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Abstract

We describe a simulated method of moments estimator that is implemented by
choosing the vector valued moment function to be the expectation under the struc-
tural model of the score function of an auxiliary model, where the parameters of
the auxiliary model are eliminated by replacing them with their quasi-maximum
likelihood estimates. This leaves a moment vector depending only the parameters
of the structural model. Structural parameter estimates are those parameter values
that put the moment vector as closely to zero as possible in a suitable GMM metric.
This methodology can also be interpreted as a practical computational strategy for
implementing indirect inference. We argue that considerations from statistical sci-
ence dictate that the auxiliary model should approximate the true data generating
process as closely as possible and show that using the SNP model is one means to
this end. When the view of close approximation is accepted in implementation, the
methodology described here is usually referred to as Efficient Method of Moments
(EMM) in the literature because (i) the estimator is asymptotically as efficient as
maximum likelihood under correct specification, and (ii) detection of model error is
assured under incorrect specification. There are alternative views toward the desir-
ability of close approximation to the data, which we discuss.

Key words: Efficient method of moments, Indirect inference, Simulated method of
moments.

1 Introduction and Overview

In both empirical work (Bansal, Gallant, Hussey, and Tauchen, 1993, 1995)
and in theoretical work (Gallant and Tauchen, 1996; Gallant and Long, 1997)
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we have developed a systematic strategy for choosing the moments for Gen-
eralized Method of Moments (GMM) estimation of a structural model. The
idea is relatively straightforward: Use the expectation with respect to the
structural model of the score function of an auxiliary model as the vector of
moment conditions for GMM estimation.

The score function is the derivative of the logarithm of the density of the
auxiliary model with respect to the parameters of the auxiliary model. The
moment conditions obtained by taking the expectation of the score depend
directly upon the parameters of the auxiliary model and indirectly upon the
parameters of the structural model through the dependence of expectation op-
erator on the parameters of the structural model. The parameters of the auxil-
iary model are eliminated from the moment conditions by replacing them with
their quasi-maximum likelihood estimates, which are obtained by maximizing
the likelihood of the auxiliary model. This leaves a random vector of moment
conditions that depends only on the parameters of the structural model; the
randomness is due to the random fluctuations of the quasi-maximum likeli-
hood estimates of the parameters of the auxiliary model. When this vector of
moment conditions is evaluated at the true values of the structural parameters,
it tends to zero as sample size increases, presuming that the structural model
is correctly specified. The parameters of the structural model may therefore
be estimated by minimizing the magnitude of the vector of moment conditions
as measured by the appropriate GMM metric.

The estimation method, which we review here, is particularly useful in a
simulation-based estimation context, where the structural model is readily
simulated but the likelihood function of the structural model is intractable.
This context applies to many continuous-time estimation problems. In imple-
mentation, the expectation of the score with respect to the structural model
is computed by simulating the structural model and averaging the score func-
tion over the simulations. When the structural model is strictly stationary, one
may average the scores over a single very long simulated realization (Case 2
of Gallant and Tauchen, 1996), while in the presence of exogenous covariates,
one simulates and averages the scores at each data point conditional on the
covariates and then sums across data points (Case 3 of Gallant and Tauchen,
1996).

The estimator is closely related to the indirect inference estimator, due to
Smith (1990, 1993) and Gourieroux, Monfort, and Renault (1993). The in-
direct inference estimator is a minimum distance estimator that entails min-
imizing, in a suitable metric, the difference between the parameters of the
auxiliary model obtained by quasi-maximum likelihood and those predicted
by the structural model. The predicted parameter values are given by the
binding function, which in practice is computed by re-estimating the auxiliary
model on simulations from the structural model. The binding function com-



putation is trivial for linear auxiliary models, as initially suggested by Smith
(1990, 1993), but is very demanding and possible infeasible for more com-
plicated nonlinear auxiliary models. The score-based approach discussed here
circumvents the need to evaluate the binding function and is thus more com-
putationally tractable. Nonetheless, for any given auxiliary model, the score-
based estimator and indirect inference have the same asymptotic distribution.
Thus, some interpret and view the score-based estimator as a practical way to
implement indirect inference in a simulation-based context. Either way, there
are strong parallels to the classical simultaneous equations literature, with
the auxiliary model playing the role of the reduced form and we recognize
that there may be different, but asymptotically equivalent ways to work back
from the reduced form parameter estimates to obtain structural parameter
estimates.

The practical implication of working from the score function is that the aux-
iliary model only needs to be estimated once, namely on the observed data.
This added flexibility makes it possible to implement the score-based estima-
tor using either very simple, or very complicated and sophisticated auxiliary
models as discussed in (Hansen, 2001). Complicated auxiliary models would
be appropriate if the observed data exhibit important nonlinearities, and the
researcher wants the structural model to confront these nonlinearities. Re-
gardless of the score generator actually used, the estimator is consistent and
asymptotically normal, subject only to mild identification conditions. Thus,
there is potentially great latitude for choosing the auxiliary model.

We have consistently argued for resolving this choice by making the auxiliary
model be a good statistical description of the data. That is, it should be a
bona fide reduced form model. As we shall see, by doing so the researcher can
ensure that the estimator can achieve the full efficiency of maximum likeli-
hood estimation if the structural model is correct. Furthermore, it assures the
researcher of detecting misspecification if the structural model is wrong. In
view of these capabilities, we ascribe the term Efficient Method of Moments
(EMM) to the estimator.

There are three basic steps to EMM. The first, termed the Projection Step,
entails summarizing the data by projecting it onto the reduced form auxiliary
model, which we frequently term the score generator. If one knows of a good
statistical model for the data, then it should be used in the projection step.
That is rarely the case, however, and we have proposed the SNP models of
Gallant and Tauchen (1989) as a general purpose score generator. The sec-
ond step is the Estimation Step, where the parameters are obtained by GMM
(minimum chi-squared) using an appropriate weighting matrix. If, in the pro-
jection step, care is taken to obtain a good auxiliary model, then the weighting
matrix takes a particularly simple form. The estimation step produces an om-
nibus test of specification along with useful diagnostic ¢ statistics. The third



step is termed the Reprojection Step, which entails post-estimation analysis
of simulations for the purposes of prediction, filtering, and model assessment.

Section 2, immediately below, discusses and contrasts simulated score methods
and indirect inference. Thereafter the discussion is combined with a focus on
the EMM estimator. As will be seen, these estimators are so closely related
that, after the preliminary discussion of the differences, a unified discussion
under the projection, estimation, reprojection paradigm described above is
warranted.

Section 3 gives general guidelines for selecting the auxiliary model for the pro-
jection step. Section 4 is formal analysis of the efficiency theory and develops
the SNP model as a general purpose score generator. Section 5 gives an intu-
itive over of reprojection followed by a more formal description of the theory
underlying it. Section 6 reviews in detail two selected applications of EMM for
estimation of continuous time models. Section 7 discusses software, practical
issues, and some interesting capabilities using parallization.

This chapter is focused on applications to continuous time processes. But one
should be aware that indirect inference, efficient method of moments, and
simulated method of moments methods have far greater applicability. They
apply to cross sectional data, panel data, data with fixed covariates, and spatial
data. For details see Gourieroux, Monfort and Renault (1993), Gallant and
Tauchen (1996), Pagan (1999), and de Luna and Genton (2002).

2 Estimation and Model Evaluation

The simulated score estimation method was proposed and applied in Bansal,
Gallant, Hussey, and Tauchen (1993) where it was used to estimate and eval-
uate a representative agent specification of a two-country general equilibrium
model The theory was developed in Gallant and Tauchen (1996) and extended
to non-Markovian data with latent variables in Gallant and Long (1997).

Indirect inference was proposed and developed by Smith (1990, 1993) and
Gourieroux, Monfort, and Renault (1993). These ideas overlap with the sim-
ulated method of moments estimators proposed by Ingram and Lee (1991),
Duffie and Singleton (1993), McFadden (1989), and Pakes and Pollard (1989).

Here we shall sketch the main ideas of simulated score estimation and indirect
inference in a few paragraphs at a modest technical level and then present a
more detailed review of the efficient method of moments methodology.



2.1 QOverview

2.1.1 Simulated Score Estimation

Suppose that f(ys|z,_1,0) is a reduced form model for the observed data,
where z;_; is the state vector of the observable process at time ¢t — 1 and
y; is the observable process. An example of such a reduced form model is a
GARCH(1,1). If this reduced form model, which we shall call a score generator,
is fitted by maximum likelihood to get an estimate 0,,, then the average of the
score over the data {g;, T;_},_, satisfies

— Z lng yt|xt 1, ) = 0 (1)

because equations (1) are the first order conditions of the optimization prob-
lem. Throughout, as in (1), we shall use a tilde to denote observed values and
statistics computed from observed values.

Now suppose we have a structural model that we wish to estimate. We ex-
press the structural model as the transition density p(y:|z; 1, p) where p is
the parameter vector. In relatively simple models, p(y:|z; 1, p) is available in
a convenient closed-form expression, and one can estimate p directly by clas-
sical maximum likelihood. However, for more complicated nonlinear models,
p(ye|xi 1, p) is often not available and direct maximum likelihood is infeasible.

But at the same time, it can be relatively easy to simulate the structural model.
That is, for each candidate value p one can generate a simulated trajectory on
{9}, and the corresponding lagged state vector {#; 1}, . This situation,
of course, is the basic setup of simulated method of moments (Ingram and
Lee, 1991; Duffie and Singleton, 1993). It arises naturally in continuous-time
models, because the implied discrete time density is rarely available in closed
form (Lo, 1988), but continuous time models are often quite easy to simulate.
The situation also arise in other areas of economics and finance as well as
discussed in Tauchen (1997).

If the structural model is correct and the parameters p are set to their true
values p°, then there should not be much difference between the data {g;}},
and a simulation {§;}~, Therefore, if the first order conditions (1) of the
reduced form were computed by averaging over a simulation instead of the
sample, viz.,

1 X0
P _Nza_logf GelTe-1,6),



one would expect that

at least approximately. This condition will hold exactly in the limit as N and
n tend to infinity under the standard regularity conditions of quasi maximum
likelihood. One can try to solve m(p, 9~n) = (0 to get an estimate p, of the
parameter vector of the structural model. In most applications this cannot
be done because the dimension of € is larger than the dimension of p. To
compensate for this, one estimates p by p, that minimizes the GMM criterion

m'(p, én) (j-n)il m(p, én)
with weighting matrix

nzn:[ log f (9 | @41, )Haaglogf(ytmt 1 )},

t=1

This choice of weighting matrix presupposes that the score generator fits the
data well. If not, then a more complicated weighting matrix, described below,
should be considered. The estimator p, is asymptotically normal.

If the structural model is correctly specified, then the statistic

Lo = nm,(ﬁna gn) (-’Z-n)_1 m(ﬁna én)

has the chi-squared distribution on dim(#) — dim(p) degrees freedom. This is
the familiar test of overidentifying restrictions in GMM nomenclature and is
used to test model adequacy. A chi-squared is asymptotically normally dis-
tributed as degrees freedom increase. Therefore, for ease of interpretation, the
statistic Lg is often redundantly reported as a z-statistic, as we do later in our
tables.

The vector m(py,0,) can be normalized by its standard error to get a vec-
tor of t-statistics. These t-statistics can be interpreted much as normalized
regression residuals. They are often very informative but are subject to the
same risk as the interpretation of regression residuals; namely, a failure to fit
one characteristic of the data can show up not at the score of the parameters
that describe that characteristic but elsewhere due to correlation (colinearity).
Nonetheless, as with regression residuals, inspecting normalized m(py,, én) is
usually the most informative diagnostic available. To protect oneself from mis-
interpreting these t-statistics, one should confirm all conclusions by means of
the test of model adequacy Ly above.



If the score generator is a poor fit to the data or the chi-squared test of model
adequacy Ly is not passed, then the analysis must be viewed as a calibration
exercise rather than classical statistical inference. One might, for instance, de-
liberately choose a score generator that represents only some characteristics
of the data to study the ability of a structural model to represent only those
characteristics. We do this below. One might also use a rejected model to price
options, arguing that it is the best available even though it was rejected. The
use of EMM for calibration is discussed in Gallant, Hsu, and Tauchen (1999).
But see Gallant (2001) for alternative simulation estimators that are better
suited to calibration than simulated score estimators or indirect inference es-
timators.

The score generator can be viewed as a summary of the data. It is accom-
plished by, in effect, projecting the data onto a reduced form model and is
therefore called the projection step of an EMM investigation. Extraction of
structural parameters from the summary by minimizing the chi squared crite-
rion is called the estimation step. In a later section, we shall describe a third
step, reprojection, that often accompanies an EMM investigation.

2.1.2  Indirect Inference Estimation

The indirect inference estimator is based on the binding function, which is
defined as
b(p) = axgmax [ [ log f(ylz.0) p(ylz, p) dydz,
9cO

where f(y|z,0) and p(y|z, p) are the transition densities of the auxiliary model
and structural model, respectively, as described above. The binding function
can also be defined as the function that satisfies m[p, b(p)] = 0 (where, implic-
itly, N = 0o ). According to the asymptotics of quasi maximum likelihood,

Vald, = b(p)] & N (0,777,

where 6,, is as above and

7= //{ﬁ ti; % log f[ylz, b(p)]}Qp(mx, p) dydz,

J = //{%;9, log f[ylz, b(p)]} p(y|z, p) dyda.

The matrix Z will likely have to be estimated by a HAC variance estimator as
described below because, for reasons mentioned below, the auxiliary model is
not apt to be a good approximation to the structural model in most indirect
inference applications. A plug-in estimator can be employed to estimate J;
numerical differentiaton may be required to get the second derivatives. With-



out being specific as to the method employed, let Z,, and J,, denote estimates
of Z and J.

The indirect inference estimator is

pu = argmin (8, — b(p)] (LT )" [0 — b(p)]

pER

where R is the parameter space of the structural model.

Herein lies the computational difficulty with the indirect inference estimator:
One must have an expression for b(p) in order to compute the estimator. The
expression
b(p) = argrréaX/ log f(ylz,0) p(y|z, p) dydz,
€

can be computed numerically, with the integral computed by simulation as
discussed above, and b(p) computed by numerical optimization for given p.
This embeds one numerical optimization, that for b(p), inside another, that
for p,, which poses two problems: The first is cost, the second is stability.
That this computation will be costly is obvious. The stability issue is that a
numerical optimizer can only compute the inner optimization, that for b(p),
to within a tolerance, at best. This will cause jitter which will cause the outer
optimization problem to be non-smooth. Non-smooth optimization problems
are very difficult and costly to solve because good curvature information is not
available. If the inner problem has local minima, the situation becomes nearly
hopeless. For this reason, most practitioners convert a problem formulated
as an indirect inference problem to simulated score estimation problem prior
to computation so as to eliminate b(p) and J from consideration; see, for in-
stance, Pastorello, Renault, and Touzi (2000). A verification of the equivalence
of the indirect inference and simulated score formulations is in Gourieroux,
Monfort, and Renault (1993). Of course, if the auxiliary model is sufficiently
simple, then analytic expressions for b(p) and J become available and the
computation

pn = axgmin [0, — b(p)) (7 'ZT ") [0 — b(p)

PER

becomes feasible as posed.

The indirect inference formulation of the estimation problem can be useful
device for modifying the estimator to achieve semiparametric or robustness
properties. Space does not permit an exploration of those ideas here. For a
discussion of seminonparametric properties achieved through indirect inference
see Dridi and Renault (1998) and the references therein. For a discussion of
robustness properties achieved through indirect inference, see Genton and de
Luna (2002).



2.2  Details

We now discuss the ideas above in more detail. We consider nonlinear systems
that have the features of the models described in Section 1. Specifically, (i) for
a parameter vector p in a parameter space R, the random variables determined
by the system have a stationary density

P(Y-1:---Y-1,%[p), (2)

for every stretch (y;_r,...y;); and (ii) for p € R, the system is easily simulated
so that expectations

Ep(9) 2/- : -/g(ny,---,yo)p(ny,---,yoIp) dy_p - - dyo (3)

can be approximated as accurately as desired by averaging over a long simu-
lation

N
Zg ytfln"wgtflagt)- (4)
t=1

1
N
As conventions, we use {y;} to denote the stochastic process determined by
the system, {7;}~_, to denote a simulation from the system, {g;}?_, to denote
data presumed to have been generated by the system, and (y_r,...,y_1,v0)
to denote function arguments and dummy variables of integration. The true
value of the parameter vector of the system (2) is denoted by p°.

We presume that the data have been summarized in the projection step, as
described in Section 3, and that a score generator of the form

0
]
20 og f(y|z,0,),

and a weighting matrix

:nZ[ log f (71 | T1-1, )Haaglogf(ytlxt 1 )],

are available from the projection step. This formula assumes that f(y |z, 9~n)
closely approximates p(y | x, p°). If the SNP density fx(y | z,0) is used as the
auxiliary model with tuning parameters selected by BIC, Z,, as above will be
adequate (Gallant and Long, 1997; Gallant and Tauchen, 1999, and Coppe-
jans and Gallant, 2000). If the approximation is not adequate, then a HAC



weighting matrix (Andrews, 1991) must be used. A common choice of HAC
matrix is

/]

L= Y w (W) 7., )

T=—[nl/5]

where
1 —6lul>+6Jul® f0<u<3;
w(u) =
2(1 — |ul)? if 1 <u<l,
and
~ ~ ~ ~ ~ ~ , .
:Z. . %Z?:pr—r [% log f(yt | L1, en)] [% IOg f(ytf'r | Ti1-7) Hn)] if 7 Z 0

in,_T if <0

(Gallant and White, 1987).

Recall that the moment equations are

0
m(p,0) =&, = %0 log f(y|x,0).

which can computed by averaging over a long simulation

N

m Z 10gf ?Jt|95t 1,0 )

1

The EMM estimator is

pn = argmin m' (p, 0,)(Z,) " m(p, 6,,)
PER

The asymptotics of the estimator are as follows. If p° denotes the true value
of p and 6° is an isolated solution of the moment equations m(p°, 6) = 0, then
under regularity conditions (Gallant and Tauchen, 1996; Gallant and Long,
1997),

lim p, = p° a.s.



lim ]\7[n =M’ a.s.

n—o0

lim Z, =Z° a.s.

WhereMn:M(ﬁn,én),MO:M(PO,QO),M( 0) = (0/0p")m(p, ), and

70 = £, [ og Sy |1, 0°)] [ Yow Flun | 1,0°)]

67

if f(y|x,d) encompass the data generating process, or

Z Epo [aaelogf(yolfr 1 )Haaglogf( I:LH,GO)]',

T=—00

if not. Under the null hypothesis that p(y_r, ...,y | p) is the correct model,

LO =nm (pnae )(i ) (ﬁn;én) (7)

is asymptotically chi-squared on py — p, degrees of freedom. Under the null
hypothesis that h(p°) = 0, where h maps R into R9,

L= [ (o, 0)(Z) (s 00) = 109 0) (Z) 'l B)]  (8)

is asymptotically chi-squared on ¢ degrees of freedom where

pn = argminm’(p, 0,) (Z,) "' m(p, 0,).
h(p)=0

A Wald confidence interval on an element p; of p can by constructed in
the usual way from an asymptotic standard error /6;;. A standard error
may be obtained by computing the Jacobian M, (p, ) numerically and tak-
ing the estimated asymptotic variance ;; to be the ith diagonal element of
S = (1/n)[(M,)(Z,) '(M,)] *. These intervals, which are symmetric, are
sornewhat misleading because they do not reflect the rapid increase in the
EMM objective function s,(p) = m/(p, 0,)(Z,)~"m(p,0,) when p; approaches
a value for which the system under consideration is explosive. Confidence in-
tervals obtained by inverting the criterion difference test L;, do reflect this
phenomenon and are therefore more useful. To invert the test one puts in the
interval those p; for which L, for the hypothesis p¢ = p; is less than the criti-
cal point of a chi-squared on one degree of freedom. To avoid re-optimization
one may use the approximation

2 N P; — pinf]

G ©)

11



in the formula for L; where f](i) is the i-th column of 3.

The above remarks should only be taken to imply that confidence intervals
obtained by inverting the criterion difference test have more desirable struc-
tural characteristics than those obtained by inverting the Wald test and not
that they have more accurate coverage probabilities.

When L; exceeds the chi-squared critical point, diagnostics that suggest im-
provements to the system are desirable. Because

VI m(pny02) 5 N{0,Z° = (M°)[(M°) (2°)7 (M)~ (M°)'},

inspection of the t-ratios

T, = S;l\/nm(ﬁn, én)a (9)

where S, = (diag{Z, — (V) (V) (Z,)~ (V)] (V,)'}) 77, can suggest rea-
sons for failure. Different elements of the score correspond to different charac-
teristics of the data and large t-ratios reveal those characteristics that are not
well approximated.

In practice, one would usually prefer to inspect \/n m(py, 6,), which are under-
estimates of the t-ratios, to avoid having to determine the matrix M,, numer-
ically and to avoid any potential inaccuracies that numerical differentiation
can introduce. Because the statistic Ly provides an overall test of significance,
it is not necessary to have exactly correct values of the t-ratios. That is, one
is only relying on the ¢-ratios for suggestions as to where a structural model
fails to fit and one is not relying on them for statistical inference.

3 Projection: General Guidelines on the Score Generator

A sensible question is how to determine the reduced form density f(y:|z; 1,6)
that defines the score generator for EMM. Interestingly, there are two natural
principles that lead to different strategies. The first principle is data-based:
choose f(ys|z;_1,6) to be good approximation to the dynamics of the data, i.e.,
to pdf(y;|x; 1), whatever that might be. In other words, f(y:|x; 1,6) should
emerge from a carefully-conducted effort to model the data {g;}}, without
much regard to the structural model. A flexible parameterization should be
used if the dynamics of the data are not well understood a priori. The second
principle is model-based: choose f(y;|x;_1,6) to be a close approximation to
the p(y;|zi_1, p) implied by the structural model, so that the moment function
(0/00) log| f (yi|xt—1,0)] for EMM should look very much like moment function

12



(0/0p) log[p(yi|zi—1, p)] of maximum likelihood estimation. Implementing this
strategy entails using detailed knowledge of the characteristics of the structural
model to build up the score generator.

We initially set forth the arguments for the data-based strategy in Bansal,
Gallant, Hussey, and Tauchen (1993, 1995), and we have consistently argued
for it over the model-based strategy ever since. The issue is controversial.
Dridi and Renault (1998) argue for a more model-based strategy and Hansen
(2001) outlines some of the issues. The gist of our argument is that the data-
based strategy will be nearly fully efficient if the structural model is correctly
specified, and it will reveal the inadequacy of the structural model if it is mis-
specified. On the other hand, the model-based strategy is fine if the structural
model is correct, but it could be potentially very misleading if the structural
model is wrong. Rarely do we know for sure that our models are indeed correct.

We now look at some of these considerations in more detail.

3.1 An Initial Look at Efficiency

Let V¢ denote the asymptotic covariance matrix of EMM if the score generator
is f(yi|ze 1,0). In Section 2 we saw that \/n(p — p) = N(0,Vy), where from
(6), Vy is given by

V= [(M)(Z°) " (M)~
Let Vyr, denote the asymptotic distribution of the maximum likelihood esti-

mator, which is given by

Vir = [E(sesy)] ™ =17

where

0
St = a_p log[p(ytkvtfl: Po)]

is the score function of the underlying probability model, presumed correct
here. From basic maximum likelihood theory we have that

Vur < Vy

13



Tauchen (1997) considers the iid case, p(y;|p) and shows that V; and V), are
connected as follows. Let

Q) = Var(s;, — Bsy)

where sp = (0/00) log[f(1]0°)] is the score of the reduced form model
reduced form, and B is the coefficient matrix from a linear projection of

sy = (0/0p) log[f (y:|p°)] onto ss. Then

Vi = Vit + Q)7 < Yy (10)

with equality if 2 = 0. Hence, the better the score of f comes to spanning
the score of p, then the smaller is {2 and the closer is EMM to full efficiency.
Tauchen (1997) also provides some intuition as to how this result would carry
over to the dynamic case. Gallant and Long (1997) handle the dynamic case
and prove that

lim VfK == VML

K—oo

where fx represents the K term in the SNP series expansion as described
in Section 4 below.

The upshot is that the better the score generator approximates structural
model, then the closer is V; to Vjr. But since the structural model is presumed
to be correct, the data-based approach has to produce a score function that is
a close approximation to the true score function. If one knows of a good model
for the data, then that model should be used as the auxiliary model. If not, as
is often the case, then Gallant and Long’s (1997) results provide a systematic
strategy based on SNP modeling for getting a close approximation.

3.2 Misspecification

Suppose the structural model is itself is misspecified. Will this be detected
by the EMM objective function? The issue was first formally considered in
Tauchen (1997) and examined in much more detail by Aguire-Torres (2001).
The answer is essentially yes if one employs the data-based strategy to deter-
mine the score generator but no if one follows the model-based strategy for
determining the score generator for EMM.

14



Define the densities

conditional joint

true model: E(yle)  &(z,y)
structural model:  p(y|z, p) p(z,y, p)
auxiliary model:  f(y|z,0) f(x,y|0)

where for simplicity we drop the time subscripts. The pseudo-true values of
and p are

9° = x| [1 0 dyd
argma // oglf(ylz, 0)¢ (x, y)dydz

p° = argminm’(p, 0°)(Z°) 'm(p,6°)
o

where

mip,0) = [ [ Voxl7(yle, 0ol v, p)ddr

Note that Z° is the limiting pseudo-information matrix computed under
&(z,y). Following Geweke (1983) define the approximate slope functional

S(fp.€) =m/(p°,0°)(Z°) ' m(p°, 6°)

The value of S(f,p,&) is the limiting normalized value of the noncentrality
parameter of the test of the overidentifying restrictions.

For fixed f and p, it is reasonably easy to come with plausible alternative
models & such that

S(fip.§) =0

In other words, given f, there is no power to detect p # &. It is easy to
construct such examples. The danger is fitting a misspecified p-model to the
scores of a misspecified f-model, and thinking everything is fine, when in fact

p#E.

The problem is with leaving f fixed. If one chooses f nonparametrically, say by
SNP, then the preliminary analysis of Tauchen (1997) and detailed calculations
of Aguire-Torres (2001) indicate that whenever p # &£, then

ll[?l infS(fK,p, f) >0

15



so the misspecification is detected with probability one asymptotically.

The message, again, is to think nonparametrically when choosing the auxiliary
model.

3.3 Non-nested Models

Another argument in favor of the data-based strategy has emerged after some
years of experience with EMM. Frequently, one considers families of non-nested
structural models and one faces a model selection problem. EMM using a data-
based score generator forces all structural models to confront the same set of
moment conditions, and therefore meaningful comparisons of objective values
across models are available. For example, Dai and Singleton (2000) use the
EMM objective function to guide model selection within and across the non-
nested branches of the affine family of term structure models, as do Bansal
and Zhou (2001) for regime switching affine term structure models.

3.4 Dynamic Stability

The EMM objective function is

Q(p) = m'(p,0)I 'm(p,0)

and

p = argmin Q(p)
PER

Simulated trajectories {7}, are used to compute the expectation that de-
fines m(p, #). Since the underlying structural model typically have a nonlinear
dynamic autoregressive structure, it is natural to consider potential problems
if p lies in the explosive region of the parameter space and |g;| — oo?

Tauchen (1998) examines the issue of dynamic stability of the structural model
(p) and the score generator (f). The upshot is that one really need not worry
about imposing dynamic stability on the structural model itself. Dynamic
stability is self-enforcing. If the optimizer wanders into the region of the pa-
rameter space where the underlying structural model is unstable, then the
data simulator generates a wildly explosive simulated realization that induces
a large value of the objective function. The time series properties of this explo-
sive realization are very much unlike the time series properties of the observed
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data set to which the auxiliary model has been fitted, so the objective func-
tion attains an exceedingly high value. The situation is actually a bit more
subtle, because automatic stability is ensured only if the auxiliary model itself
is dynamically stable. The use of a dynamically unstable auxiliary model can
be expected to define a GMM objective function with very poor numerical
properties in both the stable and unstable regions of the parameter space.

Dynamic stability is of practical importance. Andersen and Lund (1997) care-
fully examine a class of generalized GARCH and E-GARCH auxiliary models
for the short-term interest rate. They find the former typically unstable, and
therefore unusable as auxiliary models, while the latter are stable. Gallant and
Tauchen (1998) likewise use model stability as part of the selection criterion.
We now incorporate into the SNP code (Gallant and Tauchen, 2001¢) nonlin-
ear transformations of the state vector x; ; that attenuate large movements
and help enforce stability, but we still recommend checking long simulations
to ensure the score generator is a stable model.

4 A General Purpose Score Generator
4.1 Efficiency Comparisons

In Section 2 we defined the EMM estimator as

pn = argmin m ' (p)(Z,) 'm(p)
PER

It is essentially a simulated method of moments estimator based on the mo-
ment function

m(p) = 5;77/;

where

-9 _
Y = %logf(ykv,@)

and for now we shall suppress the second argument of m(p, 6).

In Subsection 3.1 we noted that the closer f comes to approximating the
condition density implied by the structural model, then the closer will be the
asymptotic variance of the EMM estimator to that of maximum likelihood. In
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fact, a spanning argument can be used to show that the efficiency of EMM
can be made asympotically negligible.

But the same spanning argument applies to estimation using more traditional
moments such as means, variances, etc., which we shall call below the Classical
Method of Moments. Thus, an open question is whether the moment function
of EMM, which entails the extra effort of estimating the score generator,
defines a better set of moments, other things equal.

The question is considered and answered affirmatively by Gallant and Tauchen
(1999), which we now summarize. They examine the simpler case where the
random variables defined by the system (2) generate univariate independently
and identically distributed random variables {y;} with density p(y|p). The
ideas for the general case of a multivariate, non-Markovian, stationary system
are the same, but the algebra is far more complicated (Gallant and Long,
1997). Nothing essential is lost by considering the simplest case.

Consider three moment functions 1/307,1, 1/31,,“, and zzf,n that correspond to Clas-
sical Method of Moments, Maximum Likelihood, and Efficient Method of Mo-
ments, respectively, defined as follows:

Yy — % iz1 Ui

2 1 n ~ \2
7 y - =1 (y)
wc,n(y) - " . ' ' )

?JK - % ?:1(?ji)K

- 0 B
Vpn(y) = o log p(y|pn),

_ o _
Vin(y) = @logf(yl%),

where the exponent K that appears in 1., (y) is the degree of the largest
moment used in a method of moments application, the function f(y|6) that
appears in 1/;fn(y) is a density that closely approximates the true data gener-
ating process in a sense made precise later, and the statistics p, and 0, that

appear in ¢y, (y) and 7,,(y) are

_ 1< _
pn = argmax — »_ log p(7ilp),
A (|

- 1
J, = argmax - 3" log F(719):
0 n

=1
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p is of length p, and 6 of length py > p,.

Note that each of the moment functions 1/31,,“, zzc,n, and zzf,n is in the null space
of the expectation operator corresponding to the empirical distribution of the
data, denoted as & . That is, Spnzl;p,n = Spn@/;c,n = Spn@/;f,n = 0. Method of
moments is basically an attempt to do the same for the model p(y|p). That is,
method of moments attempts to find a p that puts one of these moment func-
tions, denoted generically as zﬁn, in the null space of the expectation operator
&, corresponding to p(y|p).

In addition to computing z/;n, one computes

:Z.n = 515” (@Z}n)(wn),

Once 1/;71 and Z,, have been computed, the data have been summarized, and
what we refer to as “the projection step” is finished.

For estimation, define

My, (P) = g/ﬂ/;n-

If the dimensions of p and 1/;n(y) are the same, then usually the equations
mn(p) = 0 can be solved to obtain an estimator p,. For J)p,n, the solution is
the maximum likelihood estimator (Gauss, 1816; Fisher, 1912). For @/;C,n with
K = p,, it is the classical method of moments estimator (Pearson, 1894).
For zﬁc,n with K > p,, no solution exists and the moment functions zﬁc,n are
those of minimum chi-squared or generalized method of moments (Neyman
and Pearson, 1928; Hansen, 1982) as customarily implemented.

As just noted, when K > p,, then J}n cannot be placed in the null space of
the operator £, for any p, because the equations m,(p) = 0 have no solution.
In this case, the minimum chi-squared estimator relies on the fact that, under
standard regularity conditions (Gallant and Tauchen, 1996) and choices of 1,
similar to the above, there is a function ¢ such that

lim g (y) = 0°(y) as.

nl1_>r£10fn =Ep (W) (¥°)  as.
Vi (6°) 5 N[0, £, (1) (4°)]

where £, denotes expectation taken with respect to p(y|p®). For the three
choices 1 n, e, and Yy, of ¥, (y) above, the functions g, ¢, and ¢ given
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by this result are

Y- gp" (y)
T/JE(ZJ) Yy — é“p" (?J )
yK - gp" (?JK)

and

0
Vi) = 54108 f(y16°),

where

§° = argmax &,0log f(:|6).
0

With these results in hand, p may be estimated by minimum chi-squared, viz.,

pn = argmin m,(p) (Z,) ' ma(p)

where

C° = &0 () () |[Ew (%) (0] ' [E (0°) (05)'].

Note that for any nonzero a € RP7,

min €, [a'v5 — (1°)'0] = £ (a'5) — a'C% > 0. (11)

Expression (11) implies that a'C°a cannot exceed &0 (a’z/)g)Q =d [Spo (vg) (¥g) } a
and therefore the best achievable asymptotic variance of the estimator p, is
() ' = [Spo (g) (vg) ] _1, which is the variance of the maximum likelihood
estimator of p. It is also apparent from (11) that if {¢?}°, spans the L,
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probability space Ly, = {g : Epg? < 0o} and ¢° = (Y7, ..., ¢%), then p, has
good efficiency relative to the maximum likelihood estimator for large K. The
polynomials span Ly, if p(y|p) has a moment generating function (Gallant,
1980). Therefore, one might expect good asymptotic efficiency from zﬁc,n for
large K.

Rather than just spanning L, ,, EMM requires, in addition, that the moment
functions actually be the score vector ¢;,(y) of some density f (y|§n) that
closely approximates p(y|p°). Possible choices of f (y|§n) are discussed in Gal-
lant and Tauchen (1996). Of them, one commonly used in applications is the
SNP density, which was proposed by Gallant and Nychka (1987) in a form
suited to cross-sectional applications and by Gallant and Tauchen (1989) in a
form suited to time-series applications.

The SNP density is obtained by expanding the square root of an innovation
density h(z) in a Hermite expansion

Vh(z) = f;eizwﬁ(z),

where ¢(z) denotes the standard normal density function. Because the Her-
mite functions are dense in Ly (Lebesque) and \/h(2) is an Ly function, this
expansion must exist. The truncated density is

_ Pi(»)e(2)
" = TP e i’
where
Pr(z) = ;91-2’1

and the renormalization is necessary so that the density hx(z) integrates to
one. The location-scale transformation y = 0z + 1 completes the definition of
the SNP density

i) = - (). (12)

o
with 0 = (pu, 0,00, ...,0k). Gallant and Long (1997) have shown that

0
Vi) = 55108 [ (yl6°),
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with

0° = argmax &0 log fx(+]0)
0

spans Lg .

While a spanning argument can be used to show that high efficiency obtains
for large K, it gives no indication as to what might be the best choice of
moment functions with which to span Ly,. Moreover, if 1, is in the span of
Y° for some finite K, then full efficiency obtains at once (Gallant and Tauchen,
1996). For instance, the score of the normal density is in the span of both @/;C,n
and dN)f’n for K > 2. These considerations seem to rule out any hope of general
results showing that one moment function should be better than another.

With general results unattainable, the best one can do is compare efficiencies
over a class of densities designed to stress-test an estimator and over some
densities thought to be representative of situations likely to be encountered
in practice to see if any conclusions seem to be indicated. Comparisons using
Monte Carlo methods are reported by Andersen, Chung, and Sorensen (1999),
Chumacero (1997), Ng and Michaelides (2000), van der Sluis (1999), and, Zhou
(2001). Overall, their work supports the conjecture that EMM is more efficient
than CMM in representative applications at typical sample sizes.

Analytical comparisons are possible for the independently and identically dis-
tributed case and are reported in Gallant and Tauchen (1999). Their measure
of efficiency is the volume of a confidence region on the parameters of the
density p(y|p) computed using the asymptotic distribution of p,. This region
has the form {p: (p — p°)"(C°) " (p — p°) < X?/n} with volume

2m4/2( X2 /n)¢
dl'(d/2) det(C?)’

where X7 denotes a critical value of the chi-squared distribution on d degrees
of freedom. As small volumes are to be preferred, and the region {p : (p —
p°)'ZS(p — p°) < X7 /n} has the smallest achievable volume,

_det(C?)
~ det(Z0)

p

RE

is a measure of relative efficiency. Over a large collection of densities thought
to represent typical applications, their computations support the conclusion
that EMM dominates CMM. Moreover, their computations indicate that once
[k (+]6°) begins to approximate p(-|p°) accurately, the efficiency of the EMM
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Figure 1. Relative Efficiency for the Trimodal Density. Panel (a) plots
the relative efficiency of the EMM and CMM estimators against degree K, for
the trimodal density of the Marron-Wand test suite. As seen, the efficiency of
the EMM estimator increases rapidly when the degree K of the SNP auxiliary
model is between 10 and 20. Panel (b) plots the root mean squared error and
Kullback-Leibler divergence of the SNP approximation to the trimodal density
against K, labeled mse and KL, respectively. As seen, the region 10 < K < 20
is the region where the error in the SNP approximation to the trimodal density
decreases rapidly. Panel (c) plots the SNP approximation at K = 10, shown as
a solid line, to the trimodal density, shown as a dotted line. As seen, at K = 10
the SNP density approximates a trimodal density by a bimodal density. Panel
(d) is the same at K = 20. As seen, at K = 20 the SNP density has correctly
determined the number of modes.

estimator begins to increase rapidly. A representative illustration is provided
by Figure 1, which shows the relative efficiency comparison for a trimodal
density p(y|p) taken from the Marron-Wand test suite (Marron and Wand,
1992). As seen in Figure 1, once fx(-]0°) has detected the third mode of the
trimodal density, EMM efficiency increases rapidly.
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The second question to address is how many moments to include in the mo-
ment function ;. As the computations in Gallant and Tauchen (1999) and
Figure 1 suggest, the answer is as many as is required for f to well approx-
imate p. The natural conclusion is that one should use standard statistical
model selection criteria to determine f as we discuss later. This approach has
a distinct advantage over the use of ¢, in that there seems to be no objective
statistical criterion for determining the number of moments to include in /..

4.2 SNP: A General Purpose Score Generator

As indicated in Subsection 4.1, the best choice of a moment function v to
implement simulated method of moments is the score of a auxiliary model
that closely approximates the density of the data. We have also seen that the
SNP density is a useful, general purpose auxiliary model. In this section, we
shall extend the SNP density to a general purpose auxiliary model suited to
dynamic models. Here, y, is multivariate, specifically a column vector of length
M, and we write z; ; for the lagged state vector, which typically is comprised
of lags y;—;. For simplicity, we often suppress the time subscript and write
y and x for the contemporaneous value and lagged state vector, respectively.
With these conventions, the stationary density (2) of the dynamic system
under consideration can be written p(z,y|p) and its transition density as

__plz,ylp)

If one expands +/p(z,y|p°) in a Hermite series and derives the transition
density of the truncated expansion, then one obtains a transition density
fx(yi | ©;—1) that has the form of a location-scale transform

Yy = th + ,sztfl,

of an innovation z; (Gallant, Hsieh, and Tauchen, 1991). The density function
of this innovation is

[P(z x)]*¢(=)

M E 1) = Tt DRt du

(14)

where P(z,x) is a polynomial in (z,z) of degree K and ¢(z) denotes the
multivariate normal density function with dimension M, mean vector zero,
and variance-covariance matrix the identity.
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It proves convenient to express the polynomial P(z, x) in a rectangular expan-
sion

K.

P(z,x) = Z% (; agaxﬂ> 2%, (15)

where o and § are multi-indexes of maximal degrees K, and K, respectively,
and K = K, + K,. Because [P(z,2)]?/ [[P(u,z)]*¢(u)du is a homogeneous
function of the coefficients of the polynomial P(z,x), P(z,x) can only be de-
termined to within a scalar multiple. To achieve a unique representation, the
constant term agy of the polynomial P(z, ) is put to one. With this normaliza-
tion, hx(z|z) has the interpretation of a series expansion whose leading term
is the normal density ¢(z) and whose higher order terms induce departures
from normality.

The location function is linear

ftz = bo + Bx; 1, (16)

where by is a vector and B is a matrix.

It proves advantageous in applications to allow the scale R of the location-
scale transformation y = Rz+ pu, to depend on x because it reduces the degree
K, required to achieve an adequate approximation to the transition density
p(y|z, p°). With this, the location-scale transformation becomes

Yy =Rz + s (17)

where R, is an upper triangular matrix that depends on x. The two choices of
R, that have given good results in applications are an ARCH-like moving av-
erage specification and a GARCH-like ARMA specification, which we describe
next.

For an ARCH specification, let I, , be a linear function of the absolute values
of the elements of the vectors y;_r, — jtz, , ,, through y,_y — py, ,, viz.

Ly
VeCh(Rmt_l) = po+ Z P(z')|yt717Lr+i - /’Lmt—Q—Lr+i|
=1

where vech(R) denotes a vector of length M (M +1)/2 containing the elements
of the upper triangle of R, po is a vector of length A (M + 1)/2, Py through
Pryy are M(M +1)/2 by M matrices, and |y — p| denotes a vector containing
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the absolute values of y — p. The classical ARCH (Engle, 1982) has

El’t—l = Rl’t—lR,

Tt—1

depending on a linear function of squared lagged residuals. The SNP version
of ARCH is more akin to the suggestions of Nelson (1991) and Davidian and
Carroll (1987).

Since the absolute value function is not differentiable, |u| is approximated in
the formula for R, above by the twice continuously differentiable function

(J100u| — 7/2 + 1) /100 [100u| > /2
(1 — cos(100w)) /100 |100u| < 7/2

a(u) =

The scale factor 100 above represents a compromise. Small values, such as 3,
improve the stability of the computations but then a(-) does not approximate
| - | well.

For a GARCH specification, let

L,
vech(Ry, ) =po+ Y Pilvi—1-1,+i — Har s 10

=1

Lg
+ Z diag(G(i) )Rl‘t—Q—Lg+i

i=1
where G(;) through Gz, are vectors of length M (M +1)/2.

The classical GARCH (Bollerslev, 1986) has ¥,,_, expressed in terms of
squared lagged residuals and lagged values of ¥,, ,. As with the SNP variant
of ARCH, the SNP version of GARCH is expressed in terms of the absolute
value of lagged residuals and standard deviations.

Note that when L, > 0, the SNP model is not Markovian and that one must
know both x;_; and R,,_,_ Ly through R, to move forward to the value for
y;. Thus, x; 1 and RCUt—Z—Lg through R,, , represent the state of the system
at time ¢ — 1 and must be retained in order to evaluate the SNP conditional
density of y; or to iterate the SNP model forward by simulation. If one wants to
compute the derivatives of the SNP density with respect to model parameters,
one must retain the derivatives of R through R,, , with respect to model
parameters as well.

Tt—2

Tt—2—Lg
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The change of variable formula applied to the location-scale transform (17)
and innovation density (14) yields the SNP density

hid R,y — o) | @]
det(R,)

fr(ylz,0) = (18)

Hereafter, we shall distinguish among the lag lengths appearing in the various
components of the expansion. The number of lags in p, is denoted L,; the
number of lags in R, is L, + L,, and the number of lags in the x part of the
polynomial, P(z, ), is L,. We set L = max(L,, L, + L,, L,).

Large values of M can generate a large number of interactions (cross prod-
uct terms) for even modest settings of degree K,; similarly, for M - L, and
K. Accordingly, we introduce two additional tuning parameters, I, and I,
to represent filtering out of these high order interactions. I, = 0 means no
interactions are suppressed, I, = 1 means the highest order interactions are
suppressed, namely those of degree K,. In general, a positive I, means all
interactions of order larger than K, — I, are suppressed; similarly for K, — I,.

In summary, L,, Ly, and L, determine the location-scale transformation y =
R,z 1, and hence determine the nature of the leading term of the expansion.
The number of lags in the location function p, is L, and the number of lags
in the scale function R, is L, + L,. The number of lags that go into the = part
of the polynomial P(z,z) is L,. The parameters K,, K,, I, and I, determine
the degree of P(z,x) and hence the nature of the innovation process {z}.

Putting certain of the tuning parameters to zero implies sharp restrictions on
the process {y;}, the more interesting of which are displayed in Table 1.

5 Reprojection: Analysis of Post-Estimation Simulations

5.1 Simple Illustration of Volatility Extraction

We start with an illustration that gives the main idea of reprojection. In
Gallant and Tauchen (2001a) we estimated via EMM the vector SDE with
two stochastic volatility factors:

dUy, = aodt + exp(Sro + Lr12Uz + B13Use) AWy, (19)
dUQt = a22U2tdt + dWQt
dUgt = (¥33 Ugtdt + dWSt
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Table 1. Restrictions Implied by Settings of the Tuning Parameters.

Parameter setting Characterization of {y;}
L,=0,Ly=0,L,=0,L,>0,K,=0,K,=0 iid Gaussian
L,>0,L;=0,L,=0,L,>0,K,=0,K; =0 Gaussian VAR
L,>0,L;=0,L,=0,L,>0,K,>0,K,=0 semiparametric VAR
L,>0,Ly=0,L,>0,L,>0,K,=0,K,=0 Gaussian ARCH
L,>0,L;=0,L,>0,L,>0,K,>0,K;=0 semiparametric ARCH
L,>0,Ly;>0,L,>0,L,>0,K,=0,K,; =0 Gaussian GARCH
L,>0,Ly>0,L,>0,L,>0,K,>0,K,=0 semiparametric GARCH
L,>0,L;,>0,L,>0,L,>0,K,>0, K; >0 nonlinear nonparametric

Notes: L, is the lag length of the location function. L, is the lag length
of the GARCH (autoregressive) part of the scale function. L, is the lag
length of the ARCH (moving average) part of the scale function. L, is
the lag length of the polynomials in « that determine the coefficients
of the Hermite expansion of the innovation density. K, is the degree
of the Hermite expansion of the innovation density. K, is the degree
of polynomials in z that determine the coefficients of the Hermite
expansion of the innovation density.

using daily data on Microsoft (MSFT), 1986-2001. Here Uy, is the log price
process and

yr = 100 % (Uyy — Uy y-1)

at integer t is the observation equation for the geometric daily return expressed
as a percent. Uy, and Us; are stochastic volatility factors. We find that the
stochastic volatility model cleanly separate into two distinct factors: a very
persistent factor, Us,;, which displays very little mean reversion, and a very
strongly mean-reverting factor, Us;.

Thus, from the observed data set {7} we generated via EMM the parame-
ter estimate p for each model under consideration. We now summarize how
to proceed backwards to infer the unobserved state vector from the observed
process as implied by a particular model. The approach follows the reprojec-
tion method proposed by Gallant and Tauchen (1998), which is a numerically
intensive, simulation-based, nonlinear Kalman filtering technique.

The idea is relatively straightforward. As a by-product of the estimation, we
have a long simulated realization of the state vector {015}?;1 and the corre-
sponding {g;}Y, for p = p. Working within the simulation, we can calibrate
the functional form of the conditional distribution of functions of U, given
{9-}:_,. Given the calibrated functions determined within the simulation, we
simply evaluate them on the observed data. More generally, we can determine
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within the simulation the conditional distribution of functions of U, given
{9, }._, and then evaluate the result on observed data {g;}7;.

In the application we work with the conditional mean functions of the volatility
factors. Our targets are

g(UitHyT}i:l)v 1= 27 3 (20)

To begin, we generated simulations {U;},, {#:}Y,, at the estimated j and
N =100, 000. Keep in mind that, in order to generate predictions of Uy and
Us, via filtering y;, we are allowed to use very general functions of {y,}._,
and that we have a huge data set work with. After some experimentation,
we found the following strategy, which seems to work quite well. We estimate
an SNP-GARCH model on the g; because the SNP-GARCH model provides a
convenient representation of the one-step ahead conditional variance 62 of g1
given {§,}._,. We then run regressions of Uy on 62, jj;, and |jj,| and lags of
these series, with lag lengths generously long. (Keep in mind the huge size of
the simulated data set; these regressions are essentially analytic projections.)
At this point we have calibrated, inside the simulations, functions that give
predicted values of Uy, and Us; given {y, }._;. Lastly, we evaluate these func-
tions on the observed data series {¢,}!_,, which gives reprojected values Us

=1

and Ugt for the volatility factors at the data points.

The figures in Gallant and Tauchen (2001a) indicate that Us, is slowly moving
while U, is quite choppy. Interestingly, the crash of 1987 is attributed to a
large realization of the strongly mean reverting factor, Us;. This result suggest
that the volatility increase surround the 87 crash was rather temporary, which
appears consistent with raw data plots. Also, the reprojected volatility factor
from a model with only one stochastic volatility factor misses much of the crash
of 1987, which reflects further on the shortcomings of single-factor stochastic
volatility models.

5.2 General Theory of Reprojection

Having the EMM estimate of system parameters p, in hand, we should like
to elicit the dynamics of the implied conditional density for observables

P(yolz-1) = P(yolz -1, pn)- (21)

Recall that x_; represents the lagged state vector, and so in the Markov case
(21) is an abbreviated notation for

ﬁ(y0|yfln sy y*l) - p(y0|yfln sy Y, ﬁn)
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Although analytic expressions are not available, an unconditional expectation

gﬁ"(g)://g(y*l”7y0)p(y7L77y0|ﬁn)dy7Ldy0

can be computed by generating a simulation {g;}? ; from the system with
parameters set to p, and using

1 .
€(9) = S 9y D)
t=0

With respect to unconditional expectation so computed, define

éK = argmax &;,log fK(y0|$—1, 9)
0ERPK

where fx(yo|lz_1,0) is the SNP density given by (18). Let

Fre(yolz 1) = fr(yolz 1, 0k). (22)

Theorem 1 of Gallant and Long (1997) states that

[}gnw fK(yg|a:,1) = p(yg|x,1).

Convergence is with respect to a weighted Sobolev norm that they describe.
Of relevance here is that convergence in their norm implies that fK as well
as its partial derivatives in (y_r,...,¥_1,%o) converge uniformly over R¢, ¢ =
M(L + 1), to those of p. We propose to study the dynamics of p by using fx
as an approximation. This result provides the justification for our approach.

To approximate p by fx values of (Ly, Ly, Ly, K,,I,,K,,I,) must be chosen. It
seems natural to reuse the values of the projection that determined p,, because,
among other things, that choice facilitates a comparison of the constrained dy-
namics determined by the estimated system with the unconstrained dynamics
determined by the data. However, if the estimated nonlinear system is to be
sampled at a different frequency than was the data, then it will be necessary
to redetermine (L, L,, L,, K, I,, K,, I,) by the methods described in Subsec-
tion 2.2. We anticipate that the dynamics at a different sampling frequency
will not often be of interest and we shall presume in what follows that the
sampling frequency is the same as the data. The modifications required when
it differs are mentioned as they occur.

Of immediate interest in eliciting the dynamics of observables are the first two
one-step-ahead conditional moments
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5(y0|x_1):/y0 fK(y0|$—1,éK)dy0

Var(olo—1) = [ [0 — E(wole—)] [vo — Ewolo—)]' ficlwolo—1,0x0) dyo

where 1 = (y_r,...,y_1). Owing to the form of a Hermite expansion, ex-
pressions for these integrals as linear combinations of high order moments of
the normal distribution are available (Gallant and Tauchen, 1992). The mo-
ments themselves may be obtained from standard recursions for the moments
of the normal (Johnson and Kotz, 1970).

Filtered volatility is the one-step-ahead conditional standard deviation evalu-
ated at data values; viz.

VVar(yko |z 1) ‘x t=0,...,n. (23)

—1=(Ft—LTt—1)

In (23), g; denotes data and yxo denotes the kth element of the vector yo, k =
1,..., M. Because filtered volatility is a data dependent concept, the dynamic
system must be sampled at the same frequency as the data to determine fK It
has been claimed that filtered volatility could not be recovered from method
of moments estimates of a nonlinear dynamic system with partially observed
state and that this has been a criticism of such estimates. However, as just
seen, filtered volatility is easily computed using the reprojection notion.

We are using the term “filtered volatility” with a purely ARCH-type meaning
as in the nonlinear impulse-response literature. Another usage of filtering, per-
haps the predominant one, involves estimating an unobserved state variable
conditional upon all past and present observables. Filtering according to this
notion (for L lags rather than back to the first observation) can be accom-
plished through reprojection. This may be seen by noting that one can repeat
the derivation with y taken to be a contemporaneous unobserved variable and
x taken to be contemporaneous and lagged observed variables. Denote y and x
thus modified by y* and z*, respectively. The result is a density fx (y*|z*,0) of
the same form as (18) but with altered dimensions. One can simulate {y;, =} }
from the structural modal and perform the reprojection step to get fr (y*|z*)
as described above. The proof of Gallant and Long (1997) can be altered to
justify these modifications. How one uses fK(y*|x*) will be application specific.
For instance, one might wish obtain an estimate of

t+T

Yy = / exp(Sio + S12Ux + P13Us,) dit

t

in a system such as (19) for the purpose of pricing an option. In this instance,
;= (Uig-r,-..,Un), and g; (z*) = [ y* fr (y*|z*) dy*. To avoid any confusion,
we shall refer to (23) as reprojected volatility hereafter. We now return to the
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main discussion.

One-step-ahead dynamics may be studied by means of plots of (the elements
ofy E(woly—,---,y1+A), Var(yoly_r,...,y_1+A), or other conditional mo-
ments against ¢ where A is an M-vector with ¢ in the ith element and zeroes
elsewhere. More general perturbation strategies may be considered such as
A = 7y, where 7, is a point chosen from the data such that perturbations in
the direction dy, take contemporaneous correlations among the components
of y; into account. Perturbations to a single element of y_; in a multivariate
setting may represent a movement that is improbable according to the dynam-
ics of the system. Some thought must be given to the perturbation scheme in
multivariate applications if plots of conditional moments against § are to be
informative. This issue is discussed in Gallant, Rossi, and Tauchen (1993).

Two methods for choosing (y_y,...,y_1) for these plots suggest themselves.
The first is to put y_z, . . ., y_1 to the sample mean, that is, put (y_r,...,y_1) =
(G, ...,7) where § = (1/n) X7, 7, and plot, for instance,

Var(yoly, ..., 7+ A) (24)

against 6. The second is to average over the data and plot, for instance,

(1/n) SoVar (i -G + D) (25)

t=0

against 0. If the estimated system is sampled at a different frequency than the
data, then one plots the average (1/N) > Var(y|9: r,...,0 1+ A) over a
simulation {7}~ ; at the correct frequency instead.

In an economic system, the graphics just described are interpreted as repre-
senting the consequences of a shock to the system that comes as a surprise to
the economic agents involved, and similar interpretations hold in other con-
texts. If one wants to consider the consequences of forcing the system to a dif-
ferent equilibrium, the graphic obtained by plotting Var(yoly .+ A, ...,y 1+
A) against ¢ is relevant. They can be quite different.

Multi-step-ahead dynamics may be studied by considering plots of the trajec-
tories

5[9(%’—&---ayj—1)|y—La---a?J—1+A], jZO,].,...,J, (26)

where g(y_r,...,y_1) is a time invariant function whose choice is discussed
immediately below. As discussed in Gallant, Rossi, and Tauchen (1993), if one
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sets the initial condition to (y_z,...,y_1 + A) = (¥,...,5 + A) it is helpful
to net out transients by plotting either

ElgWj—r, - Y=Y, - U+ Al = Elg(yj-r, s Yj=1) U5 -, Y] (27)
or
1 3 .
- Y El9Wirirr - Yeri—)|Ge—rr - - - Ge—1 + A (28)
t=0

against j = 0,1,...,J instead of (26). Although (28) is conceptually superior,
in the examples considered by Gallant, Rossi, and Tauchen (1993), plots of
(27) had nearly the same appearance and are much cheaper to compute.

To compute (26), one exploits the fact that there are efficient algorithms for
sampling the density fr(vo|ly_1,-..,y_1+A) recursively to obtain R simulated
futures

{gO,ia"'agJ,i}a 7::]_,...,R,

each conditional upon y_j,...,y_1+A (Gallant and Tauchen, 1992). Prepend
{y_r,-.., y_1 + A} to each future to obtain the sequences

{@_L,i,...,g_l,i,?jo,i,...,gj’i}, Z:]_,,R
Elg(yj-r,---,yj—1)|y-r,...,y—1 + A] can then be computed as

1 & .
g[g(yjfLa S Z/jf1)|ny, oY1 FA] = R Zg(yj*L,ia S Z/jq,i)-
i=1

A general discussion of appropriate choice of g(y r,...,y_1) for nonlinear
impulse-response analysis, the analysis of turning points, etc. is in Gallant,
Rossi, and Tauchen (1993). Of these, the more routinely useful are the condi-
tional mean profiles

/'Lj(y—La s Y1 + A)
=&Yk

yjfLa"'7yj71)|y7L7"'7y71+A]7 ]:_177‘]

for the components £ = 1,..., M of y, which extend the impulse-response
profiles of Sims (1980) to nonlinear systems, and conditional volatility profiles
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O—JZ'(nya oY1+ A)

=& [Var(yrilyj o, ¥y, y 1+ A, §=0,...,J

which extend the volatility impulse-response profiles of Engle, Ito, and Lin
(1990) and Bollerslev and Engle (1993) to nonlinear systems. Plots of the
conditional mean profile reveal the future dynamic response of system forecasts
to a contemporaneous shock to the system. These will, in general, be nonlinear
and can differ markedly when the sign of § changes. Similarly for volatility.

Persistence can be studied by inspection of profile bundles, which are overplots
for t =0,...,n of the profiles

{/'Lj(gt—ln-"agt—l)v .] = _]-77J} (29)

That is, one overplots profiles conditional on each observed datum. If the
thickness of the profile bundle tends to collapse to zero rapidly, then the
process is mean reverting. If the thickness tends to retain its width, then the
process is persistent. Similarly, the profile bundles

Vi -, Gi=1), §=0,...,J}, t=0,...,n} (30)

can be used to examine volatility for persistence. These are extensions to
nonlinear systems of notions of persistence due to Bollerslev and Engle (1993).
Rather than comparing plots, one can instead compare half-lives. A half-life
j can be obtained by computing the range R; at each ordinate j = 0,...,.J
of either (29) or (30), regressing log R; on jf, and using (—log2)/5 as an
estimate of half-life.

Extensive examples of the use of the methods described here for elucidating the
joint dynamics of stock prices and volume are in Gallant, Rossi, and Tauchen
(1993).

6 Applications

There are now several applications of EMM to substantive problems in con-
tinuous time estimation and economics more broadly. For reasons of space, we
can only review in detail a few applications. At the end of this section we give
a short overview of the other applications of which we are currently aware.

34



6.1 Multi-factor stochastic volatility models for stock returns

6.1.1 Jump Diffusions

We start with the application of Andersen, Benzoni, and Lund (2001). They
consider the familiar stochastic volatility diffusion for an observed stock price
Sy given by

dS;

= (W)t +Viawy, (31)
t

where the unobserved volatility process V; is either log-linear

Log linear: dlog(V;) = [ — Blog(Vi)] + ndWoy (32)

or square-root (affine)

Square root: dV; = (a — BV;) + n\/;tdWQt. (33)

Here, Wi, and W5, are standard Brownian motions that are corelated with
corr(dWy,, dW2;) = p. The notation is self-explanatory taking note that the
term ¢V} reflects possible GARCH in mean effects. The version with the log-
linear volatility dynamics has attracted substantial attention in the econo-
metrics literature, while the version with square-root volatility dynamics has
attracted attention in the finance literature because of the availability of closed
form solutions for options prices.

Andersen, Benzoni, and Lund use EMM to estimate both versions of the
stochastic volatility model with daily S&P 500 Stock Index data, January
2, 1953 — December 31, 1996. Their auxiliary model is an E-GARCH model
(Nelson, 1991) with an SNP-like Hermite series representation for the error
density. They report that the EMM chi-square test statistic (7) sharply rejects
both versions; likewise, the EMM t-ratio diagnostics (9) indicate that these
models have difficulty accommodating the tail behavior of the data.

These authors also consider a more general jump diffusion stochastic volatility
models

dS,

5 = (u+ cV, — \R)dt + \/‘7tdW1t + Kedgy (34)

with jump intensity given by

A= Ao+ MV (35)

35



and jump size k; given by

log(1 + k) ~ N[log(1 + &) — 0.562, 6%)

The jump diffusion models pass the EMM chi-squared test of fit and the
EMM diagnostic t-ratio tests, which suggests an adequate fit. Once jumps
are included in the model, the test statistics reveal no substantive difference
between the log-linear and square-root specifications for volatility. Also, their
estimates suggest little evidence for state-dependent jumps in (35). They go
on to compute hypothetical options prices under various assumptions about
the risk premiums on volatility and jump risks. They illustrate the role of
stochastic volatility and jumps in generating anomalies such as volatility smiles
and smirks.

6.1.2 Alternative Models

The fact that adding a jump component to a basic stochastic volatility model
improves the fit so much reflects two familiar characteristics of financial price
movements: thick non-Gaussian tails and persistent time-varying volatility.
A model with a single stochastic volatility factor can accommodate either of
these characteristics separately, but not both together. The addition of the
jump factor accounts for the thick tails. Doing so complicates the estimation,
however, because a direct simulation of a jump diffusion entails a discontinuous
path and thereby a discontinuous objective function. Andersen, Benzoni, and
Lund need to implement a simulation strategy that smoothes out the sample
path across a jump boundary.

An alternative to adding the jump component is to add another stochas-
tic volatility factor. This step is undertaken via EMM in Gallant, Hsu, and
Tauchen (1999), with some encouraging initial results. A more extensive in-
vestigation is undertaken in the next paper we review.

6.1.3  Volatility Index Models

Chernov, Gallant, Ghysels, and Tauchen (2001) consider a four factor model
of the form

d?}? = (1o + a1oUs;)dt + 0(Usy, Usg) (W1 + h13d Wy + P1adWay)

(36)
AUy = (g + uga)dt + BogdWoy

In the above, P, represents the financial price series evolving in continuous
time; Uy is a stochastic drift factor; Us; and Uy, are stochastic volatility factors
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that affect price evolution through the volatility index function o (Us;, Uy).

These authors consider two broad classes of setups for the volatility index
functions and factor dynamics: an affine setup, where the index function and
volatility dynamics are

0(Ust, Uy) = /Bro + BrsUse + B1aUs

(37)
AUy = (oo + oUs)dt + /Bio + BuUndWy i = 3,4
and a logarithmic setup where
0 (Ust, Ust) = exp(Bro + Li13Use + FraUx) (38)

dUi, = (cio + o Us)dt + (Bio + BiiUi)dWy 1= 3,4

The simpler stochastic volatility models with only one volatility factor, (31)
above, are subsumed in this setup by taking (14 = 0.

Chernov, Gallant, Ghysels, and Tauchen (2001) apply EMM to estimate the
above models along with affine jump diffusion models, using daily data on
the DOW Index, January 2, 1953, to July 16, 1999. They find that models
with two volatility factors, Us; and Uy, do much better on the EMM chi-
squared specification test than do models with only a single volatility factor.
They also find the logarithmic two-volatility factor models (38) outperform
affine jump diffusions and basically provide an acceptable fit to the data. One
of the volatility factors is extremely persistent and the other strongly mean
reverting. Interestingly, the volatility feedback parameter, (;;, is positive and
very important for finding an acceptable fit. This parameter permits the local
variability of the volatility factors to be high when the factors themselves are
high, a characteristic of volatility that has been noted by others. The strongly
mean reverting factor with the volatility feedback acts much like a jump factor
in the return process itself.

At this point, it is not clear whether jump diffusions or multiple-factor models
with appropriate factor dynamics are the right models for equity prices. The
former, with jumps entered directly into the price process, are intuitively ap-
pealing models for financial prices. But the jumps generate complications for
the simulations and estimation. On the other hand, the multifactor models
are far easier to simulate and estimate and might prove more adaptable to
derivatives computations, since all sample paths are continuous and standard
hedging arguments and the Ito calculus apply.
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6.2 Term Structure of Interest Rates

6.2.1 Affine Term Structure Models

Dai and Singleton (2000) apply EMM for estimation of an affine term structure
model. In the affine setting, the vector of underlying state variables, Y}, follows
affine dynamics

dY; = K10 — Yidt + $\/S,dW; (39)

where S; is a diagonal matrix with entries S;;, = B + 3;Y;. The short-rate of
interest follows

Ty = (50 +(5;Y2

On these assumptions for the risk neutral dynamics, the pure-discount bond
prices are given by

Py(r) = eAD-BYY;

where A(7) and B(r) are given by the solutions to ordinary differential equa-
tions.

Dai and Singleton use Euro-dollar swap rates, and the observation equation is
a bit more complicated than in other applications due to the nature of swaps.
The no-arbitrage swap rate, r44, on a fixed for variable swap at times ¢ + k7,
k=1,2,...,.K, 7= Kry, is

1— Pt(KT[])
215:1 Py (k7o)

Tsrt =

They estimate ATSMs using three observed variables y; = (y1; yor y3¢)" :

y1: —0.5010g[P;(0.50)] Six Month LIBOR
Yot T2t Two-Year Swap Rate

Yst T's10t Ten-Year Swap Rate

This selection defines the observation function

Y = (Y, p)
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where p contains all of the parameters of the Affine Term Structure Model
(ATSM) to be estimated and tested.

Dai and Singleton focus on two stochastic volatility models for the term struc-
ture. One is due to Balduzzi, Das, Foresi, and Sundaram (1996), abbreviated
(BDFS), (1996) and the other to Chen (1996). Each lies in a separate branch
of the family of ATSMs. Dai and Singleton find that neither model fits the
data, in sense that the overall goodness-of-fit chi-squared tests are very large
relative to degrees of freedom and the diagnostic ¢-ratios are well above 2.0 in
magnitude. However, if each model is expanded outwards to the maximal iden-
tified ATSM within its particular branch, then the chi-squared tests for both
models become acceptable at conventional significance. To choose an overall
preferred model, Dai and Singleton undertake additional analysis of post es-
timation simulations, much in the spirit of reprojection analysis described in
Section 5 above, to select the extended version of the BDFS model as their
preferred model.

6.2.2 Regime Switching Affine Term Structure Models

Bansal and Zhou (2001) examine a class affine models with stochastic regime
switching. In their class of models, factor dynamics are constant-parameter
affine within each regime, but the economy shifts stochastically between
regimes. They deduce appropriate closed-form bond pricing functions that
properly account for the regime switching. The use of regime switching mod-
els is intuitively appealing in view of potential effects on fixed income markets
of various monetary regimes. Bansal and Zhou use monthly data, 1964-1995,
on yields of six months and five year maturities for estimation. They use an
ARCH-type model with an SNP error density as the auxiliary model. They
find that a two-factor regime switching model passes the EMM test of spec-
ification while every model in broad class of two- and three-factor constant
regime affine models is sharply rejected. They also find that the estimated
regime switching model does pricing in pricing the cross section of bond prices
beyond the two basis yields use in estimation.

6.2.3 Non-Affine Models

Ahn, Dittmar, and Gallant (2001) use EMM to examine the class of quadratic
term structure models (QTSMs) for two monthly data sets, January 1952
— February 1991 and November 1971 — December 1999. They find that the
QTSM models generally outperform affine models on the EMM diagnostic
test, but no QTSM is capable of explaining the data. Ahn, Dittmar, Gallant,
and Gao (2001) use EMM to estimate hybrid models where some underlying
factors follow affine dynamics and the others quadratic. They find that hybrid
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models do better than either class separately but are still rejected on the EMM
chi-squared test of fit.

An interesting and promising line of research would be to combine the findings
Bansal and Zhou (2001), who report favorable evidence for regime switching
models, with those of Ahn, Dittmar, and Gallant (2001) who find encouraging
evidence for quadratic term structure models.

6.3 Fxchange Rates

Chung and Tauchen (2001) use EMM to test various target zone models of ex-
change rates. They consider the basic model where the fundamental k; evolves
as

and more general models with mean reversion

dkt = —"}/(kt - k[]) + wat. (41)

The central bank is assumed to follow policy actions to keep the fundamental
with the band [k, k]. Letting s; denote the exchange rate, then the target zone
model generates the observation equation

st = Gk, p), (42)

where the functional form of G is determined by the asset pricing equation
that connects the dynamics of the exchange rate to the fundamental process k;
and by the boundary and smooth pasting conditions. Above, p represents the
parameters. See Delgado and Dumas (1991) for details on specification and
solution of target zone models. Evidently, it is relatively simple to simulate
exchange rate data from a target zone model and thereby implement EMM.

Chung and Tauchen (2001) apply the procedure to weekly French franc/Deutsche
mark exchange rates, 1987-1993. Their findings, in brief, are as follows. Con-
sistent with previous empirical work, their specification tests reject all target
zone models considered when bounds, k and k, are determined directly from
officially announced bands. However, they find that a very acceptable fit is
given by a target zone model with implicit bands, i.e., where k and k are free
parameters, and the fundamental process is with mean reversion (41). Their
results indicate that the central banks were operating within an implicit band
inside the announced official bands. Interestingly, their results are consistent
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with theoretical predictions for a bilateral analysis of exchange rates deter-
mined in a multilateral system (Pedroni, 2001). Finally, Chung and Tauchen
present rather dramatic graphical evidence on the much better fit to the data
provided by the preferred target zone model over a conventional stochastic
volatility model for exchange rates.

6.4 General Equilibrium Models

Genotte and Marsh (1993) is an early effort to estimate a general equilibrium
asset pricing model by simulated method of moments. In Bansal, Gallant,
Hussey, and Tauchen (1993, 1995) we employ EMM to estimate small-scale
general equilibrium model of international currency markets. More recently,
Valderrama (2001) has implemented EMM for estimation of a small-scale real
business cycle model.

Estimation of completely specified equilibrium models, i.e., starting from
tastes and technology, faces a computational bottleneck. For candidate val-
ues of the parameter the users needs to solve for the equilibrium along the
simulated trajectory. This computational requirement is generally more de-
manding than that required to estimate an SDE, as described in many of the
preceding examples. However, recent sharp increases in computational power,
in the form of faster processors linked by parallization software, indicate that
it will soon be feasible to investigate more extensively via EMM such fully
articulated models. In an initial effort, we are exploring the feasibility of con-
fronting the models of and Bansal and Yaron (2000). These models entail com-
plicated state and time nonseparable specifications for the stochastic discount
factor and elaborate multi-factor models dynamics for cash flow dynamics,
and thereby present serious challenges for estimation.

6.5 Additional Applications

Below we give a short summary of additional applications of which we are
currently aware. Many of these applications preceded and motivated those
described above. We apologize in advance for omissions and would be in-
terested in knowing of applications we might have inadvertently left out;
send an e-mail with the citation to either george.tauchen@duke.edu or
ron_gallant@unc.edu.

Discrete time stochastic volatility models are well suited for EMM estimation.
Van der Sluis (1997, 1999) implements the method and provides C/C+ code
under Ox for discrete time univariate stochastic volatility models. Gallant,
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Hsieh, and Tauchen (1997) use it to examine an extensive list of discrete time
stochastic volatility models and document a set of empirical shortcomings.

Applications to estimation of continuous time stochastic volatility models in-
clude Engle and Lee (1996), Gallant and Tauchen (1997), and Gallant and
Long (1997). Mixon (1998) generalizes the log-linear Gaussian continuous time
model to include a feedback effect in volatility. Gallant, Hsu, and Tauchen
(1999) also find this feedback effect to be important as well a second volatility
factor in their investigation of daily returns and range data. Chernov, Gallant,
Ghysels, and Tauchen (1999) use the technique to explore stochastic volatility
and state dependent jump models.

A recent application to options pricing is Chernov and Ghysels (2000), who
use the technique for joint estimation of the risk neutral and objective prob-
ability distributions using a panel of options data. Pastorello, Renault, and
Touzi (2000) use it to deal with the estimation of continuous-time stochastic
volatility models of option pricing.

Early applications to interest rate modeling include Pagan, Hall, and Martin
(1996), who apply the technique for estimating a variety of factor models of
the term structure, and Andersen and Lund (1997), who use the technique to
estimate a stochastic volatility model of the short rate. Some evidence from
EMM diagnostics on the shortcomings of a one factor model is set forth in
Tauchen (1997) and in McManus and Watt (1999). An extensive analysis of
multifactor models of short rate dynamics is in Gallant and Tauchen (1998).
Other term structure applications include Martin and Pagan (2000) along with
Dungey, Martin, and Pagan (2000), who undertake a factor analysis of bond
yield spreads.

Some interesting recent applications to microeconometric problems include
Nagypal (2001), who uses the method to estimate and compare various models
of learning by doing. Austin and Katzman (2001) apply the method to estimate
and test new models of multi-step auctions using tobacco auction data.

7 Software and Practical Issues

7.1 Code

We have written a Fortran software package that implements the EMM es-
timator for the case in which the structural model defines a strictly station-
ary process and there are no covariates. Everything is available by way of
http://www.econ.duke.edu/~get/emm.htm. The structural model is that of
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CASE 2 of Gallant and Tauchen (1996). The setup subsumes a wide variety
of situations in macroeconomics and finance. The SNP model is the score gen-
erator. A reader should be able to modify the code to accommodate other
score generators and to accommodate covariates, as in CASE 1 or CASE 3 of
Gallant and Tauchen (1996). The most recent version of SNP is 8.8, which per-
mits a GARCH specification for the conditional variance of the leading term
of score generator. The first two worked examples in the EMM guide only
use the ARCH feature, not the GARCH feature. The third uses the GARCH
feature.

7.1.1  Availability-Unix

Fortran code and an EMM Guide as a PostScript file are available via anony-
mous ftp at ftp.econ.duke.edu in directory “ftp/pub/get/emm. ("ftp is the
“home” directory for ftp; it is where one starts out when first coming in under
anonymous ftp.) It is known to run on Sun, HP, and Linux workstations.

Since this implementation of EMM uses SNP model as the score generator,
the code is tied to the SNP package, which is available is a similar manner:
Fortran code, and a guide as a PostScript file, are available via anonymous
ftp at “ftp.econ.duke.edu in subdirectory “ftp/home/arg/snp.

7.1.2  Availability-PC

PC versions of the EMM Fortran code are available via anonymous ftp at
ftp.econ.duke.edu in directory ~“ftp/pub/get/emm. (“ftp is the “home” di-
rectory for ftp; it is where one starts out when first coming in under anonymous

ftp.)

There is a PC version that runs under the free GNU g77 compiler, which is
in the public domain. We distribute the compiler along with the EMM code.
There is also a PC version for Microsoft’s PowerStation Fortran. The code and
makefiles should be rather easily modifiable for other PC-based Fortran com-
pilers. The user is alerted that not all Fortran compilers are IEEE compliant,
and that can cause problems at run time if the job goes awry with divide by
zero or some other problem. The GNU compiler is IEEE compliant whereas
the Microsoft Power Station is not.

While we do our work in Unix, we have had good luck running EMM on a
Pentium PC. We build and execute emm.exe within an MS-DOS window under
Windows 95, 98, and 2000.
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7.2 Troubleshooting, Numerical Stability, and Convergence Problems

On the whole, the EMM package is useful and practical. An early version
was used for estimating asset pricing models (Bansal et al, 1993, 1995). Re-
cent, versions of the package have been used in several applications including,
among others, Chernov, Gallant, Ghysels, and Tauchen (2001) and Gallant
and Tauchen (2001a) for stochastic volatility, Gallant and Long (1997), Chung
and Tauchen (2001) for exchange rate modeling, and Dai and Singleton (2000),
Ahn, Dittmar, Gallant, (2001), and Tauchen (1997) for interest rates.

Things can go awry, however. Sometimes, the program may stop prematurely,
and there are some key issues of dynamic and numerical stability that the user
must be attentive to. These issue affect the speed of the computations and
relate to convergence problems in the nonlinear optimization. The following
discussion pertains to these issues.

7.2.1 Start Value Problems and Scaling

Sometimes it is hard to get decent start values. We suggest intensive use of
the recently-added randomly perturbed start value feature described in the
EMM Manual. The user might need to experiment with a set of different
input parameter files, a wide range of tweak factors, and many trial runs.
This strategy will be numerically intensive, but so far it holds promise in our
applications.

The nonlinear optimizer works best if it sees all parameters as roughly the
same order of magnitude. We adopt a scaling so that all parameters as seen
by the optimizer lie in the interval (-1,1). Since this scaling may not be the
natural scaling for the data generator, one might want to adapt subroutine
gensim so that the rescaling is done automatically, as in the logliner example
distributed with the EMM code. We find the proper scaling mitigates many
problems and accelerates convergence.

7.2.2  Enforcing Dynamic Stability

As note in Section 3 above, the score generator should be dynamically stable.
The SNP package incorporates a spline and/or logistic transformation feature
that directly enforces dynamic stability on the score generator. This feature
is discussed at length in the SNP User’s Guide (Gallant and Tauchen, 2001c).
The transformations only affects the conditioning variable x;_; in the condi-
tional density f(y;|z;—1,0); it has no effect on y, and it is not a prefiltering
of the data. All it does is force a very gentle sort mean reversion so that
(0/00) log|f(y-|%+—1,0)] remains well defined should the optimizer happen to
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pass back a parameter vector p such that the simulation {g.(p),Z,_1(p)} is
explosive. For series that are very persistent, such as interest rates, we find the
spline transformation the best while for series that are nearly iid, e.g., stock
returns series, we recommend using the logistic transformation instead of the
spline transformation. As explained in the SNP User’s Manual, the logistic
really serves a different purpose than the spline. The logistic prevents large el-
ements of x;_; from unduly influencing the conditional variance computation.

7.2.3 Bullet Proofing the DGP

Recall the basic structure of EMM as outlined in Subsection 2.2 above. The
core component of the distributed EMM package is the user-supplied simulator
that takes as input a candidate vector p and generates a simulated realiza-
tion. This component computes the mapping p — {7;}Y.,. The EMM package
evaluates the objective function

su(p) = my(p, 0n) (j'-n)_lmn(pa On)

and optimizes it with respect to p.

The optimizer should see s,(p) as a smooth surface and care should be taken
in writing the DGP code to ensure small perturbations of p lead to small
perturbations of s,(p). The most common source of a rough surfaces is the
failure to control Monte Carlo jitter. One must ensure that when p changes
the random numbers used to compute {7;}:*, do not change. Usually taking
care that the seeds passed to random number generators do not change when p
changes is an adequate precaution. However, as mentioned in connection with
the discussion of Anderson, Benzoni and Lund (2001), additional precautions
may be necessary when adding jumps or other discrete elements to simulated
paths. Large values for N also contribute to smoothness.

Our experience is that the optimizer sometimes tries outlandishly extreme val-
ues of p, especially in the initial phase of the optimization when it’s acquiring
information on functional form of the objective function. These outlandish
values of p could entail taking the logs or square roots of negative numbers,
dividing by zero, or undertaking other operations that generate numerical
exceptions, either within the user’s simulator, within SNP (which evaluates
to scores), or even within the optimizer itself. Our experience is that things
proceed most smoothly when the user-supplied simulator can generates some
kind of sensible simulated realization regardless of p and be able to compute
something for p — {§;}~, given arbitrary p. We call this “bullet proofing”
the code.
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However, sometimes it extremely difficult to bullet proof completely the sim-
ulator (especially for diffusion models) and numerical exceptions occur that
generate Nal’s. On a Unix workstation, the Fortran compiler usually has pro-
duced an executable that can appropriately propagate the NaN’s and the EMM
objective function evaluates to either Inf or NaN. Typically, the optimizer dis-
tributed with the code can recover, as it realizes that the particular value of p
that led to the disaster is very unpromising and it tries another. The cost of
this is that the program slows down considerably while handling the numerical
exceptions along a very long simulated realization.

On the other hand, on a PC running a Windows Fortran, the numerical ex-
ceptions can cause the job to halt immediately and control to be passed back
to the operating system. The PC user should try more bullet proofing, better
start values, and perhaps checking the Fortran documentation for compiler
switches to set so that the executable can appropriately propagate the NaN’s.

7.3  New Developments and Parallelization

The EMM code is trivially parallelizable and we have had excellent results
using Linux clusters. These are several interconnected Intel or AMD machines
which are typically rack mounted. A common configuration is eight or so nodes
each with a 2 CPU motherboard, 1MB memory, and 80GB hard disk that are
connected via a 100Mbps eithernet switch. An excellent reference is Specter
(2000).

There are a variety of parallelization strategies that one might employ, as
described by Foster (1995). Briefly, they are as follows: Shell Scripts. The in-
terconnected nodes are secure so that rcp, rsh, etc. do not need to be disabled.
Some programs, such as nonlinear optimizers that use multiple, random starts,
are so embarrassingly parallelizable, that parallelization can be done with shell
scripts alone. Message Passing Interface (MPI). The industry-standard pro-
tocol for implementing parallel processing. Allows communication among pro-
cesses running on different processors. Architecture independent: Code written
for a Linux cluster will run on multiple-processor, shared-memory machines.
The recommended strategy. Parallel Virtual Machine (PVM). Syntax similar
to MPIL. Runs on heterogeneous architectures. Can be installed and run on
a user’s account without requiring the user to have administrative privileges.
Parallelized Libraries. Allows sequential code to have some of the benefits of
parallelism. Works best on shared-memory, multiple-processor machines. Can
actually impede performance if coupled with MPI or PVM. High Performance
Fortran. A sort of hybrid of the strategies above, allows both threads and mes-
sage passing. Worked poorly for us because the compiler that we tried, from
the leading vendor, turned out to be of such low quality that it could not
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compile LAPACK properly and was not IEEE compliant.

The distributed EMM code can be parallelized using shell scripts. These scripts
are available at the distribution site mentioned above. The strategy is simple:
Each node contains an exact copy of the user’s directory structure where EMM
runs are executed. The file emmentl.dat, contains lines of text each describing
a perturbation strategy, as discussed above, an input parameter file names,
and an output parameter file name. The shell scripts fragment this file, which
resides on the master node, parcel the fragments out to each slave node, and
execute EMM on all nodes. When runs are completed the output parameter
files are collected at the master node. The state of the directory on the master
node at completion is the same as if all runs had occurred on a serial machine.
The improvement in performance is linear in the number of CPU’s on the
cluster because there is not message passing overhead involved.

8 Conclusion

We described a simulated score method of moments estimator based on the
following idea: Use the expectation with respect to the structural model of the
score function of an auxiliary model as the vector of moment conditions for
GMM estimation. Making the procedure operational requires an estimate of
the parameters of the auxiliary model and computation of the expectation via
simulation. Strategies for doing this were set forth, considerations regarding
choice of the auxiliary model were discussed, and the SNP density, which is a
sieve, was described as a general purpose auxiliary model. When the auxiliary
model is chosen to closely approximate the characteristics of the observed data,
the estimation method is termed efficient method of moments (EMM). The
SNP density provides a systematic method to achieve a close approximation,
though, depending on the nature of the data, other auxiliary models might
provide a more convenient way to achieve adequate approximation for EMM.

These ideas were related to indirect inference, which is an asymptotically
equivalent methodology, and mention made of the fact that the indirect infer-
ence view of the method can be used to facilitate the choice of an auxiliary
model that confers seminonparametric or robustness properties on the esti-
mator. Also mentioned was that, as a practical matter, indirect inference will
often have to be reformulated as a simulated score method to make it compu-
tationally feasible.

There are three steps to EMM. The first, termed the Projection Step, entails
summarizing the data by projecting it onto the auxiliary model. The second
is the Estimation Step, where the parameters are obtained by GMM. The
estimation step produces an omnibus test of specification along with useful
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diagnostic ¢ statistics. The third step is termed the Reprojection Step, which
entails post-estimation analysis of simulations for the purposes of prediction,
filtering, and model assessment. It was argued that the last two steps, assess-
ment of model adequacy, and post estimation evaluation, are the real strengths
of the methodology in building scientifically valid models.

There have been numerous applications of the EMM methodology in the lit-
erature and several of these were discussed in detail. Code is available, its use
was broadly discussed with attention given to various pitfalls that need to be
avoided. Use of the code on parallel architectures was discussed.
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