u > 0,M, >0} =0] =1

for any = € J, which corresponds to the fact that 0 is an instantaneous point
in the homogeneous case. Note that according to Blumenthal’s 0-1 law, each of
the probabilities in (24) or (25) is either 0 or 1. If (24) or (25) is not satisfied,
the sucessive times at which Z returns in J form a discrete sequence T}, ; this
case will be examined separately.

Hence, according to [27, Chap. XV, p.273], it is possible to define a local

time process for J, i.e. an increasing continuous additive functional L of Z,
such that the support of the measure dL is exactly J. We now want to study
the process Z in the local time scale.
The inverse local time 74 := inf{u > 0, L,, > ¢} is a process with independent
increments, because of the additivity of L. However, 7 does not have stationary
increments. We can define the ladder height process H = So7 = X o7, and
show, just like in [11], that the bivariate process (7, H) is additive. It follows
that there exists a family of functions k, such that

E[e—a‘ru—,BHu] — e—Ru(OL,B)’
and each function k, has a Lévy-Khintchine representation

(20) ru(a,0) =5 (wa+ 3" w5 + [ (1= e AL (dt, dh).

(0,00) % (0,00)

We can then follow the same lines as we did for Lévy processes in the proof of
the Pecherskii-Rogozin identity 2.1. Lemmas 2.1 to 2.3 remain true; however,
the formula in Lemma 2.3 must be amended as

dmlH(nm)zm(sH (nw)dnz-

This is already a clue that formulas will not be as nice as for Lévy processes.
In fact, by following exactly the same lines as in the proof of Theorem 2.1, we
obtain:

(27)/00 d e—qu[efaT(z)*ﬁK(z)] _ /OO du e*nu(”"q) (K;u(Oé, q) — I{u(a, ﬁ))
0 0 q-p

where we recall T'(z) denotes the first hitting times of X and K is the overshoot
at z: K(x) = Xp(,) — 2. This formula is in principle the same as formula (10);
however, we do not know at the present time a formula similar to (8) that would
enable us to actually compute the functions k..
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B.1.1 The case of irregular or holding points

Here we enter the world of inhomogeneous Poisson processes.

Let us first suppose that inf{u > 0 : M, = 0} > 0, P,-a.s. for some z € .J.
Then the Markov property entails that this holds for any = € J. It follows that
the set of times at which M visits J is discrete.

Suppose now that when it visits J, M is “held” there for some time 6. Then
¢ has an exponential distribution ~whose parameter depends on the time when
M arrived in J.

B.2 Time changes of Lévy processes

In this paragraph, we deal with what we name time changes of Lévy processes,
that is, models of the sort S; = SeXt where the process X is taken to be
X;: =Y,, where Y is a Lévy process and C is an increasing process, independent
of Y. Such models are discussed in e.g. [22].

The results of the previous paragraph could be applied to the present case,
since conditionnally on (Cy,t > 0), X is an additive process. However, under a
slight assumption on C, we are able to get far more explicit and useful results.

Assume that almost every path of C is continuous and strictly increasing.
Then T'(z) = Crv (o) as is easily seen, and as a consequence

(28) B[h(T(2), X1(x)] = E[MC(TY (2)), Yrv (1))]

for any measurable and bounded function h. Hence, since we know the joint
distribution of (T (z), Y7v (), we also know the joint law of (T'(x), X1 (s)), and
our results extends straightforwardly to the present case.

This method allows to treat the model of [22], where YV is a CGMY (or
another Lévy) process, and C is the integrated square-root process:

t
Ct:/ vgds,
0

dvs = k(0 — vg)ds + o+/vsdW

with W a Brownian motion, independent of Y.
However, unfortunately, this does not extend to subordination (i.e. cases
where C' is a subordinator), since there is no continuous subordinator.
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