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Abstract

In a Markov decision problem with hidden state variables, a decision maker ex-
presses fear that his model is misspecified by surrounding it with a set of alternatives
that are nearby as measured by their expected log likelihood ratios (entropies). Sets of
martingales represent alternative models. Within a two-player zero-sum game under
commitment, a single minimizing player chooses a martingale at time 0. Probabil-
ity distributions that solve distorted filtering problems serve as state variables, much
like the posterior in problems without concerns about misspecification. We display
conditions under which an equilibrium of the zero-sum game with commitment has a
recursive representation, then cast that representation in terms of two risk-sensitivity
operators. We apply our results to a linear quadratic example that makes contact with
the analysis of Basar and Bernhard (1995) and Whittle (1990).

1 Introduction

In single agent problems with incomplete information, optimal decision rules depend on a
decision maker’s posterior distribution over hidden state variables, called qt(z) here, an object
that summarizes the pertinent history of observed signals. The decision maker expresses faith
in his model when he uses Bayes’ rule to deduce the transition law for qt(z).1

But how should a decision maker proceed if he doubts his model and wants a decision
rule that is robust to a set of statistically difficult to detect misspecifications of it? This
paper studies a decision maker who makes his fear of model misspecification concrete by
surrounding his approximating model with the set of all alternative models whose expected
log likelihood ratios (i.e., whose relative entropies) are restricted or penalized. If the relative
entropies are constrained to be small, the decision maker believes that his model is a good
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approximation. The decision maker wants robustness against these alternatives because,
as Anderson, Hansen, and Sargent (2003) emphasize, perturbations with small relative en-
tropies are statistically difficult to distinguish from the approximating model. This paper
provides an appropriate lower dimensional object to summarize the history of signals when
the decision maker wants a decision rule to perform well for this set of models. We study
how the appropriate summary of the history of signals depends on details of the decision
maker’s problem, including how he discounts future utilities and contributions to entropy,
whether hidden states enter the decision maker’s period utility function, and whether the
decision maker chooses sequentially or once and for all at time 0. We describe special circum-
stances under which the appropriate summary of signals continues to be the decision maker’s
posterior under the approximating model, despite the fact that he distrusts his model.

All formulations of robust decision making in dynamic contexts begin with a zero sum
game in which a minimizing player chooses a worst-case model from a set surrounding the
approximating model. Alternative formulations employ different timing protocols and dif-
ferent ways of specifying the set of alternative models. This paper adopts a timing protocol
that prevails throughout much of the literature on robust control. It ascribes commitment
to both players in the zero sum game. To create a counterpart to the recursive formula-
tion of a zero-sum two-player game that extends the formulation in Hansen and Sargent
(1995) to situations with hidden states, Hansen and Sargent (2005) analyzes games without
commitment.

The remainder of this paper is organized as follows. Section 2 formulates a Markov control
problem in which a decision maker with a trusted model receives signals about hidden state
variables. Subsequent sections view the model of section 2 as an approximation, use relative
entropy to define a cloud of models that can be difficult to distinguish from it statistically, and
construct a decision rule that can work well for all of those models. Section 3 describes how
to represent distortions of an approximating model in terms of martingales defined on the
same probability space as the approximating model. This section then defines two operators,
R1 and R2, that are indexed by a common penalty parameter θ ∈ (θ, +∞) and that adjust
expectations of continuation values, viewed as random variables measurable with respect to
histories of states and signals, respectively, for lack of confidence in the approximating model.
We interpret θ as a penalty on an entropy term that measures the size of allowable model
misspecifications. Subsequent sections use those two operators, or closely related ones, to
construct decision rules that are robust to departures from the approximating model. Section
4 expresses a robust control problem in terms of our section 3 concept of discounted entropy
and formulates a robust control problem under commitment, meaning that the worst-case
model and robust decision rule are both chosen at time 0 and are never reconsidered. Section
5 briefly discusses the connection of the section 4 setup to work by Chamberlain (2000) and
Knox (2003).

To highlight time consistency issues and to set the stage for work in Hansen and Sargent
(2005) that define alternative zero-sum games recursively, the formulation in section 4 al-
lows different factors β for discounting one-period utilities and ρ for discounting one-period
contributions to entropy. As a prolegomenon to more general formulations without commit-
ment, section 6 studies the special case in which ρ = 1. When ρ = 1, we can implement the
solution of the commitment problem recursively through appropriate iterated applications
of R1 and R2. We thereby discover an appropriate counterpart to the distribution over the
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hidden state variables qt(z) that occurs in the basic problem in section 2 without a concern
for robustness.

Section 6 shows that when ρ = 1, concerns about robustness wear off, a feature that
we sometimes want to avoid. Hansen and Sargent (2005) show how setting ρ = β sustains
enduring concerns about robustness. But they must confront the impediment that when
ρ 6= 1, our section 4 results giving a recursive representation of a commitment solution do
not apply. To make concerns about robustness to endure, Hansen and Sargent (2005) have
to accept a form of time-inconsistency beliefs about hidden states (but not about signals).

Section 7 applies our results to the classic linear-quadratic stochastic robust control
problem. For the case ρ = 1, we describe how to implement the solution of the commitment
problem recursively, describe an object q̌t(z) that emerges from the application of the R2

operator, and link q̌t(z) to the distribution over hidden states conditioned on the history
of signals, namely, qt(z), that emerges from applying the ordinary Kalman filter. In an
important special case in which hidden states do not appear in the one-period return function,
q̌t(z) = qt(z).

Section 8 concludes by mentioning how Hansen and Sargent (2005) create a recursive
model of robust decision making by using different multiplier parameters θ1 and θ2 to define
Markov versions of the two operators R1 and R2. By using different θ’s, they focus the decision
maker’s fear of misspecification more on either the distribution of the hidden state vector or
on the transition dynamics themselves. This extension is especially useful in continuous time
formulations. Appendix A confirms assertions of useful properties of martingales. Appendix
B verifies the link between the solution to the linear quadratic commitment problem as we
have posed it with a solution from the control theory literature.

1.1 Related literature

In a class of dynamic robust parameter estimation problems, Chamberlain (2000) and Knox
(2003) solve what we interpret as a date zero commitment game with a time-invariant hidden
state. Because they want to capture the idea that the decision maker cannot commit to a
robust choice of a prior distribution at date zero, Epstein and Schneider (2003) advocate a
timing protocol for a zero-sum game that differs from Chamberlain’s and Knox’s: Epstein
and Schneider formulate the estimation problem sequentially.

Epstein and Schneider (2003) and Knox (2003) mention axioms. We do not start from
axioms but instead purposefully design our procedures to make contact with the literatures
on robust control and estimation.2 Thus, we begin by studying a commitment problem that
is close to one from the literature on robust control. We adopt this starting point partly
because the robust control literature contains so many useful conceptual and computational
insights. We use computational tricks from that literature to get a recursive formulation
that is computationally tractable. Like Chamberlain’s and Knox’s, the problem solved in
the control theory literature is a date zero commitment problem. But in an interesting special
case, the solution has a convenient recursive representation that we use to highlight the roles
of commitment and discounting in decision problems with hidden state variables. We then
alter the assumptions about discounting and commitment. Although we also believe that

2Maccheroni, Marinacci, and Rustichini (2004) have developed axioms that justify static versions of some
of our procedures.
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solutions to the commitment problem are interesting, we tell why we like the no-commitment
assumption and some properties of its consequences.

Much of the literature on robust control poses problems in a non-stochastic context. (See
Petersen, James, and Dupuis (2000) for one of the initial stochastic formulations.) Following
Hansen, Sargent, Turmuhambetova, and Williams (2004), we pose a stochastic version of a
robust control problem by using a martingale formulation to distort the probability distri-
bution associated with an approximating model. In Hansen and Sargent (2005), we discuss
how our formulation relates to ones advocated by Epstein and Schneider (2003).

2 The approximating model

This section formulates the Bellman equation for a standard recursive decision problem. The
presence of hidden state variables impels us to include a law of motion for the distribution
of hidden state variables. An approximating model includes the motion of the posterior
distribution over hidden states. Subsequent sections acknowledge and decompose doubts
about the approximating model.

A state vector {xt : t ≥ 0} is Markov with a time invariant transition density that can
be influenced by a control process {at : t ≥ 0}. Partition the state vector as

xt =

[
yt

zt

]

where yt is observed and zt is not; yt is a component of a possibly larger vector st of signals
that inform the decision maker about the unobserved components zt. Let Z denote a space
of admissible unobserved states, Z a corresponding sigma algebra of subsets of states, and
λ a measure on the measurable space of hidden states (Z,Z). Let S denote the space of
signals, S a corresponding sigma algebra, and η a measure on the measurable space (S,S) of
signals. Let {St : t ≥ 0} denote a filtration generated by y0 and current and past signals s,
and let {Xt : t ≥ 0} be a larger filtration that includes information generated by the history
of x. The smallest sigma algebra generated by all states including the future is:

X∞ .
=

∨
t≥0

Xt,

and similarly the smallest sigma algebra generated by all signals is:

S∞ .
=

∨
t≥0

St.

Let A denote a feasible set of actions, which we take to be a Borel set of some finite
dimensional Euclidean space, and let At be the set of A-valued random vectors that are St

measurable. Let A∗
t be the set of A-valued random vectors that are Xt measurable.

We assume that the conditional joint probability distribution for states and signals has
the following structure:

• A law of motion for the evolution of the observable states:

yt+1 = πy(st+1, yt, at).
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When y0 is known, this law allows us to construct an observable state recursively from
signals and actions.

• Two components that determine the evolution of hidden states and signals:

(a) An exogenously specified density τ(z∗, s∗|xt, at); τ is a density relative to the prod-
uct measure λ× η. For notational simplicity, we will assume that τ is the conditional
density implied by:

st+1 = πs(xt, at, wt+1)

zt+1 = πz(xt, at, wt+1)

where {wt+1 : t ≥ 0} is an i.i.d. sequence of random variables. Via Bayes’ rule, τ
implies the second component, namely,

(b) A density qt for zt conditioned on information St generated by y0, s1, ..., st; qt is a
density relative to the measure λ.

We are interested in the following decision problem under incomplete information about
the state:

Problem 2.1.

max
at∈At:0≤t≤T

E

[
T∑

t=0

βtU(xt, at)|S0

]

subject to

yt+1 = πy(st+1, yt, at)
zt+1 = πz(xt, at, wt+1)
st+1 = πs(xt, at, wt+1).

It is possible to express problem 2.1 in a more convenient way by focusing separately on
the control and estimation aspects of the problem. To prepare the way, we introduce the
following structure.

We use τ to construct two densities for the signal, the first of which is conditioned on a
finer information set:

κ(s∗|yt, zt, at)
.
=

∫
τ(z∗, s∗|yt, zt, at)dλ(z∗)

ς(s∗|yt, qt, at)
.
=

∫
κ(s∗|yt, z, at)qt(z)dλ(z). (1)

The decomposition on the right side of (1) will play an important role. By Bayes’ rule:

qt+1(z
∗) =

∫
τ(z∗, st+1|yt, z, at)qt(z)dλ(z)

ς(st+1|yt, qt, at)
≡ πq(st+1, yt, qt, at).
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In particular applications, the mapping πq can be computed by using filtering methods that
specialize Bayes’ rule (e.g., the Kalman filter or the Wonham filter).

In defining the state of a recursive decision problem, the information structure and Bayes’
rule direct us to replace the unobservable zt with its density qt conditional on current and
past signals. We therefore consider recursive formulations of a control problem with state
(yt, qt) and transition law

yt+1 = πy(st+1, yt, at) (2)

qt+1 = πq(st+1, yt, qt, at). (3)

Let

π =

[
πy

πq

]
.

By using this structure, we can rewrite problem 2.1 in the alternative form:

Problem 2.2. Choose a sequence of decision rules for at as a function of (yt, qt) for each
t ≥ 0 that maximize

E

[
T∑

t=0

βtU(xt, at)|S0

]

subject to a given density q0(z), the conditional density κ(st+1|yt, zt, at), and equations (2)-
(3). The Bellman equation for this problem is

W (y, q) = max
a∈A

∫ {
U(x, a) + β

∫
W ∗(π(s∗, y, q, a))κ(s∗|y, z, a)dη(s∗)

}
q(z)dλ(z).

In an infinite horizon version of problem 2.2, W ∗ = W .

Example 2.3. We modify a stochastic growth model due to Brock and Mirman (1972) and
Merton (1975) by including a hidden growth state. The technology is:

Kt+1 = (St)
1−α(Kt)

α − Ct + (1− δ)Kt (4)

where Kt is the date t capital stock, Ct is date t consumption, δ is the rate of depreciation,
and α is a productivity parameter. The labor supply is fixed and St is a labor augmenting
technology process.

We let st denote the growth rate of the technology shock process log St − log St−1 and
suppose:

st+1 = ζ · zt + σw1
t+1

where w1
t+1 is a standard normal random variable independent of zt. Realizations of st are

noisy indicators of alternative growth rate regimes. The n-dimensional vector ζ contains
alternative conditional means for growth rates and zt is a random vector conformable to ζ
whose realizations are unit vectors ei. The evolution of the n dimensional unit vectors ei is
described by a probability matrix Tij = Prob(zt+1 = ej|zt = ei).

This model of the technology shock is a special case of the regime shift models of Sclove
(1983) and Hamilton (1989) and is also a discrete-time counterpart to the nonlinear filtering
model of Wonham (1964). The decision maker observes yt but not zt at date t.
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The random growth in technology makes it convenient to scale variables by the level of
the technology. Thus we rewrite the production function (4) as:

kt+1 = exp (st − st+1) [(kt)
α − ct + (1− δ)kt]

where kt = Kt/St and ct = Ct/St.
Preferences are represented by discounting a utility function U

U(C) =
(C)1−γ

1− γ
=

exp [(1− γ)(log c + s)]

1− γ

with a discount factor β.
To map the planning problem associated with this growth model into our general decision

problem, we take yt = kt, st to be the signal, and the hidden state to be the growth rate regime
ζ for the technology shock. The control variable is at = ct.

3 Representing distorted distributions

This section describes how to represent distorted probability distributions by expressing them
as perturbations of the decision maker’s approximating model. We construct a discrete-time
version of a martingale representation of distortions that we have used in continuous time
(see Hansen, Sargent, Turmuhambetova, and Williams (2004)). Then we present recursive
representations of those martingales and alternative recursive formulations of discounted en-
tropy to prepare a recursive formulation of the decision problem with hidden state variables.
We use these measures of entropy to induce two distorted expectations operators that are
useful for constructing robust decision rules when some state variables are unobserved.

3.1 Simplified information structure

We will suppose that the decision maker cannot influence Xt and that we can specify it
exogenously. We allow the decision maker’s actions to influence St, though for convenience,
we leave this dependence implicit in our notation. However, in problems in which decision
maker’s action doesn’t influence the hidden state, either directly or indirectly, we can specify
the filtration {St : t ≥ 0} exogenously. Examples include problems in which a parameter or
hidden state must be estimated.

3.2 Expectations and martingales

We represent a distorted probability measure that is absolutely continuous with respect to
a baseline probability measure by using a Radon-Nikodym derivative. Consider a sample of
length t and a distorted probability measure applied to Xt. The Radon-Nikodym theorem
implies the existence of a nonnegative Xt measurable function Mt. To make it a probability
measure, we impose EMt = 1. Under the distorted probability distribution, the expectation
of a bounded Xt measurable random variable Wt is

ẼWt
.
= EMtWt.

Recall that Xt+1 contains Xt.
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Definition 3.1. The family of conditional expectation operators is consistent if the restric-
tion of Ẽt+1 to bounded, Xt measurable random variables coincides with Ẽt for all t ≥ 0.

To attain consistency, we must have

EMt+1Wt = EMtWt (5)

for all bounded Wt that are Xt measurable. This is equivalent to requiring that

E (Mt+1|Xt) = Mt.

We summarize this outcome in a well known result:

Lemma 3.2. A family of distorted conditional expectation operators is consistent if and only
if the process {Mt : t ≥ 0} is a martingale with unit expectation adapted to {Xt : t ≥ 0}.
Remark 3.3. Since the martingale {Mt : t ≥ 0} is nonnegative and has unit expectation
for all t, Doob’s martingale convergence theorem implies that it converges almost surely.
Another notion of a limit comes from observeing that our martingale formulation of the
perturbed probabilities allows us to apply the Kolmogorov extension theorem. This establishes
the existence of a probability distribution on X∞ that is consistent with those implied by
the martingale on the sigma algebras {Xt : t ≥ 0}. Under the conditions imposed so far,
these two limits need not be compatible. The probability measure implied by the Kolmogorov
extension theorem does not have to be absolutely continuous with the respect to the probability
distribution associated with the approximating model. Furthermore, the limiting random
variable implied by the martingale convergence theorem does not necessarily have a unit
expectation and hence is not necessarily a Radon-Nikodym for a probability measure. As
we will see in section 3.4 and appendix A, these two limiting results can be linked when we
establish a different form of martingale convergence.3

3.3 Multiplicative decomposition of martingale

The martingale Mt+1 allows us to represent distortions in non-sequential decision problems,
i.e., problems under commitment. When we want to formulate sequential decision problems,
it is convenient to decompose Mt+1 into components that represent distortions to conditional
probability distributions of date t + 1 events conditioned on date t information.4 Take a
nonnegative martingale {Mt : t ≥ 0} and form:

mt+1 =

{
Mt+1

Mt
if Mt > 0

1 if Mt = 0.

Then Mt+1 = mt+1Mt and

Mt = M0

t∏
j=1

mj. (6)

3Section 7 contains an example in which {Mt : t ≥ 0} has a limit that is the Radon-Nikodym derivative
for the limiting probability measure. As a consequence the effects of a concern about robustness on decisions
and estimates vanishes over time.

4This is like factoring a likelihood function.
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The random variable M0 has unconditional expectation equal to unity.
By construction, the random variable mt+1 has date t conditional expectation equal to

unity. For a bounded random variable Wt+1 that is Xt+1 measurable, the distorted conditional
expectation implied by the martingale {Mt : t ≥ 0} is:

E (mt+1Wt+1|Xt) =
E(Mt+1Wt|Xt)

E(Mt+1|Xt)

where the denominator is strictly positive. We use mt+1 to model distortions of the condi-
tional probability distribution for Xt+1 given Xt.

For each t ≥ 0, construct the space Mt+1 of all nonnegative, Xt+1 measurable random
variables mt+1 for which E(mt+1|Xt) = 1. In formulating robust control problems, we use
(6) to construct a martingale from an appropriately restricted process {mt+1 : t ≥ 0} and
an initial condition M0.

3.4 Entropy

The entropy of the distortion at time t conditioned on date zero information is E (Mt log Mt|X0).
The product decomposition (6) of Mt implies a corresponding additive decomposition of en-
tropy:

E (Mt log Mt|X0)− E (M0 log M0|X0) =
t−1∑
j=0

E (Mt log mj+1|X0)

=
t−1∑
j=0

E [E (Mj+1 log mj+1|Xj) |X0]

=
t−1∑
j=0

E [MjE (mj+1 log mj+1|Xj) |X0] , (7)

where the second equality follows from (5) and the third from an application of the law
of iterated expectations. We set M0 = 1, which means that we explore only probability
distortions conditioned on X0.

Because m log m is convex in m,

E (mt+1 log mt+1|Xt) ≥ E (mt+1|Xt) log [E (mt+1|Xt)] = 0.

Definition 3.4. Consider a random variable mt+1 in Mt+1. Its conditional (on Xt)
relative entropy is

ε1
t (mt+1)

.
= E (mt+1 log mt+1|Xt) . (8)

Because all terms of (7) are nonnegative, the sequence

t−1∑
j=0

Mj−1E (mj log mj|Xj−1)
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is increasing and has a limit that might be +∞ with positive probability. Using this in (7)
shows that

lim
t→∞

E(Mt log Mt|X0)

converges. In the appendix, we show that when this limit is finite almost surely, the mar-
tingale sequence {Mt : t ≥ 0} converges in the sense that

lim
t→∞

E ( |Mt −M∞| |X0) = 0, (9)

where M∞ is measurable with respect to X∞ .
=

∨∞
t=0Xt. The limiting random variable M∞

can be used to construct a probability measure on X∞ that is absolutely continuous with
respect to the probability measure associated with the approximating model. Moreover,

Mt = E(M∞|Xt).

For short, we call the probability measure associated with the approximating model the
‘benchmark probability measure.’

Remark 3.5. When Mt converges to a random variable M∞ as in (9), the distorted prob-
ability distribution induced by M∞ is absolutely continuous with respect to the benchmark
probability distribution. Therefore, a Law of Large Numbers that obtains under the distorted
model will also apply under the benchmark model.

3.5 Discounted entropy

Where 0 < ρ ≤ 1, Hansen, Sargent, Turmuhambetova, and Williams (2004) use a contin-
uous time analogue of (1 − ρ)

∑∞
t=1 ρtE (Mt log Mt|X0) as a discounted measure of entropy

for models without hidden states. To prepare recursive representations of some decision
problems, it is convenient for us to use an alternative representation of discounted entropy
inspired by the decomposition

(1− ρ)
∞∑

t=1

ρtE (Mt log Mt|X0) =
∞∑

t=0

ρt+1E [MtE (mt+1 log mt+1|Xt) |X0] ,

=
∞∑

t=0

ρt+1E
[
Mtε

1
t (mt+1)|X0

]
(10)

where the right side is obtained by applying formulas (5), (6), and (7) and Abel’s summation
formula (‘summation-by-parts’). The left side of (10) represents entropy in terms of the level
distortions Mt, while the first term on the right side represents entropy in terms of the ratio
distortions mt. We can use contributions from both sides to form entropy penalties for robust
control problems.5

When E (Mt log Mt|X0) converges, the limiting version of (10) as ρ → 1 is

E (M∞ log M∞|X0) =
∞∑

t=0

E [MtE (mt+1 log mt+1|Xt) |X0] , (11)

5The distinction between these level and difference measures of entropy will be especially revealing when
we move to continuous time formulations.
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where M∞ is the limit point of the martingale. With discounting, the right side of (10) can
be finite without convergence of the martingale sequence, and therefore without the common
law of large numbers noted in remark 3.5.

3.6 Representation of induced distributions

To exploit the Markov structure of our recursive decision problem, it is useful to work with
induced distributions of random vectors and to specify perturbations to those induced distri-
butions directly. In this section, we briefly indicate how our approach of multiplying random
variables by a positive random variable affects induced distributions. For concreteness, we
consider the effect of multiplying by mt+1 before taking expectations over the induced con-
ditional distribution for st+1.

Notice that the random variable mt+1 can be depicted as

χt(zt+1, st+1, xt, ..., x0)

for some Borel measurable function χt and that

∫
χt(z, s, xt, ..., x0)τ(z, s|xt)dλ(z)dη(s) = 1.

Therefore, associated with mt+1 is a multiplicative distortion in the density for (zt+1, st+1),
given current information associated with the hidden and observed states. Formally, χt(·|xt, ..., x0)
is a conditional density of a perturbed model with respect to the approximating model. The
second of the following two equations expresses conditional relative entropy in terms of the
distorted induced distribution:

ε1
t (mt+1)

.
= E (mt+1 log mt+1|Xt)

=

∫
[log χ∗t (z, s|xt, xt−1, ..., x0)] χ

∗
t (z, s|xt, xt−1, ..., x0)τ(z, s|xt)dλ(z)dη(s).

3.7 Distorting likelihoods with hidden information

Because it is adapted to Xt, the random variable Mt is a likelihood ratio for two probability
distributions over Xt. The implied likelihood ratio for the reduced information set St is the
St-measurable random variable

Gt = E (Mt|St)

that assigns distorted expectations to random variables in St that agree with Mt; {Gt : t ≥ 0}
is a martingale adapted to the decision maker’s information sequence {St : t ≥ 0}.

Conditioning on the smaller information set {St : t ≥ 0} leads us to decompose Mt by
first defining

ht
.
=

{ Mt

E(Mt|St)
if E (Mt|St) > 0

1 if E (Mt|St) = 0.

The random variable ht is Xt measurable. The random variable Mt can be decomposed as

Mt = htGt, (12)
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with a corresponding entropy decomposition:

E (Mt log Mt|S0) = E [Gtht (log ht + log Gt) |S0]
= E (Gtht log ht|S0) + E (Gt log Gt|S0)

where we have dropped an ht from the last term because E(ht|St) = 1 and Gt is St measur-
able. In the decomposition (12), Mt distorts the probability distribution of Xt, ht distorts
the probability of Xt conditioned on St, and Gt distorts the probability of St.

Remark 3.6. An entropy measure based on the larger information set Xt exceeds that of the
smaller information set St, an inequality that is used in maximum likelihood estimation with
hidden states and that underlies the EM algorithm.6

Consider a distorted expectation operator that solves the following θ-penalized minimum
entropy problem:

Problem 3.7.
min

Mt≥0,EMt=1,
E (MtWt|S0) + θE (Mt log Mt|S0)

subject to the restriction that Mt be Xt measurable.

In a decision problem in which actions depend on conditioning information in St, it is
convenient to use decomposition (12) and to solve for ht before solving for Gt. Substituting
(12) into the objective for problem 3.7 gives:

E (GthtWt|S0) + θE (Gtht log ht|S0) + θE (Gt log Gt|S0) .

As in other decision problems under uncertainty, ht can be determined by solving the con-
ditional problem:

Problem 3.8.
min
ht∈Ht

E (htWt|St) + θE (ht log ht|St) ,

whereHt is the set of all nonnegative Xt measurable random variables for which E(ht|St) = 1.
After solving problem (3.8), we can return to problem (3.7) and compute the minimizing

choice of Gt. In recursive formulations, when we want to focus only on actions contingent
on St and hence on the distortion ht, we can skip the step of solving for Gt. This motivates
our second measure of conditional relative entropy.

Definition 3.9. Consider a random variable ht in Ht. Its conditional (on St) relative
entropy is

ε2
t (ht)

.
= E (ht log ht|St) . (13)

We shall use ht to represent a distorted expectation operator, conditioned on St events, of
random variables that are Xt measurable. The random variable ht can be used to build a joint
density function for z0, z1, ..., zt conditioned on current and past signals. We can integrate
this joint density to produce a marginal density for zt conditioned on the signal history. This

6See Gelman, Carlin, Stern, and Rubin (1995), especially pages 276–283.
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marginal density is relative to the density qt(z) that we constructed without distorting the
underlying probability distribution. Thus, ht implies a multiplicative perturbation of the
hidden state density qt(z).

By exploiting the decomposition Mt = htGt and focusing directly on the distortion ht,
we can substantially streamline the problem of designing a robust St-measurable decision
rule for at. In particular, we can avoid having to solve a distorted filtering problem for
each choice of Mt, a computationally demanding task that we would have to perform if we
worked directly with Mt.

7 By applying standard filtering and smoothing procedures to the
approximating model, we can deduce qt(z), the probability of current and past hidden states
given current signals implied by the benchmark model, then perturb it by multiplying by ht.
Because we do not have to resolve filtering problems for every potential perturbation, this
can afford a considerable computational saving. When we have completed that task, we can
then compute Gt and hence Mt.

The factorization Mt = htGt implies another interesting decomposition of discounted
entropy. Hansen, Sargent, Turmuhambetova, and Williams (2004) condition on date zero
information, which means that the time 0 contribution to entropy, M0 log M0, plays no
role in their analysis. However, the presence of hidden state variables will give M0 log M0

an important role in our analysis. Including the t = 0 contribution and decomposing the
martingale gives:

(1− ρ)
∞∑

t=0

ρtE (Mt log Mt|S0) = (1− ρ)
∞∑

t=0

ρtE [GtE(ht log ht|St) + Gt log(Gt)|S0] .

We will be primarily interested in the contribution:

(1− ρ)
∞∑

t=0

ρtE [GtE(ht log ht|St)|S0] = (1− ρ)
∞∑

t=0

ρtE
[
Gtε

2
t (ht)|S0)

]

because of our ability to assess proposed current and future actions conditioned on the
current signal history.

3.8 Two operators

We use the representations of entropy (8) and (13) to derive two operators that are useful
for designing robust decision rules. Each of these operators can also be used to express a
risk-sensitive adjustment of an appropriately measurable value function. Each operator also
implies a distorted conditional expectation operator.

3.9 The operator R1
t

Problem 3.10.

R1
t (Wt+1|θ) = min

mt+1∈Mt+1

E (mt+1Wt+1|Xt) + θε1
t (mt+1).

7The St-measurable random variable ht distorts the distribution of Xt. That implies that it distorts the
conditional distribution qt(z) of zt, i.e., the filter, and that it also distorts the distributions of z0, . . . , zt−1

conditional on Xt, i.e., the ‘smoothers’.
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Claim 3.11. Suppose that

E

[
exp

(
−Wt+1

θ

)
|Xt

]
< ∞. (14)

The minimizing choice of mt+1 in problem 3.10 is

m∗
t+1 ∝ exp

(
−Wt+1

θ

)
(15)

and the optimized value of the objective is

R1
t (Wt+1|θ) = −θ log E

[
exp

(
−Wt+1

θ

)
|Xt

]
.

Proof. This result and variants of it that follow are standard in the literature on relative
entropy. For example, see Dupuis and Ellis (1997).

In the limiting case that sets the entropy penalty parameter θ = ∞, R1
t (Wt+1|∞) =

E(Wt+1|Xt). Notice that this expectation can depend on the hidden state. When θ < ∞,
R1

t adjusts the ordinary continuation value E(Wt+1|Xt) by using a worst-case belief about
the probability distribution of Xt+1 conditioned on Xt that is implied by the twisting factor
(15). When the conditional moment restriction (14) is not satisfied, we define R1

t to be −∞
on the relevant conditioning events.

3.10 The operator R2
t

For an Xt-measurable function Ŵt, the following problem implies an operator R2
t and an

associated worst-case distortion h:

Problem 3.12.
R2

t

(
Ŵt|θ

)
= min

ht∈Ht

E
(
htŴt|St

)
+ θε2

t (ht).

Claim 3.13. Suppose that

E

[
exp

(
−Ŵt

θ

)
|St

]
< ∞.

The minimizing choice of ht in problem 3.12 is:

h∗t ∝ exp

(
−Ŵt

θ

)

R2
t

(
Ŵt|θ

)
= −θ log E

[
exp

(
−Ŵt

θ

)
|St

]
.

4 Robust evaluations under commitment

This section states a robust decision problem under a timing protocol that requires each of
two players in a zero sum game to choose appropriately measurable sequences of controls once
and for all at time 0. We use outcomes of this timing protocol to motivate an alternative,
sequential timing protocol in Hansen and Sargent (2005).
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4.1 Full information

We want to study a problem in which a minimizing player has an information advantage
(he conditions time t choices on Xt) relative to a maximizing player (who conditions time t
choices on St). We obtain useful preliminary results by first considering a robust version of
a full information decision problem. We represent a full information problem by temporarily
replacing At by an enlarged set A∗

t that consists of all A-valued random vectors that are Xt

measurable.
This full information problem is the discrete-time counterpart to a continuous time prob-

lem of Hansen, Sargent, Turmuhambetova, and Williams (2004). The following two-player
zero-sum game instructs a minimizing player to choose a martingale to perturb a maximizing
player’s probability model:

max
at∈A∗t

min
mt+1∈Mt+1

E

( ∞∑
t=0

Mt

[
βtU(xt, at) + ρtθmt+1 log mt+1

] |X0

)
(16)

subject to

yt+1 = πy(st+1, yt, at)
zt+1 = πz(xt, at, wt+1)
st+1 = πs(xt, at, wt+1)

Mt+1 = mt+1Mt (17)

where M0 = 1 and x0 is a known initial condition. We restrict both the distortion mt+1 and
the decision at+1 to be Xt+1 measurable.

The distortion in beliefs contributes a multiplicative martingale preference shock Mt to
period-t utility and a θ-weighted penalty on entropy.8 The initial condition M0 becomes a
new state variable at time 0. In the full information case, we are free to normalize M0 to one.
A Bellman-Issacs condition allows us to exchange orders of maximization and minimization
(see Hansen, Sargent, Turmuhambetova, and Williams (2004)).9

Remark 4.1. The inner problem in game (16)–(17) is an ordinary control problem with a
fully observed state (xt,Mt) and an Xt-measurable control mt+1.

While Hansen, Sargent, Turmuhambetova, and Williams (2004) study the case in which
β = ρ, we also consider the case in which 0 < β < 1 and ρ = 1. When ρ = 1 and
the minimizing agent chooses first, we can solve the inner part of problem (16) as a static
optimization problem. For a given action process {at : t ≥ 0}, let

W∞
.
=

∞∑
t=0

βtU(xt, at)

subject to

yt+1 = πy(st+1, yt, at)

8Maccheroni, Marinacci, and Rustichini (2004) developed axiomatic treatments of penalty-based prefer-
ences. Wang (2001) developed axiomatic treatments of entropy-based measures.

9The freedom to exchange the order of extremization rationalizes a worst-case model under which the
robust action for at is optimal (see Blackwell and Girshick (1954)).
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zt+1 = πz(xt, at, wt+1)
st+1 = πs(xt, at, wt+1).

The minimizing agent solves:

Problem 4.2.

R1
∞(W∞)

.
= min

M∞≥0,E(M∞|X0)=1
E(M∞W∞|X0) + θE(M∞ log M∞|X0).

Claim 4.3. For some action process {at : t ≥ 0}, suppose that

E

[
exp

(
−1

θ
W∞

)
|X0

]
< ∞.

Then

M∗
∞ =

exp
(−1

θ
W∞

)

E
[
exp

(−1
θ
W∞

) |X0

]

and the minimized value of the objective is:

R1
∞(W∞) = −θ log E

[
exp

(
−1

θ
W∞

)
|X0

]
. (18)

The implied martingale is
M∗

t = E (M∗
∞|Xt) ,

and M∗
0 = 1. Control theory interprets (18) as a risk-sensitive adjustment of the criterion

W∞ (e.g., see Whittle (1990)). The solution for the distortions {M∗
t : t ≥ 0} justifies an

interpretation of that risk-sensitivity adjustment as expressing a concern about robustness.
An expression of the outer problem in (16) is

max
at∈A∗t ,t≥0

−θ log E

(
exp

[
−1

θ

∞∑
t=0

βtU(xt, at)

] ∣∣∣∣∣X0

)
.

Setting β < 1 but ρ = 1 makes the concern about robustness wear off with the passage of

time, in the sense that
M∗

t+1

M∗
t

= m∗
t+1 → 1 as t → +∞. We analyze a linear quadratic example

in section 7.
Hansen and Sargent (1995), in discrete time, and Hansen, Sargent, Turmuhambetova,

and Williams (2004), in continuous time, have formulated versions of this full-information
problem when ρ = β. They analyzed a zero-sum two-player game in which both players
choose sequentially for the case ρ = β. The Markov perfect equilibrium of the two-person
zero-sum game gives rise to a value function for the maximizing player that can be stated in
terms of a recursive version of an adjustment for risk-sensitivity. When ρ = β, the associated
martingale is most conveniently represented in terms of continuation values. The martingale
typically does not converge to a finite limiting random variable M∞ when β = ρ. When it
does not converge, concerns about robustness endure. When the martingale fails to converge,
it can still imply a limiting probability distribution for X∞, but that limiting distribution
will typically is not absolutely continuous with respect to the distribution associated with
the approximating model.
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4.2 Hidden states

The problem in which the minimizing player has an information advantage entails two im-
portant modifications of the full information problem. First, although mt+1 remains Xt+1

measurable, the action at is restricted to be St measurable and hence in At rather than in
the larger set A∗

t . Second, M0 now must be an X0 measurable random variable satisfying:

E(M0|S0) = 1,

or G0 = 1. This convenient normalization implies that we can replace the minimization over
M0 with a minimization over h0. Thus, the minimizing player’s decision problem can be
posed as:

min
h0∈H0

min
mt+1∈Mt+1,t≥0

E

[ ∞∑
t=0

Mtβ
tU(yt, zt, at) + ρtθmt+1 log mt+1|S0

]
+ θE (M0 log M0|S0)

(19)
subject to (17), a given action process whose time t component at is in At, M0 = h0, and
the observable component of the initial state y0 as an initial condition. It is convenient to
minimize over h0 after first solving a preliminary inner problem10

W0
.
= min

mt+1∈Mt+1,t≥0
E

( ∞∑
t=0

Mt

[
βtU(yt, zt, at) + ρtθmt+1 log mt+1

] |X0

)
(20)

subject to (17) with h0 = 1. Evidently, W0 depends implicitly on the decision process
{at : t ≥ 0} and on conditioning information in X0.

Notice that problem (20)–(17) is identical with the full information problem for the
minimizing agent (16)–(17). This inner problem has a recursive structure. In particular,
the solution to problem (20) can be expressed in terms of successive applications of the
operator R1

t . Starting from a terminal value WT that is XT measurable, compute Wt for
t = T − 1, T − 2, . . . , 0 by performing the recursions

Wt =
βt

ρt
U(yt, zt, at) + ρR1

t (Wt+1|θ), (21)

where Wt is Xt measurable. Think of solving these recursions as T → +∞. As a by-product
of these recursions, compute the associated mt+1 process

mt+1 ∝ exp
(−Wt+1

θ

)
, t ≥ 0. (22)

The R1
t operator applied to Wt+1 yields a random vector mt+1 that distorts a one-step

ahead density for xt+1 conditional on Xt. The recursive solution strings together these
conditional distortions to produce a worst-case distortion of X∞ events conditioned on the
date zero information set X0.

10In formulating problem (20)-(23), we are using the fact that the right side of (19) is linear in h0.
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Remark 4.4. Recursion (21) maps Xt+1 measurable random variables into Xt measurable
random variables. Because the spaces of histories Xt are so large, these recursions are not
computationally practical unless one can find a way to reduce the dimension of the state by,
for example, deriving a sufficient statistic for histories. Section 6 describes the distorted
distributions that emerge from these operators. In the linear quadratic examples of section
7, we display how to compute explicit examples of these distributions that are of reduced
dimensions. Here an object q̌t(z) emerges that is a normal distribution with distorted mean
and covariance that generalizes the ordinary Kalman filter. In a special case that one period
utilities do not depend on the hidden state, q̌t(z) collapses to qt(z). Therefore, in that special
case, the distribution qt(z) associated with the approximating model can serve as a state
variable even though the minimizing agent distorts this distribution to attain a robust decision
rule.

For our incomplete information game, after solving the inner problem, we solve the outer
problem:

Ŵ0 = min
h0∈H0

E (h0W0 + θh0 log h0|S0) . (23)

The outer problem is identical with the problem that defines the operator R2
0. After having

computed W0, we solve the outer problem by computing

Ŵ0 = R2
0(W0|θ).

The associated distortion h0 can be computed from

h0 ∝ exp
(−W0

θ

)
.

The application of the R2
0 operator to W0 completes the minimizing player’s choice by yielding

a random vector h∗0 that distorts the probabilities assigned to X0 conditioned on S0. Thus,
the minimization part of the commitment problem (19) is solved by first applying the R1

operator ‘an infinite number’ of times, then applying the R2 operator once, at time 0.

4.3 Important special cases

Substantial simplifications occur when we further restrict the problem. Many treatments of
robustness in the control theory literature set ρ = 1. From problem (4.2), we know that
when ρ = 1, there exists a random variable M∞ that can be used to distort probabilities at
all calendar dates. Problem (4.2) yields a choice of M∞ that is X0 measurable. To solve for
the worst-case model pertinent when there are hidden state variables, we would compute:

R2
0[R

1
∞(W∞)]

as in problem (19), where

W∞
.
=

∞∑
t=0

βtU(xt, at).

Equivalently, the minimizing agent could solve:
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Problem 4.5.

R2
∞(W∞)

.
= min

H∞≥0,E(H∞|S0)=1
E(H∞W∞|S0) + θE(H∞ log H∞|S0).

The solution to this problem is:

H∗
∞ =

W∞
E(W∞|S0)

=
E(W∞|X0)

E(W∞|S0)
M∗
∞.

where M∗
∞ = W∞

E(W∞|X0)
is the full information solution associated with R2

∞. We will illustrate
such a solution in section 7 by appealing to results from the robust control theory literature
that assume that ρ = 1.

When ρ = 1, we can decompose the random variable M∞ as:

M∞ = h∞G∞ (24)

where
G∞

.
= E(M∞|S∞),

and

h∞
.
=

{
M∞
G∞

if G∞ > 0

1 if G∞ = 0.

The random variable M∞ distorts the probability distribution of X∞, h∞ distorts the proba-
bility of X∞ conditioned on S∞, and G∞ distorts the probability of S∞. Use decomposition
(24) to express entropy as:

E (M∞ log M∞|S0) = E [G∞E (h∞ log h∞|S∞) |S0] + E [G∞ log G∞|S0] .

We can put decomposition (24) to good use in the following special case:

Example 4.6. Suppose that ρ = 1 and that U does not depend on the hidden state zt:

U(x, a) = Û(y, a).

Because W∞ is S∞ measurable, the minimizing solution to problem (4.5) sets h∞ = 1 and

G∞ =
W∞

E(W∞|S0)
.

Although the minimizing agent has an informational advantage in this example, he does
not use it in the limit (he sets h∞ = 1). The worst case M∞ = G∞ distorts only the signal
distribution and not the distribution of the states conditioned on the entire signal process.
However, it will distort the distribution of zt conditioned on St because, while M∞ will be
S∞ measurable, Mt = E (M∞|Xt) will typically not be St measurable. There will be events
in Xt with probability assignments conditioned on St that are distorted. In particular, the
distortion of the conditional expectation of a real valued, bounded Borel measurable function
φ of zt given St,

E[Mtφ(zt)|St]
E(Mt|St)

, can be different from E [φ(zt)|St] .
Of course, distortions of probabilities over events that are measurable with respect to the

filtration {St : t ≥ 0}, not the implied distortions of the distribution of zt conditioned on St,
are the pertinent distortions for the choice of action process {at : t ≥ 0}.
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4.4 An alternative approach for Example 4.6

When ρ = 1, we can use the following decomposition of the entropy of the distortion G∞:

E [G∞ log G∞|S0] =
∞∑

j=0

E [GjE (gj+1 log gj+1|Sj) |S0] (25)

where gj+1 for j ≥ 0 is constructed from:

gj+1 =

{
Gj+1

Gj
if Gj > 0

1 if Gj = 0

An equivalent statement of the minimizing agent’s problem is

min
gt+1∈Gt+1,t≥0

E

( ∞∑
t=0

Gt

[
βtÛ(yt, at) + θgt+1 log gt+1

]
|S0

)
(26)

subject to

yt+1 = πy(st+1, yt, at)
zt+1 = πz(xt, at, wt+1)
st+1 = πs(xt, at, wt+1)
Gt+1 = gt+1Gt (27)

where G0 = 1 and Gt+1 consists of the set of all nonnegative St+1 measurable random variables
with expectation conditioned on St equal to unity. This takes the form of an ordinary (i.e.,
nonrobust) control problem. In this formulation, there is no informational advantage for the
minimizing agent and therefore no initial minimization in setting the initial conditions for
the martingale {G : t ≥ 0} adapted to the smaller filtration {St : t ≥ 0}. A counterpart to
the R1

t operator can be constructed by replacing Xt with St and mt+1 with gt+1. The date t
operator will necessarily use θ/βt as the date t robustness parameter.

The information structure and the structure of the constraints in problem (26)-(27) invite
the minimizing player to solve a filtering problem, just as in the standard control problem
with hidden states. Thus, by the same logic that connects problems 2.1 and 2.2, problem
(26)-(27) could be restated as

min
gt+1∈Gt+1,t≥0

E

( ∞∑
t=0

Gt

[
βtÛ(yt, at) + θgt+1 log gt+1

]
|S0

)

subject to the density ς(st+1|yt, qt, at) and

yt+1 = πy(st+1, yt, at)
qt+1 = πq(st+1, yt, qt, at)

Gt+1 = gt+1Gt.

The gt+1 choice will distort the transition probabilities for St+1 events given St infor-
mation. The implied distortions for Xt+1 conditioned on Xt could be computed from the
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formula:

mt+1 =
E

(
exp

[
−βt

θ

∑∞
j=0 βjÛ(yt+j, a1+j)

]
|Xt+1

)

E
(
exp

[
−βt

θ

∑∞
j=0 βjÛ(yt+j, at+j)

]
|Xt

) ,

but it is not necessary to perform this calculation to determine the maximizing actions.
Notice that when ρ = 1, the implicit date t robustness parameter is θ

βt . Therefore, when
0 < β < 1, the impact of the concern about robustness vanishes with the passage of time, a
point that was noted, for instance, by Whittle (1981).

5 Relationship to Chamberlain’s and Knox’s work

Before studying example 4.6 in the next section, it is useful to digress briefly to consider how
the robust estimation problems studied by Chamberlain (2000) and Knox (2003) fit into our
framework, especially in terms of the behavior of the martingale distortion Mt.

Example 5.1. Consider an estimation problem in which zt = z0 for all t. The hidden state
does not evolve over time, and as consequence, can be viewed as an unknown parameter to
be estimated. Signals provide information about this parameter.

Suppose that Xt is generated by St and z0. Thus Mt depends on the signal history and z0,
and, similarly, mt+1 depends on the date t+1 signal, the signal history, and z0. The random
variable mt+1 distorts the conditional distribution of st+1 given current and past signals and
the unknown parameter. The random variable ht distorts the posterior distribution of the
parameter z0 = zt conditioned on St. While signal distributions can be distorted, absolute
continuity requires the distorted distribution of zt to be invariant for all t ≥ 0.

The ability to distort the signal distribution conditioned on the parameter differentiates
this problem from those studied by Chamberlain and Knox. They study a robust parameter
estimation problem, impose commitment, and make a robust choice of a prior M0, where
E(M0|S0) = 1. In effect, they restrict the martingale {Mt : t ≥ 0} to be time invariant. The
implied form of their ht distortion is thus:

ht =
M0

E (M0|St)

rather than our less restrictive specification.
We believe that prior selection problems like Chamberlain (2000) and Knox (2003) are

of considerable interest. But those problems differ substantially from ours because we allow
distortions of the signal distribution, given the parameter, and do not limit the martingale
{Mt : t ≥ 0} to be time invariant.
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6 Recursive formulation of commitment game with undis-

counted entropy

When ρ = 1, we can solve the commitment problem by simply finding a worst-case M∞ that
distorts probabilities assigned to events in F∞:

M∞ =
exp

[−1
θ

∑∞
t=0 βtU(x∗t , a

∗
t )

]

E
(
exp

[−1
θ

∑∞
t=0 βtU(x∗t , a

∗
t )

] |S0

) .

The ∗ variables denote objects evaluated at the commitment solution.
We now describe a recursive formulation of the ρ = 1 commitment problem by char-

acterizing a corresponding date k preference ranking.11 The idea will be to find a way to
‘decentralize the decisions of the minimizing agent over time’ by having a sequence of min-
imizing players who take as given the decisions of past minimizing agents and the decision
rules of future minimizing agents. In addition to leading to simplified computational algo-
rithms, the depiction of a conditional ranking allows us to isolate the distinct roles played by
commitment and discounting. We view this analysis as a stepping stone to the formulations
of recursive games in Hansen and Sargent (2005) that withdraw the ability to commit from
the two players in a zero-sum game designed to produce a robust decision rule.

6.1 Date k probability distortion

As a useful prolegomenon to constructing a date k conditional preference ordering, we intro-
duce the following decomposition of M∞ into backward- and forward-looking components:

M∞ = M b
k−1M

f
∞

where

M b
k−1

.
=

exp
[
−1

θ

∑k−1
t=0 βtU(x∗t , a

∗
t )

]

E
(
exp

[
−1

θ

∑k−1
t=0 βtU(x∗t , a

∗
t )

]
|S0

)

M f
∞

.
= exp

[
−1

θ

∞∑

t=k

βtU(x∗t , a
∗
t )

]
E

(
exp

[
−1

θ

∑k−1
t=0 βtU(x∗t , a

∗
t )

]
|S0

)

E
(
exp

[−1
θ

∑∞
t=0 βtU(x∗t , a

∗
t )

] |S0

) .

The term M b
k−1 is backward looking and therefore depends on utility contributions before

date k. Changes in actions from date k forward will not alter this component. The corre-
sponding entropy decomposition is:

E (M∞ log M∞|S0) = E
(
M f
∞M b

k−1 log M b
k−1|S0

)
+ E

(
M f
∞M b

k−1 log M f
∞|S0

)

Construct two martingales

Mt = E(M∞|Xt) = M b
k−1E(M f

∞|Xt)

11Although the mathematical formulation differs in important ways because we use martingales to repre-
sent distorted models, our arguments parallel some of those made in the robust control literature by Whittle
(1990) and Basar and Bernhard (1995).
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and
M f

t = E
(
M f
∞|Xt

)
.

The two martingales share increments for t ≥ k:

mt+1 =
Mt+1

Mt

=
M f

t+1

M f
t

.

6.2 Changing the benchmark probability distribution at date k

We use M b
k−1 to define a new benchmark model at date k, then explore distortions to that

model by choosing a worst case M f
∞. The notation Ě denotes an expectation computed with

a distorted probability measure P̌ r constructed by taking M b
k−1 to be a Radon-Nikodym

derivative with respect to the probability distribution associated with the original (time 0)
approximating model. Write the date zero objective evaluated at the commitment solution
as:

E

[
M∞

∞∑
t=0

βjU(x∗t , a
∗
t )|S0

]
= Ě

[
M f
∞

k−1∑
t=0

βjU(x∗t , a
∗
t )|S0

]
+ Ě

[
M f

k

∞∑

t=k

βtMk
t U(x∗t , a

∗
t )|S0

]
.

Notice that

θE
(
M f
∞M b

k−1 log M b
k−1|S0

)
= − Ě

[
M f

k

k−1∑
t=0

βjU(x∗t , a
∗
t )|S0

]

+ log

[
E

(
exp

[
−1

θ

k−1∑
t=0

βtU(x∗t , a
∗
t )

]
|S0

)]
.

Thus, including the entropy penalty, the date zero objective can be rewritten as:

Ě

[
M f

k

∞∑

t=k

βtMk
t U(x∗t , a

∗
t )|S0

]
+ θĚ

[
M f
∞ log M f

∞|S0

]

+ log

[
E

(
exp

[
−1

θ

k−1∑
t=0

βtU(x∗t , a
∗
t )

]
|S0

)]
. (28)

We will exploit this representation to implement the commitment problem recursively.
Formally, fixing the distorted expectation operator Ě at date k, we explore changes in the
control policy and penalized choices of worst-case models relative to the P̌ r probability
distribution. This allows us to work with entropy relative to the P̌ r probability distribution
and to let the objective include terms only from date k forward. From the solution to
Problem 3.8, we know that we can solve a conditional counterpart to this problem in which
we decompose:

M f
k = hf

kG
f
k

with Gf
k being Sk measurable and hf

k satisfying:

Ě(hf
k |Sk) = 1.
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The conditional problem uses the objective:

Ě

[
M f

k

∞∑

t=k

βtMk
t U(xt, at)|Sk

]
+ θĚ

[
hf

k log(hf
k)|Sk

]
+ Ě

(
hf

kM
k
∞ log(Mk

∞)|Sk

)
.

and abstracts from the minimizing choice of Gf
k . The third term in (28) is irrelevant for this

conditional problem.
We shall use the notation Ȟk to denote the analog to Hk constructed using the P̌ r

probability measure in place of the original probability measure.

6.3 Reconsidering the date k decision

To induce a recursive algorithm for solving the commitment problem, we divide the maxi-
mizing player into a sequence of date k maximizing players and ask each date k player to
reconsider the date k choice that our single maximizing player chose under commitment,
taking as given the contingency rules of the maximizing agents for dates s 6= k. If we endow
each date k maximizing agent with the same date zero objective that we used under com-
mitment, the date k player will reaffirm the date k component chosen under commitment.
However, to get a recursive implementation of the commitment solution, we want the date k
maximizing decision-maker to use an objective based only on one-period utilities from date
k forward, i.e., we want him to consult continuation values. In addition to ignoring earlier
contributions to the objective, we would also ask an associated time t minimizing agent to
choose ht.

In this section, we shall eventually describe the rankings over action processes implied
by minimization in terms of applications of our two operators R1 and R2. We construct
date k minimization problems that preserve conditional rankings for any k ≥ 0 and thereby
motivate dynamic programming formulations. We shall represent xt as a function of current
and past actions and shocks

xt = ψt(a0, a1, ..., at−1),

leaving implicit the dependence of the random function ψt on the underlying shocks and the
initial state.

We now rank contingent decision processes from date k forward. We denote the infinite
sequence of current and future decisions by

ak,∞
.
= (ak, ak+1, ak+2, ...)

and define
ξt(ak,∞)

.
= ψt(a

∗
0, a

∗
1, ..., a

∗
k−1, ak, ..., at−1)

for t > k. For ` ≥ k, let

Ξ`(ak,∞)
.
=

∞∑

t=`

βtU [ξt(ak,∞), at]. (29)

To produce a ranking over action process ak,∞, solve:

min
hk∈Ȟk

min
mt∈Mt,t>k

Ě
[
hkM

k
∞Ξk(ak,∞) + θhkM

k
∞ log Mk

∞ + θhk log hk|Sk

]
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where

Mk
∞ =

∞∏

t>k

mt.

Consider first the inner minimization problem:

Ξ∗k(ak,∞) = min
mt∈Mt,t>k

E
[
Mk
∞Ξk(ak,∞)|Xk

]
+ θE

(
Mk
∞ log Mk

∞|Xk

)
. (30)

In section 4.2 in equation (21), we saw that the minimization over Mk
∞ can be done recursively

by iterating on
Ξ∗`(ak,∞) = β`U [ξ`(ak,∞), a`] + R1

`

[
Ξ∗`+1(ak,∞)|θ] , (31)

coming backwards to ` = k.
We can continue to use the R1

` operator because the P̌ r probability measure does not
distort probabilities conditioned on Xk. We use

Ř2
k [Ξ∗k(ak,∞)|θ]

to rank alternative action processes, where Ř2
k is constructed just as R2

k but with the P̌ r
probability measure in place of the original probability measure.

Claim 6.1. Suppose that {a∗t : t ≥ 0} solves the commitment problem. Then

Ř2
k[Ξ

∗
k(a

∗
k,∞)|θ] ≥ Ř2

k[Ξ
∗
k(ak,∞)|θ] (32)

for any other feasible action process ak,∞, where Ξ∗k(ak,∞) solves (30).

To represent the solution of the commitment problem recursively, we must somehow
make the time k minimizer behave as the time 0 minimizer does under commitment. We
accomplish by constructing the P̌ r measure. The effects on the time k minimizer’s problem
of the terms in the objective preceding date k are confined to the P̌ r probability measure.
To make the time k agent act like a time 0 agent under commitment, we require the time k
agent to act as if the distorted measure P̌ r is his approximating model. Doing this imposes
on the time k minimizing agent a commitment to the distorted measure P̌ r that imparts a
form of consequentialism to the decision problem. However, we will allow the time k decision
maker to contemplate additional probability distortions captured by Mk

∞, hk. We will say
more about the distortion embedded in the time k decision maker’s ‘benchmark model’ and
its consequences in later subsections.

6.4 The rear view mirror: distorted and undistorted filtering

The distortion in the benchmark model requires that we compute conditional expectations
of the form

Ě [φ(zk)|Sk] .

for Borel measurable functions φ. Equivalently, we require the P̌ r probability conditional
density q̌k of zk (relative to λ) conditioned on Sk. When the utility function does not
depend on the hidden state as in Example 4.6, M b

k is Sk measurable and the q̌k probability
distribution agrees with the conditional distribution under the original probability model.
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But more generally, the distribution q̌k can be computed recursively by adapting standard
methods that entail forward induction. Begin by forming the multiplicative decomposition:

M b
k−1 =

∏k−1
t=0 m̌t

E
(∏k−1

t=0 m̌t|S0

)

where

m̌t
.
= exp

[
−1

θ
βtU(x∗t , a

∗
t )

]
. (33)

Notice that M b
k does not distort probabilities conditioned on Xk−1. Therefore, given a density

q̌k−1 (relative to the measure λ) of zk−1 conditional on Sk−1, we can infer q̌k−1 using:

q̌k = πq(s
∗
k, y

∗
k−1, q̌k−1, a

∗
k−1).

It remains to compute q̌k−1.
This sequence of densities {q̌k} can be computed recursively by constructing a sequence

of probability models. Form a family of distorted probability measures {P̃ rj : j ≥ 0} in

which measure P̃j has Radon-Nikodym derivative M̃j = M b
j . We thereby construct these

measures so that P̃ rk−1 coincides with P̌ r. Let q̃j be the density (relative to the measure λ)

induced by P̃ rj for zj. Then
q̌k−1 = q̃k−1.

To produce an updating equation for the density sequence {q̃j : j ≥ 0}, express the
dependence of m̌j on the hidden state by

m̌j = νj(zj),

and note that

q̃j(z) =
νj(z)πq(s

∗
j , y

∗
j−1, q̃j−1, a

∗
j−1)(z)∫

νj(z̃)πq(s∗j , y
∗
j−1, q̃j−1, a∗j−1)(z̃)dλ(z̃)

=
νj(z)

∫
τ(z, s∗j |y∗j−1, ẑ, a

∗
j−1)q̃j−1(ẑ)dλ(ẑ)∫ ∫

νj(z̃)τ(z̃, s∗j |y∗j−1, ẑ, a
∗
j−1)q̃j−1(ẑ)dλ(ẑ)dλ(z̃)

.

This operation updates using πq and distorts using the conditional density νj scaled appropri-
ately. The recursion is initialized by scaling the initial density q0 by ν0(z), then renormalizing
so that the product integrates to one.

6.5 Discounting

It is revealing to adjust for discounting in forming continuation values. We accomplish this
by first multiplying Ξ` defined in (29) for ` ≥ k by β−` to obtain:

Ξ̃`(ak,∞)
.
= β−`Ξ`(ak,∞) =

∞∑
t=0

βtU [ξt+`(ak,∞), at+`].
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Multiplying both sides of (30) by β−k results in:

Ξ̃∗k(ak,∞) = β−kΞ∗k(ak,∞) = min
mt∈Mt,t>k

E
[
M `
∞Ξ̃k(ak,∞)|X`

]
+ β−kθE

(
M `
∞ log M `

∞|X`

)
.

It follows that we can calculate Ξ̃∗k recursively by iterating on

Ξ̃∗`(a`,∞) = U [ξ`(ak,∞), a`] + βR1
`(Ξ̃

∗
`+1(a`+1,∞)|β−`−1θ) (34)

backwards on ` to k + 1. Similarly, we use

Ř2[Ξ̃∗k|β−kθ] (35)

to rank the alternative action processes.
Thus, the standard approach of renormalizing the discount factor at date k to be unity

can be accomplished only by introducing time dependence into the robustness parameter.
Scaling θ by β−k increases the robustness penalty geometrically in k and causes concern
about robustness to wear off over time when β is less than one. This wearing off occurs
because we discount the return function but not the entropy measure.

In Hansen and Sargent (2005), we show how to arrest that wearing off by using with θ
to replace β−kθ in recursions closely related to (34) and (35).

6.6 Example 4.6 revisited

When the special circumstances of example 4.6 prevail, there is available a second approach
to producing a conditional ranking that avoids solving a filtering problem by working directly
with the signal process and using the fact h∞ = 1 for feasible action processes. Thus, assume
that hidden states do not occur as arguments of U so that it can be written U(yk, ak) at
date k. Construct

Gk
∞ =

∞∏

t=k+1

gt.

Let the minimizing agent solve:

Ξ∗k(ak,∞) = min
gt∈Gt,t≥k+1

E
[
Gk
∞Ξk(ak,∞)|Xk

]
+ θE

(
Gk
∞ log Gk

∞|Sk

)

Construct a conditional ranking of action processes by using

βkÛ(y∗k, ak) + Ξ∗k(ak,∞). (36)

Claim 6.2. Suppose that {a∗t : t ≥ 0} solves the commitment problem. Then

βkÛ(y∗k, a
∗
k) + Ξ∗k(a

∗
k,∞) ≥ βkÛ(y∗k, ak) + Ξ∗k(ak,∞)

for any other feasible ak,∞ where Ξ∗k(ak,∞) solves (36).

This approach works with the signal filtration from the outset and does not directly
assign distorted probabilities to hidden states (i.e., it sidesteps filtering problems). After the
problem is solved, we can construct M∞ = G∞ and deduce the implied probabilities for Xk

for any choice of k.
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7 A linear quadratic decision problem under commit-

ment

This section studies a decision problem with linear transition laws and a quadratic return
function. We first solve a version of the problem under commitment, thereby implementing
a particular version of the structure in section 4. Under commitment, Basar and Bernhard
(1995) and Whittle (1990) have studied both undiscounted and discounted versions of this
linear-quadratic problem and have displayed an elegant solution that incorporates a worst-
case certainty equivalent principle. The certainty equivalence property permits one to solve
the problem by combining solutions to two separate problems, namely, a nonstochastic con-
trol problem and an estimation problem. We display versions of these two subproblems in
the following subsections. Then we relate our martingale representation of perturbations to
formulas from the control theory literature.

The linear quadratic structure provides a practical context for us to expand on the
fact that the equilibrium of a two-player zero-sum game under commitment has a recursive
representation and therefore can be computed recursively. In addition, this setting enables
a simple characterization of the probability distribution P̌ r that summarizes the history
of signals and that functions as part of the time k approximating model in a recursive
representation of the equilibrium of the game under commitment. In particular, we can
summarize P̌ r by a particular Gaussian distribution q̌t(z) with mean ž and covariance Σ̌k.
For the commitment problem, we describe the important special case in which q̌t(z) = qt(z),
where qt(z) is now the distribution associated with the ordinary Kalman filter.

7.1 The problem

The limited information problem under commitment is

− max
{at∈At}

min
h0∈H0

min
{mt+1∈Mt+1}

1

2
E

∞∑
t=0

Mt

(
βt

[
at
′ xt

′]
[
Q P
P ′ R

] [
at

xt

]
+ θmt+1 log mt+1|S0

)

+ θE(h0 log h0|S0) (37)

subject to

xt+1 = Axt + Bat + Cwt+1

st+1 = Dxt + Gwt+1

Mt+1 = mt+1Mt

M0 = h0 (38)

where at is restricted to be measurable with respect to the sigma algebra St. We assume
that GG′ is nonsingular and is independent of Xt and that wt+1 has a multivariate, standard
normal distribution. The decision maker fears that the conditional Gaussian distributions
in (38) are misspecified.

To relate this to our earlier setup, we partition xt as

xt =

[
yt

zt

]
.
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In section 2, we specified an evolution equation πy for yt+1 and a joint density τ for the
hidden state zt+1 and the signal st+1 conditioned on xt. The specification for τ can be
obtained directly from (38) as multivariate normal. Suppose that πy is chosen to satisfy

yt+1 = Πsst+1 + Πyyt + Πaat.

Substituting from the evolution equation for the signal in (38), we obtain:

yt+1 = ΠsDxt + Πyyt + Πaat + ΠsGwt+1,

which gives the y-rows in system (38).

7.2 Full information without random shocks

The first step is to solve the following two-player zero-sum game with no uncertainty. The
problem is

max
{at}

min
{vt}

−1

2

∞∑
t=0

(
βt

[
at
′ xt

′]
[
Q P
P ′ R

] [
at

xt

]
+ θ|vt|2

)
(39)

subject to
xt+1 = Axt + Bat + Cvt (40)

This deterministic problem follows an important part of the robust control theory literature
in interpreting the ‘shocks’ vt as unknown model misspecifications. As much of the robust
control theory literature also does, problem (39)-(40) eliminates randomness. In section 7.3,
we shall interpret vt as a component of entropy in a random counterpart to this problem.
Notice that we in effect set ρ = 1 in (16) and so do not discount the entropy term vt. An
action at can be made contingent on the state vector xt.

We are interested in the equilibrium of the zero sum game (39)-(40) in which both players
choose once and for all at time 0, i.e., a game in which both players commit to sequences
of possibly state-contingent decisions at time 0. In more general settings, timing protocols
affect equilibrium outcomes. However, in this particular zero-sum, full information game, it
is known that identical equilibrium outcomes prevail across a set of games with alternative
timing protocols: the details of the timing protocols affect neither equilibrium outcomes nor
the recursive representations of equilibrium strategies. Therefore, in the present context, we
lose no insights by focusing on a Markov perfect equilibrium in which both the maximizing
and the minimizing decision makers choose sequentially.12

For sufficiently large values of θ, the Markov perfect equilibrium gives rise to a date t
value function that is quadratic. Inclusive of discounting,13 we denote it

−βt

2
(xt)

′Ωtxt.

12See Hansen, Sargent, Turmuhambetova, and Williams (2004) and Hansen and Sargent (2004a) for state-
ments and proofs of the equivalence of outcomes and representations for different timing protocols.

13This problem is well posed only for sufficiently large values of θ. See Lemma 3.1 of Basar and Bernhard
(1995).
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For notational convenience, define:

Q̃t
.
=

[
Q 0
0 −β−tθI

]

P̃
.
=

[
P
0

]

R̃
.
= R− P̃ ′(Q̃t)

−1P̃ = R− P ′Q−1P
B̃

.
=

[
B C

]

Ã
.
= A− B̃(Q̃t)

−1P̃ = A−BQ−1P.

The robust at and the worst-case vt are given by:

[
at

vt

]
= −

[
Q + B′βΩt+1B βB′Ωt+1C

βC ′Ωt+1B βC ′Ωt+1C − β−tθI

]−1 [
βB′Ωt+1A + P

βC ′Ωt+1A

]
xt

= −
(
β

[
Q̃t + βB̃′Ωt+1B̃

]−1
B̃′Ωt+1Ã + (Qt)

−1P̃
)

xt, (41)

where the matrix Ωt in the value function satisfies the Riccati equation

Ωt = R̃ + βÃ′Ωt+1Ã− βÃ′Ωt+1B̃
[
Q̃t + βB̃′Ωt+1B̃

]−1
B̃′Ωt+1Ã. (42)

(See Basar and Bernhard (1995) page 272.)
When β < 1, as t → +∞, the solution for Ωt converges to the one that would be

obtained under a no-robustness (θ = ∞) specification, vt converges to zero, and the limiting
control law converges to that associated with θ = ∞. When θ < +∞, the decision maker
is concerned about robustness, but that concern diminishes over time. The dissipation of
concerns about robustness with the passage of time is a direct consequence of the different
discounting of one-period returns (they are discounted) and one-period entropies (they are
not discounted).

7.3 Full information with random shocks

When random shocks are included, we are interested in solving the two-player zero-sum
game14

−1

2
max
{at∈A∗t }

min
M∞>0,E(M∞|X∞)=1

E

[
M∞

∞∑
t=0

(
βt

[
at
′ xt

′]
[
Q P
P ′ R

] [
at

xt

])
|X0

]
+θE(M∞ log M∞|X0)

(43)
subject to:

xt+1 = Axt + Bat + Cwt+1. (44)

The date t admissible control set A∗
t consists of Xt-measurable random vectors of the ap-

propriate dimension. Using the law of iterated expectations and the representation (11) for

14Orders of minimization and maximization can be exchanged and alternative timing protocols support the
same equilibrium outcomes. See Basar and Bernhard (1995) and Hansen, Sargent, Turmuhambetova, and
Williams (2004) for complete discussions of these issues. Hansen, Sargent, Turmuhambetova, and Williams
(2004) use a continuous-time specification with a Brownian motion information structure.
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M∞ that prevails when ρ = 1, we can represent this game in the alternative form

−1

2
max
{at∈A∗t }

min
{mt+1∈Mt+1}

E

[ ∞∑
t=0

Mt

(
βt

[
at
′ xt

′]
[
Q P
P ′ R

] [
at

xt

]
+ θmt+1 log mt+1

)
|X0

]

subject to:

xt+1 = Axt + Bat + Cwt+1

Mt+1 = mt+1Mt.

We set the initial value of M0 at unity, which eliminates the term EθM0 log M0|X0. In this
specification, {Mt : t ≥ 0} is a nonnegative martingale adapted to {Xt : t ≥ 0}, and mt+1 is
related to vt in problem (39)–(40) in a way to be described in equation (45).

Problem (43)-(44) simplifies. The quadratic objective makes the worst-case probability
for the shocks become normal. The distortion consists of a state dependent mean shift and a
state independent shift in the covariance matrix. The value function of the Markov perfect
equilibrium scales linearly in Mt and equals

−βt

2
Mt [(xt)

′Ωtxt + ωt] ,

where Ωt satisfies (42). Randomness contributes the constant term ωt.
The distortion mt+1 is a likelihood ratio that changes the distribution of wt+1 from a

normal distribution with mean zero and covariance matrix I to a normal distribution with
a mean vt that is given by the second equation of (41) and a covariance matrix Υt, where
Υ−1

t = I − 1
θ
C ′Ωt+1Cβt+1. The distortion mt+1 equals

mt+1 = exp

[
−1

2
(wt+1 − vt)

′ (Υt)
−1 (wt+1 − vt) +

1

2
wt+1 · wt+1 − 1

2
log det Υt

]
,

A simple calculation shows that

E (mt+1 log mt+1|Xt) =
1

2

[|vt|2 + trace(I −Υ−1
t )− log det Υt

]
(45)

where the component terms 1
2
|vt|2 and trace(I −Υ−1

t )− log det Υt are both nonnegative.
A form of certainty equivalence prevails in the sense that the solutions for at, vt as func-

tions of xt equal those given by (41). The left side of (45) converges to zero as t gets large
under the distorted distribution. Thus, all components of the right side of (45) converge to
zero at rates sufficiently fast to guarantee convergence of Mt to M∞. Therefore, when ρ = 1,
the disagreement between the approximating and worst case models vanishes for tail events.

7.4 Hidden states

We complete the solution of problem (37)-(38) by concealing some of the states. The ad-
missible control set At now contains random vectors that are St measurable. We exploit
the linear-quadratic structure to show that the ‘temporary approximating model’ P̌ rk for zk

from section 6.4 is a Gaussian distribution with mean žk and conditional covariance Σ̌k, and
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we give recursions for computing žk, Σ̌k. In appendix B we show how to match our recursions
with different ones that Basar and Bernhard (1995) derived in a nonstochastic setting.15 The
appendix B algorithm allows us to interpret q̌t(z) as a distorted Kalman filter that makes
operational the recursive characterization of the commitment solution set forward in section
6.4. In our recursive implementation of the commitment solution, the date k minimizing
player treats these distorted densities as part of the date k approximating model.

7.4.1 Ordinary Kalman filter for the hidden state

Our analysis starts with the ordinary Kalman filter taking the approximating model as true.
Write the hidden state evolution equation as:

zt+1 = A21yt + A22zt + B2at + C2wt+1,

and the signal equation as:

st+1 = D1yt + D2zt + Gwt+1.

The ordinary Kalman filter for predicting zt using the original benchmark model is:

z̄t+1 = A21yt + A22z̄t + B2at + K2(∆t)[st+1 −D1yt −D2z̄t]

where
K2(∆) = (A22∆D2

′ + C2G
′)(D2∆D2

′ + GG′)−1.

The covariance matrix is updated using:

∆t+1 = A22∆tA22
′ + C2C2

′ − (A22∆tD2
′ + C2G

′)(D2∆tD2
′ + GG′)−1(A22∆tD2

′ + C2G
′)′.

Thus, under the approximating model, zt+1 ∼ N (z̄t+1, ∆t+1).

7.4.2 Altered distribution

Partition P and R as:
P =

[
P1 P2

]

and

R =

[
R11 R12

R21 R22

]
.

Then write:

[
a′ x′

] [
Q P
P ′ R

] [
a
x

]
=

[
a′ y′ z′

]



Q P1 P2

P1
′ R11 R12

P2
′ R12

′ R22







a
y
z


 .

For this objective, the date t ingredient corresponding to (33) for constructing the sequence
of distorted benchmark models is:

m̌t = exp


−βt

2θ

[
at
′ yt

′ z′t
]



Q P1 P2

P1
′ R11 R12

P2
′ R12

′ R22







at

yt

zt





 .

15Also see Whittle (1990).
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The density under the original benchmark model (i.e., the approximating model at time 0) is
normal with mean z̄t and covariance matrix ∆t. By the usual complete the square argument,
the m̌t distortion reduces the precision matrix (inverse of the covariance matrix) by

(∆̃t)
−1 = (∆t)

−1 − βt

θ
R22 (46)

and alters the mean by

z̃t =

[
(∆t)

−1 − βt

θ
R22

]−1 [
1

θ
P2

′at +
1

θ
R12

′yt + (∆t)
−1z̄t

]

= z̄t +
βt

θ
∆̃t (P2

′at + R12
′yt + R22z̄t) . (47)

When hidden states do not enter the objective function, R12 = 0, R22 = 0, and P2 = 0,
which according to (46) and (47) implies that there is no distortion. Otherwise, there is a
distortion that depends on objective function parameters, controls, and predicted states.

These calculations justify the following algorithm to update the distorted mean and
variance. Take the date t distorted mean and covariance matrix and update both using the
ordinary Kalman filter, then distort these updates in accordance to formulas (46) and (47).
Formally, this results in the two step recursion. The outcome of the first step is a conditional
mean žt+1 and a conditional covariance matrix ∆̌t+1, which are convenient sufficient statistics
for the conditional normal density q̌t+1. The density q̌t+1 serves as a benchmark for the date
t + 1 conditional problem. The preceding results tell us that the ‘temporary benchmark
density’ q̌t+1 can be computed in two steps. The first step is to take the distorted density q̌t

and to compute (z̃t, ∆̃t) from:

z̃t =
βt

θ
∆̃t (P2

′at + R12
′yt + R22žt) + žt

(∆̃t)
−1 = (∆̌t)

−1 − βt

θ
R22.

The second step starts from z̃t, ∆̃t and gets q̌t+1(z) by taking one iteration on the ordinary
Kalman filter:

žt+1 = A21yt + A22z̃t + B2at + K2(∆̃t)(st+1 −D1yt −D2z̃t)
∆̌t+1 = A22∆̃tA22

′ + C2C2
′

−(A22∆̃tD2
′ + C2G

′)(D2∆̃tD2
′ + GG′)−1(A22∆̃tD2

′ + C2G
′)′

with (z̃t, ∆̃t) as state variables.
Appendix B shows that combining these two recursions into one attains versions of re-

cursions that Basar and Bernhard (1995) derived in a nonstochastic setting.

7.5 Worst-case certainty equivalence

We can use the solution to the full information model along with žk to represent the robust
control law when some states are hidden. Recall the full information value function:

−1

θ
βkMk [(xk)

′Ωkxk + ωk] .
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Our use of this value function is an application of a modified version of certainty equivalence.
The full information distortion mt+1 in this context pretends that the action at can condition
on information in Xt instead of St because of certainty equivalence. This trick simplifies
computation because it does not involve filtering. After this problem has been solved, the
solution of the limited information problem can be obtained by replacing the known state
from the full information decision rule with an estimate of the state adjusted for robustness.

At date k, factor Mk = hkGk and solve the conditional problem:

min
hk∈Hk

Ě
(
βk [(xk)

′Ωkxk + ωk] + θhk log hk|Sk

)
(48)

Under both the original and the (̌·) probability model, the conditional covariance matrix of
xk conditioned on Sk is singular because yk is known at date k; zk is normal with mean žk

and covariance matrix ∆̌k. The minimizer of (48) is:

hk =
exp

[
−βk

2θ
(xk)

′Ωkxk

]

Ě
(
exp

[
−βk

2θ
(xk)′Ωkxk

]
|Sk

) .

It implies that zk has a distorted distribution with mean:

ẑk = žk +

[
(∆k)

−1 − βk

θ

[
0 I

]
Ωk

[
0
I

]]−1
βk

θ
Ωk

[
yk

žk

]
.

The robust control obeys a modified certainty equivalence principle because it is given by
the robust control law (41) for ak, which we computed under full information, but now to
be evaluated at the distorted state estimate ẑk. The ak decision is

ak = − [
I 0

] [
β

(
Q̃k + βB̃′Ωk+1B̃

)−1

B̃′Ωk+1Ã + (Qt)
−1P̃

] [
yk

ẑk

]
. (49)

As emphasized by Whittle (1990), the decision rule (49) has forward looking compo-
nents that come from ‘control’ and backward looking components that come from ‘filtering
under commitment’. Under commitment, the sufficient statistic žk used as a benchmark
for distorting in state estimation is backward looking. When hidden state variables enter
the one-period utility function, žk can deviate from the state estimate obtained by direct
application of the Kalman filter. The forward-looking component comes from the control
component of the problem through the matrices Ωk+1 and Ωk in (42). Both components are
combined to produce a distorted estimate of the hidden state ẑk and the robust action ak.

7.6 Examples

We consider two examples each of which has a special structure.
The first example is a pure estimation problem.

Example 7.1. Suppose that the state cannot be influenced by the decision-maker and that
the objective is to estimate −Pxt. Let the control be simply a robust estimate of −Pxt. Set
Q = I and R = P ′P . For this problem Ωt = 0 because a = −Px sets the full information
objective to zero. The solution to the estimation problem is at = −Px̂t.
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The second example supposes that the objective does not depend on the hidden state.

Example 7.2. Suppose that P2 = 0, R12 = 0, and R22 = 0. There is another way to
solve the robust control problem that first solves the filtering problem and then computes an
ordinary robust control for the reduced information configuration by applying the approach
described in section 6.6 in conjunction with certainty equivalence.

Write the solution to the filtering problem as:

z̄t+1 = A21yt + A22z̄t + B2at + K2(∆t)w̄t+1

where
w̄t+1 = D2(zt − z̄t) + Gwt+1.

The constructed disturbance is normal with means zero and covariance matrix:

DΣtD
′ + GG′

conditioned on St. Instead of distorting the joint distribution (wt+1, xt), we can distort the
distribution of w̌t+1 conditioned on St. This amounts to focusing directly on the gt+1. For
computational purposes it suffices to focus on a mean shift distortion v̄t with entropy penalty:

θv̄′t(DΣtD
′ + GG′)−1v̄t

where the mean shift is now restricted to be a function of the signal history. Despite there
also being a bigger conditional covariance, certainty equivalence allows us to compute the
mean distortion by solving a deterministic two-player game. As in the robustness problem
with full information, discounting causes the impact of discounting to wear off over time.

8 Concluding remarks

Inspired by the pair (31)-(32) that give a recursive representation of the commitment game
in the special case that ρ = 1, Hansen and Sargent (2005) define operators T1 and T2 that
correspond to R1 and R2, respectively, and that apply when the state can be taken to be
(yt, qt). They analyze a zero sum game associated with the following recursions

W (x, q) = T1 [U(x, a) + βW (x∗, q∗)|θ1] (x, q, a), (50)

after choosing an optimal action by solving

max
a

T2
{
(T1 [U(x, a) + βW (y∗, q∗, z∗)|θ1] |θ2

}
(y, q, a) (51)

for θ1 6= θ2. When θ1 = θ2 = θ, (50)-(51) alters the setup in this paper by withdrawing
commitment from the two players in a zero-sum game, forcing them to choose sequentially,
and replacing θ

βt in (31)-(32) with use θ, thereby discounting increments to entropy at the

rate β. By doing this, the formulation in Hansen and Sargent (2005) arrests the decaying of
concerns about robustness that leads to the time varying decision rules that emerge in the
commitment setup of this paper when β < 1.
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For a finite θ1, the operator T1 captures the decision maker’s fear that the state and
signal dynamics conditioned on all components of the state, both hidden and observed, are
misspecified, and for a finite θ2, the operator T2 captures the decision maker’s fear that
the distribution of the hidden state conditioned on the history of signals is misspecified.
Setting θ1 = θ2 focuses the decision maker’s attention equally on misspecifications of the
state and signal dynamics conditioned on all components of the state, on the one hand, and
the distribution of the hidden state conditioned on the history of signals, on the other.

Hansen and Sargent (2004b) advocate separating the values of θ1 and θ2 in the operators
T1 and T2 and describe how alternative choices of (θ1, θ2) focus the decision maker’s distrust
on different aspects of his specification. This flexibility will be especially useful in continuous
time versions of our model.
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A Martingale Convergence

We begin with some useful inequalities.

Lemma A.1. The function:

φ(x) = x logx− x + 1− (x1/2 − 1)2

is nonnegative on x ≥ 0 where we define φ(0) as the continuous extension.

Proof. Note that

φ′(x) = log x + x−1/2 − 1

φ′′(x) = x−1 − 1

2
x−3/2.

The function φ is zero at x = 1 and x = 0. The second derivative has single zero at x∗ = 1/4.
The second derivative is positive to the right and negative to the left of this point. Thus
φ is convex on the interval x > x∗ and concave on the interval (0, x∗). The first derivative
φ′ is zero at x = 1, which is necessarily a global minimum over the region (x∗, +∞). The
function φ is concave over (0, x∗) and must be positive because φ(x∗) > 0 and φ(0) = 0.

We use this inequality to relate entropy to an L1 approximation.

Lemma A.2. Consider a nonnegative random variable M with unit expectation. Then

EM log M ≥ E[(M1/2 − 1)2] ≥ 1

4
(E|M − 1|)2 .

Proof. First, note that

0 ≤ Eφ(M) = EM log M − E[(M1/2 − 1)2],

which proves the first inequality. Second, note that the Cauchy-Schwarz and Triangle In-
equalities imply that

E(|M − 1|) = E
[|(M1/2 − 1)(M1/2 + 1)|]

≤ [
E(M1/2 − 1)2

]1/2 [
E(M1/2 + 1)2

]1/2

≤ [
E(M1/2 − 1)2

]1/2 [
(EM)1/2 + 1

]

= 2E
[
(M1/2 − 1)2

]1/2
,

which proves the second inequality.

Remark A.3. The distance

H(M, M̃) =

[
1

2
E|M1/2 − M̃1/2|2

]1/2
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is referred to as the Hellinger distance between the “derivatives” M and M̃ . It is less than
or equal to unity, since EM = EM̃ = 1. The second inequality of Lemma A.2 is implied by
the well known link between the Hellinger distance and the L1 norm:16

H(M, M̃)2 ≤ 1

2
E|M − M̃ | ≤ H(M, M̃)

√
2−H2(M, M̃)

Replacing the square root term by its upper bound
√

2 gives the second inequality with M̃ = 1.

Let X∞ .
=

∨
tXt.

Proposition A.4. Consider a nonnegative martingale {Mt : t ≥ 0} with unit expectation
conditioned on X0 and adapted to {Xt : t ≥ 0}. Suppose that

∞∑
t=0

E [MtE (mt+1 log mt+1|Xt) |X0] < ∞.

Then there exists an X∞ measurable nonnegative random variable M∞ such that

lim
t→∞

E ( |Mt −M∞| |X0) = 0.

Proof. Construct

M t
t+j =

j∏

k=1

mt+k

and write:
|Mt+j −Mt| = Mt|M t

t+j − 1|.
Given ε > 0 choose t∗ such that

∞∑

k=1

E [Mt∗+k−1E (mt∗+k log mt∗+k|Xt∗) |X0] ≤ 1

4
ε2,

and let t ≥ t∗. Construct a distorted probability with expectation operator Ẽ using the Xt

measurable random variable Mt. Note that the implied probability conditioned on Xt is not
distorted and that

Ẽ
(
M t

t+j log M t
t+j|X0

)
= Ẽ

(
M t

t+j

j∑

k=1

log mt+k|X0

)

=

j∑

k=1

Ẽ
(
M t+k

t log mt+k|X0

)

=

j∑

k=1

Ẽ
[
M t+k−1

t E (mt+k log mt+k|Xt+k−1) |X0

]

=

j∑

k=1

E [Mt+k−1E (mt+k log mt+k|Xt+k−1) |X0]

16See LeCam and Yang (1989), page 25, for more about these inequalities.
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≤ 1

4
ε2

for all j ≥ 1. Moreover,

E ( |Mt+j −Mt| |X0) = Ẽ
( |M t+j

t − 1| |X0

)

¿From Lemma A.2,

Ẽ
( |M t

t+j − 1| |X0

) ≤ 2
[
Ẽ

(
M t

t+j log M t
t+j|X0

)]1/2

≤ ε.

Thus
E ( |Mt+j −Mt| |X0) ≤ ε

for all j ≥ 1.
Since ε was chosen arbitrarily, the martingale sequence {Mt : t ≥ 0} is conditionally

Cauchy in the conditional (on X0) L1 space constructed using the underlying probability
measure. This space is conditionally complete and hence this sequence has a limit point M∞
that is X∞ measurable.17

Corollary A.5. Under the assumptions of Proposition A.4,

Mt = E (M∞|Xt) .

This follows because for any bounded random variable Wt that is Xt measurable,

E(M∞Wt|X0) = lim
j→∞

E(Mt+jWt|X0)

= lim
j→∞

E(MtWt|X0)

= E(MtWt|X0).

Corollary A.6. In the statement and conclusion of Theorem A.4, the sigma algebra X0 can
be replaced by a smaller sigma algebra S0.

Remark A.7. Important components of this analysis are anticipated in Kabanov, Lipcer,
and Sirjaev (1977). For instance, the criterion of Proposition A.4 implies the sufficient con-
dition for absolute continuity of the distorted probability measure with respect to the original
probability measure on X∞ given in Corollary 3 of Kabanov, Lipcer, and Sirjaev (1977).
Instead of conditional L1 convergence, Kabanov, Lipcer, and Sirjaev (1977) establish almost
sure convergence of the martingale under the distorted probability distribution as a necessary
and sufficient condition for absolute continuity.

17See Hansen and Richard (1987) for a development of conditional notions of convergence and completeness.
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B Robust Control Recursions

In this appendix, we show the connection between the recursive formulas under commitment
reported in section 7 and related formulas of Basar and Bernhard (1995). We accomplish
this by deriving a different representation of the Kalman filtering updating equation that is
appropriate when the conditional covariance matrix ∆t is nonsingular.

First, transform the date t+1 state to remove correlation with the signal conditioned on
xt:

xt+1 − CG′(GG′)−1st+1 = [A− CG′(GG′)−1D]xt + Bat + (C − CG′(GG′)−1G)wt+1.

In particular, the equation for the second partition is

zt+1 − C2G
′(GG′)−1st+1 = A21yt + A22zt − C2G

′(GG′)−1(D1yt + D2zt)
+B2at + [C2 − C2G

′(GG′)−1G]wt+1.

Thus

E(zt+1|St+1) = C2G
′(GG′)−1 [st+1 −D1yt −D2E (zt|St+1)] + A21yt + A22E(zt|St+1) + B2at.

Next update the conditional precision matrix for zt given St+1:

(∆t)
−1 + D2

′(GG′)−1D2.

Recall that (∆t)
−1 is the precision matrix conditioned on St. Incorporating the information

in the signal st+1 increases the precision by D2
′(GG′)−1D2. The corresponding prediction

formula is:

E (zt|St+1) = z̄t +
[
(∆t)

−1 + D2
′(GG′)−1D2

]−1
D′

2(GG′)−1(st+1 −D1yt −D2z̄t)

where z̄t
.
= E(zt|St).

Let

Ǎ
.
= A22 − C2G

′(GG′)−1D2

Ň
.
= C2C

′
2 − C2G

′(GG′)−1GC2
′

Combining the previous calculations, we obtain the covariance recursion:

∆t+1 = Ǎ[(∆t)
−1 + D2

′(GG′)−1D2]Ǎ
′ + Ň , (52)

and the mean recursion:

z̄t+1 = A21yt + Ǎz̄t + B2at

+Ǎ
[
(∆t)

−1 + D2
′(GG′)−1D2

]−1
D′

2(GG′)−1(st+1 −D1yt −D2z̄t) (53)

Updating equations (52) and (53) give representations of the Kalman filtering equations that
are valid when the covariance matrix ∆t is nonsingular.

It follows from the covariance updating equation (52) that

∆̌t+1 = Ǎ[(∆̃t)
−1 + D2

′(GG′)−1D2]Ǎ
′ + Ň
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= Ǎ

[
(∆̌t)

−1 − βt

θ
R22 + D2

′(GG′)−1D2

]
Ǎ′ + Ň (54)

where we have used the relation:

(∆̃t)
−1 = (∆̌t)

−1 − βt

θ
R22.

Similarly, it follows from the updating equation (53) for the mean that

žt+1 = A21yt + Ǎz̃t + B2at + Ǎ
[
(∆̃t)

−1 + D2
′(GG′)−1D2

]−1

D′
2(GG′)−1(st+1 −D1yt −D2z̃t).

Since

z̃t = žt +
βt

θ
∆̃t (P2

′at + R12
′yt + R22žt) ,

žt+1 = A21yt + Ǎžt + B2at

+Ǎ

[
(∆̌t)

−1 − βt

θ
R22 + D2

′(GG′)−1D2

]−1

D′
2(GG′)−1(st+1 −D1yt −D2žt)

+
βt

θ
Ǎ

[
(∆̌t)

−1 − βt

θ
R22 + D2

′(GG′)−1D2

]−1

(P2
′at + R12

′yt + R22žt) . (55)

Updating equations (54) and (55) provide the formulas for producing the reference density
sequence {q̌t : t ≥ 0} recursively. These equations agree with equations (6.61) and (6.62) in
Basar and Bernhard (1995) derived for deterministic robust control problems. As expected,
when P2 = 0, R12 = 0 and R22 = 0 these recursions agree with the updating equations for
the original equations (52) and (53) for the Kalman filter.

41



References

Anderson, E., L. Hansen, and T. Sargent (2003). A quartet of semigroups for model
specification, robustness, prices of risk, and model detection. Journal of the European
Economic Association 1 (1), 68–123.

Basar, T. and P. Bernhard (1995). H∞-Optimal Control and Related Minimax Design
Problems (second ed.). Birkhauser.

Bergemann, D. and J. Valimaki (1996). Learning and strategic pricing. Econometrica 64,
1125–1149.

Blackwell, D. and M. A. Girshick (1954). Theory of Games and Statistical Decisions. New
York: Wiley Publications in Statistics.

Brock, W. A. and L. J. Mirman (1972). Optimal economic growth and uncertainty: The
discounted case. Journal of Economic Theory 4 (3), 479–513.

Chamberlain, G. (2000). Econometric applications of maxmin expected utility theory.
Journal of Applied Econometrics 15, 625–644.

Cogley, T., R. Colacito, and T. Sargent (2005). Benefits from u.s. monetary policy exper-
imentation in the days of samuelson and solow and lucas. unpublished.

Dupuis, P. and R. S. Ellis (1997). A Weak Convergence Approach to the Theory of Large
Deviations. Wiley Series in Probability and Statistics. New York: John Wiley and
Sons.

Elliott, R. J., L. Aggoun, and J. B. Moore (1995). Hidden Markov Models: Estimation
and Control. New York: Springer-Verlag.

Epstein, L. and M. Schneider (2003, November). Recursive multiple priors. Journal of
Economic Theory 113 (1), 1–31.

Gelman, A., J. B. Carlin, H. S. Stern, and D. B. Rubin (1995). Bayesian Data Analysis.
Chapman and Hall.

Hamilton, J. D. (1989, March). A new approach to the economic analysis of nonstationary
time series and the business cycle. Econometrica 57 (2), 357–384.

Hansen, L. P. and S. F. Richard (1987). The role of conditioning information in deducing
testable restrictions implied by dynamic asset pricing models. Econometrica 55, 587–
614.

Hansen, L. P. and T. Sargent (1995, May). Discounted linear exponential quadratic
gaussian control. IEEE Transactions on Automatic Control 40 (5), 968–971.

Hansen, L. P. and T. J. Sargent (2004a). Misspecification in recursive macroecononmic
theory. Princeton University Press, forthcoming.

Hansen, L. P. and T. J. Sargent (2004b). Recursive robust decisions with hidden states.
unpublished.

Hansen, L. P. and T. J. Sargent (2005). Recursive robust decisions with hidden states.
unpublished.

42



Hansen, L. P., T. J. Sargent, G. A. Turmuhambetova, and N. Williams (2004). Robust
control, min-max expected utility, and model misspecification. manuscript, University
of Chicago and New York University.

Jovanovic, B. (1979). Job matching and the theory of turnover. Journal of Political Econ-
omy 87 (5), 972–990.

Jovanovic, B. (1982, May). Selection and the evolution of industry. Econometrica 50 (3),
649–670.

Jovanovic, B. and Y. Nyarko (1995). The transfer of human capital. Journal of Economic
Dynamics and Control 19, 1033–1064.

Jovanovic, B. and Y. Nyarko (1996, November). Learning by doing and the choice of
technology. Econometrica 64 (6), 1299–1310.

Kabanov, J. U., R. S. Lipcer, and A. N. Sirjaev (1977). Absolute continuity and singularity
of measures. Mathematics of the USSR-Sbornik 33, 203–221.

Knox, T. (2003). Foundations for learning how to invest when returns are uncertain.
unpublished.

LeCam, L. and G. L. Yang (1989). Asymptotics in Statistics. New York: Springer-Verlag.

Maccheroni, F., M. Marinacci, and A. Rustichini (2004). Variational representation of
preferences under ambiguity. unpublished.

Merton, R. C. (1975, July). The asymptotic theory of growth under uncertainty. Review
of Economic Studies 42 (3), 375–393.

Petersen, I. R., M. R. James, and P. Dupuis (2000). Minimax optimal control of stochastic
uncertain systems with relative entropy constraints. IEEE Transactions on Automatic
Control 45, 398–412.

Sclove, S. L. (1983, February). Time-series segementation: A model and a method. Infor-
mation Sciences 29 (1), 7–25.

Wang, T. (2001). Two classes of multi-prior preferences. unpublished.

Whittle, P. (1981). Risk sensitive linear quadratic gaussian control. Advances in Applied
Probability 13, 764–777.

Whittle, P. (1990). Risk-Sensitive Optimal Control. New York: John Wiley & Sons.

Wonham, W. J. (1964). Some applications of stochastic differential equations to optimal
nonlinear filtering. Siam Journal of Control 2 (3), 347–368.

43


