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1 Introduction

In this chapter we discuss the management, supervision and measures of extreme and infrequent
risks in finance. By extreme risks we mean those that induce very large losses per Dollar invested.
When such risks arise infrequently, their occurrence may remain unobserved for a long period of
time after which they tend to be forgotten or neglected by investors. A series of recent bank failures,
due to mismanaged portfolios invested in corporate loans, real estate or complex derivatives, rose
the awareness of bank regulators and prompted the search for new instruments of protection against
extreme risks.

By the decision taken at the first meeting of the Governors of Central Banks held in Basle
(Switzerland) in 1995, banks were imposed mandatory computation of a risk measure, called Value
at Risk (VaR), for each line of the balance sheet. Banks were also required to report the VaR,
keep it regularly updated and to hold an appropriate amount of capital (the so-called required
capital (RC)) to hedge against extreme risks.

However, it soon appeared that a number of banks and financial institutions did not possess the
necessary data base, know-how and adequate technical equipment to satisfy the above requirements.
Consequently, a permanent committee, called the Basle Committee, was established to coordinate
the development of a minimal technological stand-by.

The implementation of common guidelines for risk supervision is a very ambitious initiative
due to variety of risks that need to be considered. Roughly, the risks can be classified as follows.

i) The market risk is due to asset price uncertainty when assets are traded on a competitive
market. The market risk is often disregarded when asset prices keep rising for a quite long period
of time. In this situation, investors often increase the part of portfolios invested in risky assets
and buy options to take advantage of the price increase, but fail to hedge their portfolios against

a possible burst of a speculative bubble.

ii) The credit risk or risk of default is specific to loans when these are evaluated without
taking into account the probability of a future payment default.

There exist various types of loans, distinguished with respect to the type of borrower or lender.
The borrower can be a consumer, a firm, a County or the Treasury. The loans can be granted
directly by a credit institution [over the counter (OTC), also called retail loan] or acquired indirectly
by purchasing a bond issued by a firm, a County, or the Treasury.

Let us give some typical examples of neglected default risk. First, consider a credit institution
which has established a long term relationship with a customer who in the past took several loans.
Suppose that the bank decides to increase substantially the credit line of this customer, given that

he had no payment defaults and his rating became high. Such an action may have an adverse
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effect, since it requires an increase of the amount of monthly payments which may cause overdebt
and default. The following example concerns losses on the bond market due to disregarded risk of
default. Such losses might be incurred by investors who believe that a bond with an Aaa rating is
riskfree, despite that any company, even a highly rated one, bears the risk of being downrated by

Moody’s at some point in time.

iii) The liquidity risk or risk of counterparty exists if it may become difficult to trade
quickly a large amount of assets at reasonable prices. Although this risk is often disregarded, in
practice it is faced by any company or bank which evaluates at the market price per share [the
so-called marked-to-market convention] assets listed on its balance sheet. The market price is
generally reported for rather small traded volumes and is much higher than the price that would
be obtained if the firm had to sell quickly the whole volume of assets that appear on its balance
sheet. This explains why, in cases of corporate or bank failures, assets are sold for an amount

considerably lower than the one previously computed and reported on the balance sheet.

iv) A number of financial strategies rely on estimation of models for the evolution of asset
returns. A typical example is the Black-Scholes model which assumes a geometric brownian motion
of asset prices and is used for derivative hedging and option pricing. As noted by several authors,
any theoretical model is necessarily misspecified and may provide poor representation of the reality
L. Moreover, any theoretical model involves some unknown parameters that have to be estimated.
The two types of errors due to misspecification and estimation account for the so-called model
risk. Even if we were very strongly motivated to assess this type of risk, and inspite that it has
been recommended to do so by the Basle Committee, such a task is conceptually infeasible since
the benchmark, that is the reality, remains unknown.

The primary intention of the Basle Committee is to impose mandatory computation of VaR
and of the capital reserve with respect to the four aforementioned notions of risk. In particular,
the Basle Committee has launched a long term project of implementing VaR measures for various
risks step by step along the lines of the following schedule:

1. VaR for market risk on portfolios of basic liquid assets, such as stocks included in market
indexes, Treasury bonds and foreign currencies.

2. VaR for market risk on portfolios that contain also rather liquid derivatives such as options
on interest rates, foreign currencies and market indexes.

3. Finally, VaR on portfolios of loans with default risk, called CreditVaR. Two types of assets

171 sometimes wonder why people still use the Black-Scholes formula, since it is based on such simple assumptions
- unrealistically simple assumptions. Yet that weakness is also its greatest strength. People like the model because
they can easily understand its assumptions.” ( F. Black)
”There are two sources of uncertainty in the prediction made by the trader or the econometrician. The first is
parameter estimation, and the second is model error” (Jacquier and Jarrow).
See Merton (1974) for a list of assumptions underlying the Black-Scholes model.
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are considered: bonds for which the market prices are available and retail loans for which the bank
has insider information about individual credit histories of borrowers.

4. Finally the assessment of model risk is backed-up by the back testing procedures for check-
ing the model specification and examining the model-based predictions under extreme scenarios of
price evolution (also called stress testing).

Our exposition follows the same order. First, we study risk on a portfolio of liquid assets,
to which we next add the derivatives, and conclude with a discussion on credit risk. In each
section, we present the methods of VaR computation that exist in the literature and point out
their advantages and limitations. Among them we indicate those recommended by the Basle
Committee. They are not necessarily the most efficient or robust ones, but they always seem to
be easy to understand and to implement. Indeed, the objective of the Basle Committee is also to
enhance the technological ability of investors 2. Accordingly, the definitions and computational
tools that will be recommended by the Basle Committee in the future are intended to gradually
become more and more sophisticated. At the beginning however, the learning process is expected
to rely on some straightforward concepts.

The final chapter is devoted to future directions of research and development. We hope that
this chapter will give an idea of the content of a similar VaR survey that could be written ten years

later.

2  Value at Risk

The aim of this section is to define and compare various notions of Value at Risk for portfolios
of assets traded on competitive markets. In particular, it is assumed that assets can be traded at
any time, and that the price per share doesn’t depend on the traded volume and on whether the
transaction is a buy or a sell. Then, the asset price is assumed equal to the ask and bid price, since
these are identical. To ensure that this condition is approximately satisfied in practice, the Basle
Committee has recommended to use daily data on market closure prices. Indeed, on some stock
markets, such as Paris and Toronto, the market closure prices are determined by a market closing

auction with a single equilibrium price for each asset.

2.1 Definition

Let us consider a portfolio of n assets, with fixed allocations a = (as,...,a,)" between ¢ and

t+ h (say). By allocation we mean quantity and not a monetary value. At date ¢ the investor has

2In a survey conducted in Australia by Gizycki and Hereford in 1998 a number of portfolios of stocks, bonds,
foreign currencies and derivatives of different types were sent to all Australian banks with a request to compute the
daily VaR for each of these portfolios according to each bank’s own method. Out of all Australian banks only 22
have responded. Out of these, only two banks were able to calculate the VaR for all portfolios.
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endowment W;(a) = a'p; designated for purchasing this portfolio and an additional reserve amount
R; (say). This reserve amount is supposed to compensate potential adverse changes in the market
price (market risk); it has to be put aside and should not be invested on the market. Essentially,
the investor selects a reserve amount such that the global position (that is the portfolio value plus
the reserve) may incur a loss and become negative, with a predetermined small probability « at

date t + h. a measures the level of protection. This condition can be written as:

Pt[Wt-l—h(a) + Rt < 0] =, (21)

where P; is the conditional distribution of future prices given information I; used by the investor to
predict future prices. Thus —R; is the a-quantile of the conditional distribution of future portfolio
value, called the profit and loss [P&L] distribution.

The required capital at time ¢ is the sum of the initial endowment plus the reserve. Theo-

retically, it is equal to the Value at Risk denoted by:

VaRt = Wt(a) + Rt, (22)

and characterized by the condition:

P [Wt+h(a) — W, (a) +VaR; < 0] = . (23)

It depends on: 1) the information I; available at time ¢, 2) the horizon h, 3) the set of assets
considered , 4) the portfolio allocation and 5) the loss probability a. These arguments can be

introduced explicitly into the VaR formula:

VaR; =VaR(I;,a,h,a). (2.4)

Condition (2.3) is equivalent to:

Pila' (ptyn — pr) < —VaRi] = a. (2.5)

Thus the opposite of VaR defined in (2.5) is the a-quantile of the conditional distribution of the
change in portfolio value.

Note that

a'(Pt+h —Pt)

n
Z a; (pi7t+h - szt)
i=1

n
= Z aipit[(Pi,t+n — Pit) [Pit]

i=1
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n
p— * .
= Q; tTitt+h,
i=1

where a4, = 1,...,n is the portfolio allocation measured in Dollars and ;¢ t4+5,% = 1,...,n are
the returns on the asset. Therefore, VaR analysis can be based on returns instead of price changes
3.

VaR can be used for two purposes: 1)to measure risk and 2)to determine the capital reserve.
The advantage of VaR is that it provides a better risk measure than the standard volatility while
it has the same applications. In particular, it can be used for portfolio management, fund manager
auditing, hedging and so on [see e.g. Levy, Sarnat (1972), Arzac, Bawa (1977), Jansen and alii
(1998), Foellmer, Leukert (1998)]. In practice, for a more comprehensive understanding of risk,
several VaR measures should be computed. This can be done by selecting a set of different risk
levels such as a = 1%, 5%...and a set of different horizons, such as h=1, 10, 20 days. As mentioned,
Var is used by supervisors to fix the level of reserve. Even though the theoretical value of required
capital is identical to the VaR, the Basle Committee has fixed the mandatory required capital RC}
at a different level defined as follows. The banks are required to report daily estimates of the Value
at Risk V/cﬂ%t at a horizon of 10 business days (i.e. two weeks) and to compute the required capital

defined by:

60
— 1 —
RCy = Maz[VaR;,3(trigger /8)@ E VaR;_y). (2.6)
h=1

This complicated formula is introduced for the following reasons: a) to alleviate the effect of an
eventual underestimation of VaR by fixing the multiplicative factor at a value larger than 3, b) to
create a positive incentive for a bank to perform the best possible evaluation of risk, by introducing
an adjustable trigger value which depends on the ex-post accuracy of the VaR (trigger between 8
and 25), c) to avoid erratic changes in the level of required capital by averaging its lagged values,

and d) to allow for quick updating when unexpected markets changes occur.

2.2 Examples

A closed-form expression of VaR can be found for some distributions of price changes (or returns).
In this section, we first present the VaR for a conditional Gaussian distribution. Next, we com-
pare the VaR expressions for distributions with different types of tails. Finally, we discuss the

dependence of VaR on the holding time, that is the computational horizon h.

i) The Gaussian Value at Risk
For convenience we assume a time horizon of length equal to one unit of time h = 1. Let

us assume that the price changes are conditionally Gaussian with mean pu; = Elpiy1 — pe|l¢] and

3For VaR computation, returns should not be computed as log price differences.
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covariance matrix ; = V(pry1 — pe|lt). We get:

Pila' (piy1 —pt) < —VaR] = a

a'(peyr —pe) —a'pe  —VaRy—a'pe]|
& P [a’Qta]1/2 < [a’Qta]1/2 =«

& —VaR, —d'py = &) (a'Qa)/?

& VaR, = —d'p + @ (1 — a)(a'a)/?, (2.7)

where ® denotes the cdf of the standard normal distribution. In practice, the predetermined
probability of loss is small. Thus, the Value at Risk is an increasing function of volatility of the
portfolio value and a decreasing function of a) the expected increment of the portfolio value and
b) the loss probability. This approach relies on the two first conditional moments only, and is
therefore called the method of the variance-covariance matrix.

The required amount of reserve is nonnegative if and only if:

a' (e + pt) 1
————= <P (1 -«

[G/’Qta]l/z ( )7

that is when the portfolio’s Sharpe performance measure is too small. Otherwise the reserve
is negative and the investor has a possibility of additional borrowing while satisfying the VaR

constraint.

ii)Comparison of tails.

Let us consider two portfolios of identical assets, with different allocations a and a* (say). We
assume that their values at date ¢ are equal a'p; = a* p;, and we denote by F, (resp. Fy) the
conditional cdf of the portfolio value change y;11 = a'(pr41 — pe) [resp. yiy, = a* (pey1 — )] At

risk level a the VaR/’s for these portfolios are given by:

VaR(a,a) = —F; Y(a), VaRi(a,a*) = —(F) " (a). (2.8)

Intuitively, portfolio a* is more risky than portfolio a if , for any small «, portfolio a* implies

a larger reserve amount than portfolio a. This condition is equivalent to:

—(F¥) Y(a) > —F, *(a), for any small «,

& Fi(y) > Fi(y), for any small y.

Thus, the reserve amount for a* is larger than for a if and only if the left tail of the conditional

distribution of the change of portfolio value is fatter for allocation a* than for allocation a. If the
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portfolio is invested in a single risky asset, the change in the portfolio value is: a(pi+1 — pt). The
left tail of the distribution of the change in portfolio value corresponds to the left tail of the asset
price change if a > 0, and to the right tail otherwise. An investor with a positive amount of this
asset is risk averse with respect to a price decrease. An investor is risk averse with respect to the
asset price increase if his position is short, that is when he holds a negative quantity of assets. In
a multiasset framework the situation is more complicated due to the fact that some asset prices
are positively and some are negatively correlated with one another.

It is common to compare extreme risks on two portfolios by considering the limiting left tail
behavior of the cdf (when y tends to minus infinity) or the quantile function (when « tends to
zero). For example the left tails of one dimensional distributions are often classified in the following
way':

i) The distribution F' admits a gaussian left tail if and only if

Im,o >0,a>0: F(y) = ad (%) , when y — —o0.

ii) The distribution F' admits an exponential left tail if and only if

N> 0,a>0: F(y) ~ aexp Ay. A is called the tail index of an exponential tail.

iii) The distribution F' admits a Pareto (hyperbolic) left tail if and only if 3A > 0,a > 0 :
F(y) ~ a(—y)~*. X is called the tail index of a Pareto tail.

Asymptotically, Pareto tails are fatter than exponential tails which, in turn, are fatter than
gaussian tails. Alternatively, the size of tails can be described in terms of the quantile function
or of the VaR. For a distribution with an exponential left tail, the VaR is a logarithmic function
of the risk level oz VaR(a) &~ — % log £ for o small. For a distribution with a Pareto left tail the
VaR is a hyperbolic function of a: VaR(a) ~ (a/a)~'/*, for a small. Thus the rate at which the
tails taper off is directly linked to the rate of increase of the VaR when « tends to zero.
Examples of distributions with exponential left tails are:

the double exponential (Laplace) distribution with cdf:

1
F(y) = 5 OxXP Ay —m), ify <m, (2.9)

1
1-— §exp—/\(y—m), ify > m;
the logistic distribution with cdf:

F(y) = {1 +exp — (%)T

Examples of distributions with Pareto tails are:

the Cauchy distribution with cdf:
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1 — 1
F(y) = — arctan (y m) + =

™ g

the double Pareto distribution with cdf:

1 .
Fy) = k- Mify<p-—1,

1 N
L=s-—m ify>p-1.

The analysis of tail sizes and estimation of tail indexes are topics of a large body of literature
in statistical theory [see e.g. Embrechts et alii (1999)]. However, any asymptotic comparison of
tails has to be interpreted with caution because in finance we are interested in a small, but fixed
risk level, such as a = 1 %, or 5 %. To illustrate this point, let us consider a logistic distribution
with the cdf F(y) = (1 +expy)~! and the normal distribution with the same mean and variance
as the logistic distribution, that is with mean 0 and variance o2 = 7?/3. The VaR computed from

the N (0,72/3) is given by:

VaRy(a) = 7/V3071(1 - a),

whereas the VaR computed from the logistic distribution is

VaRr(a) =In <1 — a) :
a

The normal and logistic VaR are ploted in Figure 2.1 as functions of a.

(Insert Figure 2.1 : Comparison of Normal and Logistic VaR)

Once the mean and variance effects are removed, we observe that the VaR curves are rather
hard to distinguish except for very small risk levels. In fact the two curves intercept for a = 4%.
If a=5% the gaussian VaR is 2.98 and is larger than the logistic VaR equal to 2.94. If a=1%, the
gaussian VaR is 4.22 and is less than the logistic VaR 4.59, although quite close. In summary, we
find that: 1)the tail effect on the VaR can be reversed when « increases but remains small; 2) the
preliminary adjustments for the mean and variance effects are necessary.

iii)Term structure of the VaR

The dependence of VaR on risk level has been discussed in the last section. Now let us focus on
the dependence of VaR on the holding time h, henceforth called the horizon. More precisely, we
investigate whether VaR can be considered a simple function of h, denoted by VaR(«a, h). Some

results are easy to derive when the variables y;,t varying, are i.i.d.. For instance it is easily proved

that
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VaR(a, h) = h'/*b(a), Va, (2.10)

where a is a scalar and b is a function, if and only if the characteristic function of y; is of the type:

U(u) = E(exp —iuy;) = exp(—c|u|?).

For example, this restriction imposed on the characteristic function is satisfied by a zero mean
normal distribution with a = 2; thus in this special case the term structure of VaR is such that
VaRn(a,h) = vVhb(a). It also holds for the Cauchy distribution with @ = 1; thus the term
structure of the VaR is such that VaR¢c(«, h) = hb*(a). This example shows that the larger the
tails, the greater is the impact of the holding period on the value of VaR.

Note that the Basle Committee (1995 p.8) suggested the practice of scaling-up the VaR calcu-
lated for a one day holding period by multiplying it by the square root vA = v/10 = 3.16 to obtain

the 10 day VaR. This suggestion implicitly assumes independence and normality of price changes.

2.3 Conditional and Marginal Value at Risk

We have seen that VaR depends on the information set used for forecasting the future values of a
portfolio. The definition of the information set depends on the approach; It can contain the lagged
values of prices of all assets in the portfolio (I}), or contain only the lagged values of the entire
portfolio (I?). The information-based approaches lead to computation of the so-called conditional
VaR. The outcomes of computations conditioned on either (I}) or (I?) are generally not identical.
Eventually, it is also possible to disregard all information on past asset prices or portfolio values

to get the marginal VaR defined by:

P[Wt+h(a) - Wt(a) + VaRt < 0] = «, (211)

where P denotes the marginal probability distribution. When the price changes (p; — ps—1),t vary-
ing, are stationary, the marginal VaR is time independent, and the time index can be suppressed.
On the contrary the conditional VaR varies in time due to changes in market conditions. For
example, if the price changes satisfy a gaussian vector autoregressive (VAR) process of order one:
Ap; = py — pr—1 = AApi_1 + & 4, where ¢, ~ IIN(0,9), A is the n x n matrix of autoregres-
sive coefficients, 2 the n x n variance-covariance matrix of the error term, then the conditional
distribution of Ap; given Ap;_1, Ap;—o... is the gaussian distribution N(AAp;_1,Q). Therefore,
the conditional VaR is given by: VaR:(a,a) = a'AAp;_1 + (1 — a)(a'Qa)'/2. On the other

4The terminology is quite confusing. Note the difference between VaR (Value at Risk) and VAR (Vector Autore-
gressive process).
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hand, we know that the marginal distribution of Ap; is also gaussian N (0, X), where ¥ = V (Ap;)
satisfies the equation ¥ = AX A" + Q = Y77  ARQ A" Therefore the marginal VaR is given by:

VaR(a,a) = ®7'(1 — a)(a'Sa)'/?.

Since the marginal mean EAp; = 0, and ¥ = V(Ap;) >> , we find that, on average, the marginal
VaR is larger than the conditional VaR.

2.4 Sensitivity of the VaR

Let us consider the VaR at horizon 1 defined by :

Pt[a'AptH < _VaRt(aaa)] = Q.

The Value at Risk depends on portfolio allocation. In practice, a portfolio manager has to
update frequently the portfolio frequently, and her major concern is the impact of updating on risk
(or on the capital reserve). Thus that manager is more concerned about the dependence of VaR
on portfolio allocation than about the value of VaR, iteself.

The analytical expressions of the first and second order derivatives of VaR with respect to

portfolio allocation have been derived in Gourieroux, Laurent, Scaillet (2000):

. OVaR(a,
1) W = —Et[Apt+1|a'Apt+1 = —VaRt(a,a)].
(2.12)
.\ O®VaR(a, dlog ga
i) ;aat(g? 2 - Oagzg s [~VaR(a,a)[Vi[Apt1la’Aprir = =VaRy(a, )]
(2.13)
0
+ {a—Vt[APHﬂa'APtH = Z]} (2.14)
z z=—VaR¢(a,x)

where g, denotes the conditional p.d.f. of a'Apstg.

Thus the first and second order derivatives of the VaR can be written in terms of the first
and second order conditional moments of price changes in a neighbourhood of the VaR condition :

a'Apir1 = —VaR(a, ).

The sensitivity of VaR can be examined directly in the gaussian case [see e.g. Garman (1996),
(1997)]. Let us denote by p, 2 the conditional mean and variance of Ap;y;, respectively. The

VaR is given by :

VaR(a,a) = —a'p + &1 — a)(a'Qa)' /2.

For example, we get :
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OV aR,(a, _
tlata(tl 9 = —Ht + (a’g:aa)lﬂ ¢ 1(1 - a)
= —u+ a%fa [VaRi(a, ) + a' i)

= —Et[Apt+1|a’Apt+1 = —VaRt(a,a)].
3 Estimation of the Marginal Value at Risk

In this section we discuss estimation of the marginal Value at Risk from historical data on incre-
ments of a portfolio value. We denote by y; = a'(p: — pt—1) the change of portfolio value and
by VaR the marginal VaR at risk level a. Thus, for notational convenience we don’t introduce
explicitly the dependence on the portfolio allocation a, the risk level a;, and the horizon h set equal
to one.

The marginal VaR is given by:

Ply: < —VaR] = a. (3.1)

It means that the opposite of the marginal VaR is equal to the a-quantile of the marginal
distribution of y; that can be characterized in two different ways. First, for the marginal cumulative

distribution function of y;, denoted by F', the VaR is defined by:

F(-VaR)=a & VaR = —F '(a). (3.2)

Alternatively, the VaR can be defined as a solution to the following minimization:

—VaR = Argemin Ela(y: —0)" + (1 —a)(y: — 0) 7], (3.3)

where (y; — )" = Maxz(y —6,0), (y: —0) = Maz(6 —y,0). It is easy to show that the first order
condition of the minimization leads to equation (3.1).

In the sequel, these two characterizations are used to define various VaR estimators in the
parametric, semi-parametric and nonparametric frameworks. The properties of estimators will
be discussed for i.i.d. observations y;,t = 1,...,7, for which the marginal VaR coincides with
the conditional one (see section 2.2). The last section is concerned with the properties of these

estimators, when the i.i.d. asssumption is violated.

3.1 Historical Simulation

A natural estimation method that does not rely on any assumption about the marginal distribution

of y;, consists of considering the empirical counterparts of expressions (3.3) and (3.2). We get:
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T
— 1
VaR = Argmin T Z[a(yt -t + (1 —a)(y. —0)7], (3.4)
0 t=1
or
VaR = Argmin[F(—9) — a]?, (3.5)
0

where F(y) = + Zthl 1y,<y denotes the empirical c.d.f., and 1,,, = 1 when y; < y and 0
otherwise, is the indicator function.

Thus the theoretical a- quantile is approximated by an empirical a- quantile. The minimizations
in (3.4) and (3.5) provide two equivalent methods for computing an empirical quantile from a
sample. However, it is important to note that the solutions are generally not unique. More
precisely, since the empirical distribution is discrete, the empirical c.d.f. is not continuous, and we
obtain an interval of solutions, called the empirical a- quantile interval.

In practice, a solution is easily obtained in the following way. Let us assume that 7' = 200 and
a = 1%. The observations y;,t = 1, ..,200 can be ranked in ascending order
Yy = Mingys < y(z)---- < y(r) = Maz; y;. Then, the 1%-quantile interval is [y(2), y(3)]- Its lower
bound corresponds to the second smallest observation, since 2/200 = 1/100, and the upper bound
is equal to the next observation.

The asymptotic properties of the empirical quantile were derived by Basset, Koenker (1978)
[see also Gourieroux, Monfort (1998), section 8.5] for i.i.d. data.

When T tends to infinity and the risk level « is fixed:

i) the length of the empirical a- quantile interval tends to zero;

ii) any value in the empirical a- quantile interval is a consistent and asymptotically normal

estimator:

F(~VaR)[l — F(~VaR)]
f*(=VaR) ’

VT(VaR —VaR) ~ N |VaR, (3.6)

where f denotes the marginal p.d.f. of y;.

For small «, the asymptotic variance of the VaR estimate depends on the risk level and left tail
pattern of the marginal distribution. The estimator is less accurate when « diminishes, or the left
tail increases. To illustrate this point, let us consider a distribution with hyperbolic tails [called

Pareto tails]. If F(y) ~ ¢(—y)~?, for small a the asymptotic variance:

F(=VaR) 1
f2(=VaR) = e

is an increasing function of the tail parameter 3.

Vas[\/f(m — VaR)] ~ (—VaR)’B+2,

The asymptotic results given above are intended to help to understand the accuracy of the

empirical quantile. However, they are not valid when 7' tends to infinity and « tends to zero,
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which is the situation encountered in finance when, for instance, 7" is large and « is small. To
give some insights on this situation, let us consider a sample of 7" = 100 for which an empirical
1%-quantile is Z = y) = Min; y;. The finite sample distribution of y(;) is easy to find. Indeed,
we have : P[Z > z] = P[Minyy; > 2] = Ply: > 2,t = 1,...100] = [1 — F(2)]'%°. Then the median

z9.5 of the 1%-quantile Z is given by:

[1— F(205)]'° & 205 =F"'[1-(0.5)11) (3.7)
n0.5 0.7
1-F = (0.5)/100 POl At it QY Nl N el )
< (20.5) = (0.5) < 205 [ 100 } {100} (3.8)

For instance, when the marginal distribution is a Cauchy distribution with c.d.f. F(y) =
%Arctgy—l— %, the theoretical 1%-quantile is equal to -31.8, whereas the distribution of the empirical
quantile Z admits the median -45.5 and a 90% prediction interval [-636.6, -10.5]. It is clear that
the finite sample distribution of the empirical quantile is skewed and its median is far from the
true value. Therefore, the result on asymptotic normality does not apply to this case.

The finite sample properties of the empirical quantile estimators can be illustrated by Monte-
Carlo experiments. We consider T' = 200 observations and risk levels @« = 1% and 5%. Figure
3.1 shows the finite sample distribution of y(1),y(2),y(3) associated with a = 1% when the true
distribution F' is N(0,1), two-sided exponential and Cauchy, respectively. The true values of the
1%-quantile are -2.33, -3.91, -31.82, respectively.

(Insert Figure 3.1: Finite Sample Distributions of the 1%-empirical quantile)

Typically, for the gaussian and two-sided exponential distributions we observe that the empirical
quantile y(3) is less biased than the empirical quantile y(s). Moreover, for Cauchy data, the left tail
of the distribution of the empirical quantile is very heavy and this estimator has poor accuracy.

Figure 3.2 shows similar results for yg),¥(10),¥(11) and the level @ = 5%. The true values of
the 5%-quantile are -1.64, -2.30, -6.31, respectively.

(Insert Figure 3.2: Finite Sample Distributions of the 5%-empirical quantile)

To conclude, estimation of the theoretical a-quantile by its empirical counterpart is an appealing
approach to VaR estimation, but leads to very inaccurate and unstable estimates, especially for
small risk levels.

Finally, let us point out another limitation of the empirical quantile approach. In practice,
it is common to compute this estimate for different risk levels and different portfolio allocations,
from the same set of basic asset price changes. While the true underlying VaR is a continuously
differentiable function of the arguments « and a , this property is not satisfied by the associated
estimate VaR. Due to discreteness, a small change in portfolio allocation can cause a jump in

the value of the estimate, whereas the true underlying VaR is slowly varying. This drawback can
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be partly eliminated by smoothing the expression that defines the estimator. For example, let us
consider a kernel K and a bandwidth h; an estimator that is smoothed with respect to a and a is

the solution of:

T _
1 —d'(py —p—1) =V
> K o = 1}3 aftl@a) | _ (3.9)
t=1

M|

where the dependence on a and a is made explicit. It can be shown that the asymptotic properties
of this estimator are identical to the asymptotic properties of the empirical a-quantile, when « is
fixed, T tends to infinity and the bandwidth h tends to zero at an appropriate rate [Falk (1985),
Horowitz (1992)]. In fact, our discussion shows that one should be more interested in estimating the
functional parameter (a, ) = VaR(a, @) rather than in finding a specific value of this function. In
the functional approach it seems natural to impose on the functional estimator (a,a) — m(a, Q)

the regularity properties satisfied by the underlying theoretical VaR function.

3.2 Parametric Methods

Let us assume that the price changes Ap; = p; — p;—1 admit a distribution that belongs to a
parametric family with pdf g9 and parameter 6. The parameter # can be estimated by the maximum
likelihood yielding:

T
6r = Argmax Z ln go (Apy).
=

Then the VaR can be approximated by

—

VaR = -F 7} (o),

a,éT
where F, ¢ is the cdf of AW, (a) = a' Ap, when Ap; follows gj.

In particular, for gaussian price changes Ap; ~ N (u, ), the VaR is simply estimated by:

VaR = —a'i+ &7 '(1 — a)(a'Qa)'/?, (3.10)

where [ and Q) are the sample mean and covariance matrix computed from the observations
Api, ..., Apr. Since in the gaussian case the finite sample distribution of (a'f1,a’Qa) is known,
we can find the distribution of the VaR estimator as well as the corresponding confidence level.
Even though this feature is often neglected by practitioners, one should keep in mind that the

estimated measure of risk is random and therefore risky.
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3.3 Semiparametric Analysis

When the loss probability « is small, the empirical quantile is estimated from a limited number
of extreme observations. Therefore the estimated VaR may not be accurate. Alternatively, in
the parametric approach the basic model can be misspecified, which would cause a bias in VaR
estimation. To circumvent both difficulties we can estimate empirically the quantiles for some
rather large values of a (say) and deduce the VaR of interest from a parametric model of the tail.
In practice, the parametric model can be based on a Pareto distribution, or on an exponential
distribution, or else on a mixture of two normal distributions [Longerstay (1996), Venkataraman
(1997)]. This approach is called the model building method. Let us assume, for instance, a

Pareto-type model for the left tail where we have approximately :

F(y) ~ c(—y)~".

where ¢ and S are positive. In the following paragraphs we describe two alternative methods for
estimation of ¢ and S for the tail and we derive the associated VaR.

i) Estimation by empirical quantiles

Let us consider two rather high values of risk level, such as ag = 10%, a1 = 5%. For such risk
levels, the empirical quantiles, denoted V/a\Re(ao) and V/a\Re(al) are quite accurate and we get the

approximate moment conditions:

ag ~ [VaR,(a)]?
ar ~ c[VaR(a;)]™?
By solving the system of equations with respect to ¢ and 3, we obtain consistent estimators of

the parameters for the tail:

{ao ~ eVl (ao)]
ar ~ ¢é[VaRe(ap)]™

Then the VaR at any small risk level a ( @ = 1%, say) can be estimated by:

a=é[VaR.(a1)] 5. (3.11)

The last two systems of equations are linear in B and log¢.

logay = logé—flog VaR, (ao0),
logay = logé— fBlogVaRe(o)
loga = logé— BlogVaR(«)

Therefore the estimated V/a\R(a) is related to the initially computed empirical quantiles V/a\Re(ao)

and VaR, (a1) by:
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logag 1 log me (awo)
det | loga; 1 logVaR.(a;) | =0,
loga 1 logVaR(a)

or equivalently:

VaR(a) = [VaR. ()[4 [VaR. (a0)]?, (3.12)
log a—log 1 -1
where A = 100g sl_fogo:fo and B = _g_g_lOOg sll_loogz).
This formula allows extrapolation of the values m(a), for any small a, from two benchmark

empirical quantiles. We find that the Pareto-type model of tail implies a geometric extrapolation

formula.

ii) The use of Hill estimator

When a distribution has exactly a Pareto left tail, then

F(y) = c(—y) 7, fory <y, (3.13)

where y is a given threshold. Then, we can apply the maximum likelihood estimation to the right

truncated observations y; such that y; <y ®. The truncated Pareto distribution admits the cdf:

which involves only the tail parameter 5. The truncated ML estimator of § is:

T
B = Argmazy 1y,<yllog 8 — (8 +1)(logy: — logy)].
t=1
The first order condition yields:
. T
1/ = Z lyt<g(logyt - logg). (3.14)

t=1

This estimator was first proposed by Hill (1975).

The Hill estimator can be used jointly with an empirical quantile estimator to recover the VaR
along the following lines [see e.g. Danielsson, DeVries (1997), (1998)]. Let the risk level ag be
fixed at a rather high value (ap = 10%, say). We consider the empirical quantile VaR, (o) and

the Hill estimator associated with y = ~VaR, (). The relation:

ap ~ c[-VaR.(ao)] P,

5The use of the maximum likelihood approach restricted to tails has been recommended by Embrecht, Resnick,
Samorodnitsky (1998) to estimate the VaR.
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is used to get a consistent estimator of c:

¢ = ap[~VaRe(ao)].

Then the VaR associated with any small risk level « is approximated by m(a) such that:

a = é~VaR(a)]™?

— — 1/
& VaR(a) =VaR. () (%) .

Thus the empirical quantile me(ao) is multiplied by a scale factor which is a power function of

ap/a. When S increases the tail of the Pareto distribution decreases and so does the VaR.

3.4 The i.i.d. Assumption

Since the marginal and conditional VaR are equal for i.i.d. price changes, it seemed to us natural
to present the statistical properties of VaR estimators in the i.i.d. framework. However the
i.i.d. assumption is not satisfied in practice. This is known due to empirical evidence on serial
correlation of price changes, conditional heteroscedasticity and volatility persistence. Moreover,
for theoretical reasons the i.i.d. assumption cannot be satisfied both by price changes Ap; and by
returns 7, = Ap/p;—1. But, even if it were satisfied for price changes (or returns) at horizon 1, it
wouldn’t hold for price changes (or returns) at any horizon h: A"p; = p; — p;_, since the intervals
{t — h,t} and {t — 1 — h,t — 1} overlap, which implies correlation between A”p; | and APp,.

The i.i.d. assumption can be violated in two different ways. First, the conditional and marginal
distributions may be identical, but time dependent. Then the process is nonstationary. If the
variation in time is smooth, then the distributions at close dates look similar. Second, the price
changes may be stationary but feature serial dependence. In that case the marginal and conditional
distributions are different. Still, the conditional distributions at different dates can resemble one
another. This can happen when the price histories at those dates don’t differ too much.

If the i.i.d. assumption is imposed for computation of the marginal VaR, then any departure
from the i.i.d. framework leads to misspecification and can have serious consequences. In the case
of a nonstationary process without serial dependence, misspecification is due to replacing the true
time varying marginal VaR by a constant, time invariant VaR obtained from such calculations.
Then the constant estimators are not consistent.In the case of a stationary process with serial
dependence, the estimators are still consistent, but their variance is different from the variance
assessed under the i.i.d. assumption.

The guidelines of the Basle Committee are set out as if the marginal distributions of price

changes (returns) were varying smoothly in time. Therefore to eliminate the bias in VaR estimation,
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the Committee has recommended to estimate the marginal VaR by rolling. More precisely it is
proposed to select a window of Ty observations (with a minimum of one year, i.e. Ty > 200). At
date ¢, the estimation is performed from the T most recent observations: Y, ¥¢—1, ..., Yi—Tp+1- At
time ¢ + 1 the newly arrived observation y;4; is added to the sample, while the oldest one y;—_7,+1
is deleted. The approach by rolling provides time varying estimates of VaR. It can be improved
by introducing exponentially weighted moving averages [Phelan (1995)].

To illustrate the application of rolling estimators, we perform a Monte-Carlo experiment, in
which the changes of portfolio value are i.i.d. and the marginal VaR is estimated by rolling from
a window of 200 observations. Two estimators were considered: the rolling empirical quantile
and the rolling gaussian VaR at 1%. Moreover we considered three sets of i.i.d. simulations with
gaussian, double exponential and Cauchy distributions, respectively. The simulation results are
displayed in Figures (3.3) - (3.5).

(Insert Figure 3.3: i.i.d. gaussian price changes)

(Insert Figure 3.4: i.i.d. double exponential price changes)

(Insert Figure 3.5: i.i.d. Cauchy price changes)

We observe that the evolution of the rolling empirical quantile in time is a stepwise function.
This is easy to explain. Let us consider for example the 1% empirical quantile. A change in the
value of the empirical quantile between date ¢t and ¢ + 1 occurs only if the new and the deleted
observations are neither greater, nor less than the value of the quantile estimated at ¢. This occurs
with probability 1 — (1%)% — (99%)? = 0.0198. Therefore the value of the empirical quantile
remains constant for a random time, which has a geometric distribution with parameter equal to
(1%)? + (99%)2 = 0.980. The corresponding average duration is about 50 ©.

It can also be noted that the outcomes of the rolling empirical quantile and gaussian VaR esti-
mations are close for gaussian price changes, whereas the gaussian VaR is less than the empirical
quantile for exponentially distributed price changes. This is due to underestimation of the expo-
nential tail when a gaussian VaR formula is used. However, we can also observe the converse effect
while comparing the gausssian data to the Cauchy distributed ones. Indeed the first and second
order moments of the Cauchy distribution do not exist. Moreover, it is known that the sample
mean and variance of Cauchy variables don’t converge and feature fat tail asymptotic distributions

7. Finally, the rolling computation induces a spurious trend effect in the evolution of VaR.

6To avoid the stepwise effect, it has been proposed by Hull to compute a weighted empirical quantile, solution
e . t _ —

of VaRy = Argming Zrztho#»l oty — )T + (1 — a)(yr —0)7].
"For example, the empirical average of independent Cauchy variables also admits a Cauchy distribution.
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4 Estimation of the Conditional Value at Risk

As mentioned in section 2.3, two types of conditional Value at Risk can be considered according
to the selected information set which may contain the lagged values of price changes for each asset
in the portfolio (I}), or the lagged portfolio values only (I?). The estimation methods can be

parametric, semi-parametric or nonparametric.

4.1 Conditionally Heteroscedastic Autoregressive Models

A common approach to modelling the price change dynamics (or returns) is based on conditionally
heteroscedastic autoregressive models.

When the conditioning information set is (I}), the specification is multivariate:

Apt = ,u(Apt,l) + B(Apt,l)ut, (41)

where (Ap;—1) = (Api—1, Api—2,...) denotes the set of lagged values of the price changes, p is a
n-dimensional vector of conditional location parameters, B is a n X n matrix of conditional scale
parameters, and wu¢, t varying, is a sequence of i.i.d. random vectors, with common distribution
with pdf g.

For the information set (I?), the specification is univariate:

Yo = m(ye—1) + o(ye—1)ve, (4.2)

where m and ¢ are scalar functions and v, t varying, is a sequence of i.i.d. variables. Special cases
of this specification are the ARCH and GARCH models, such as the ARCH(1) model [see Engle
(1982)]:

ye = (0o + O1ye—1) vy,

and the IGARCH model:

ye=[1-0)>_ 67"y7 ]
j=1

The link between both specifications has to be examined with caution. For simple illustration,

let us consider the linear vector autoregressive process of order one of asset price changes:

Ap: = AApy y + QY 2,

where u; is ITN (0, Id), and Id denotes the identity matrix. We know that the conditional distri-

bution of y; = AW;(a) = a’ Apy, given I}, is gaussian N[a'AAp;_1,a'Qa], whereas the conditional
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distribution of AW} (a) given the lagged portfolio values (I7) is of the type N[3°72, a;a’Ap;—j, 07].
Thus the specification based on (I7) leads to a univariate model y; = m(y;—1)+ov;, v, ~ IIN(0,1)
with an infinite autoregressive lag which differs from the univariate specification for y; conditional
on the full information set (I}'). The situation is much more complex in nonlinear and nongaus-
sian frameworks. Indeed, if the location and scale parameters in (4.1) are nonlinear and if u; is
nongaussian, it is always possible to compute numerically the univariate conditional distribution
of y: = AW;(a) given its own past, but this conditional distribution may be incompatible with any
univariate nonlinear model such as (4.2).

Until now we assumed that the allocation vector a is fixed. It can also be shown that a set
of nonlinear autoregressive models (4.2) written for several portfolios that differ with respect to

allocations, may be incompatible. For example, let us consider a gaussian ARCH(1) model:

AW, (a) = [Bo(a) + 61 (a)AW;_1(a)*]*?v(a), Va,

where v(a) is IIN(0,1). The models for AW;(a),a varying, are compatible only if 6;(a) =
0,Va, that is in the absence of conditional heteroscedasticity. This lack of coherency needs to
be emphasized because of a practice initiated by J.P. Morgan (1995) and adopted by the Basle
Committee too. The Committee has suggested to use systematically (that is for any set of assets

and any portfolio allocation) the gaussian IGARCH model defined by:

AWt (a) = OtU¢,

where

o} = 007+ (1 —-0)AW;_1(a)?
= (1-6)> ¢/ 'AW,_j(a)®
j=1
= (1-9) Z ejily‘tz—ja
j=1

with & = 0.95. This model can be valid for some allocations, but it cannot hold for all a’s

simultaneously.

i) Estimation under the information on portfolio value
The estimation of the VaR conditional on I? is quite straightforward when the location and

scale functions m and o are parametrized:

Yo = m(ye=1;0) + o (ys—1;0)ve. (4.3)
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The parameter 6 can be consistently estimated by the quasi (pseudo) maximum likelihood. The

estimator O is given by:

T T 2
A 1 1 (ye —m(ye-1;0))

— 4 =Y logoP(y—ii6) — 5 > —
Ot 7“9;7“1»"5' 5 og o~ (yt—1;0) o2 (yi—1;0)

: (4.4)

t=1 t=1
Given this estimate, we can find the approximations of the conditional drift and volatility:

me = m(ye—1; éT), o = U((yt,l;éT), and the standardized residuals:

Ly — m(y—i; éT)7 (45)

UV = ~
im0y 07)

that provide approximations of the true errors v;. Then ; computation of the conditional VaR at
horizon 1 can be accomplished by calculating a marginal VaR at horizon 1 from the i.i.d. error

terms. Indeed, at horizon 1, we get:

Pilyi+1 < VaRi(a,a,1)] = «

& Pim(yi—1;0) + o(ys—1;0)0r < =VaRi(a,a,1)] =«
Va’Rt(a’7 Q, 1) - m(ytfl; 9)

o(yt—1;0)
Therefore —[VaR:(a,a,1) —m(ys—1;0)]/0(yt—1; ) is the a-quantile of the distribution of the stan-

=4 Pt[’l)t<—

dardized errors v .
Since the errors vg,t varying, (resp. the residuals) are i.i.d. (resp. approximately i.i.d.), we
can estimate the a-quantile of the v distribution. For example, a parametric method can be used.

When the distribution of the error is assumed gaussian, the conditional VaR is estimated by:

V/a\Rt(a, a, 1) = —mt + &t<b_1(1 — a).

However, it has been observed that the residuals often have fat tail distributions. Therefore,
several authors proposed parametric models with t-student or a-stable distributions of the error
term.

Alternatively, a nonparametric approach can be followed, which relies on the empirical distri-
bution of the residuals vy, ...,07. For the a-quantile denoted by Q(a) and computed from the
residuals, the VaR estimate is:

~ AL A

VaR(a,o, 1) = —m(yi_1;07) — o(yi—1:0)Q(a). (4.6)

An analytical formula of the VaR estimator exists only for horizon 1. Typically, under a para-
metric approach where (y;) satisfies a conditionally gaussian ARCH model, the conditional distri-

bution at horizon 2 is no longer gaussian and has a complicated expression. Hence, for any horizon
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larger than 1, the VaR estimate has to be derived by Monte-Carlo methods, and the nonlinear
conditional autoregressive model is adequate for conditional simulation at any horizon. For ease
of exposition, let us assume the autoregressive order equal to one and consider the nonparametric

approach. We get:

Yer1 = m(y; 0) + o (ys; 0)veya,

and

Ytz = M(Yr11;0) + 0 (Yir1;0)vig2.

Then y;12 can be approximately simulated from the conditional distribution of y;1o given y;
along the following lines ®. For v§, |, vf,, two independent drawings in the sample distribution of

residuals, a simulated value of y; 2 given the currently observed y; = y is:

Yire = m(yi 1;07) + 0(Yii1;07)0 12,

where

Yir1 = mlyg;0r) + o(yi; 01)vfs, -
By replicating this procedure S times, we obtain a set of values y{,,,s = 1, ..., S approximately
independently drawn in the conditional distribution of y;yo given the currently observed y; = y.

An estimator of VaR(a, @, 2) is the empirical quantile computed from yf,,,s = 1,...,S. Note that

the chosen number of replications S can be rather large.

ii) Estimation under full information
The same type of approach can be followed when the information set I} contains asset price

changes, and the location and scale functions are parametrized: p(Api—1;6), Q(Ap;—1;8), respec-

tively. The parameter 6 is estimated by quasi (pseudo) maximum likelihood:

A 1 1
Or = Arg;nam —; logdet Q(Ape-1;0) — §[Apt — 1(Ape1;0)) UApr150) " [Apr — p(Ape_1;6)]-

Then the residuals are:

= U(Ape_1;07) Y [Ap — (Api_1;07))],

and the multivariate distribution of u; is approximated by the sample distribution of residuals.

8We call this simulation approximate because the true parameter  is replaced by éT and the true distribution
of errors by the sample distribution of residuals.
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We see that in the multivariate framework, the VaR has to be approximated by simulation even
at horizon 1. In general, the conditional distribution of a’ Ap; given Ap;_; does not admit a simple
analytical form, even if the multivariate distribution of w; is as simple as multivariate Student, for

example.

4.2 Nonparametric Methods

In the nonlinear heteroscedastic autoregressive model, the impact of lagged price changes on risk is
captured by the scale function o(y;); in particular for small and for extreme values of the error this
impact is very close. However, a less constrained specification would be preferred if it allowed to
distinguish between the impacts of small and extreme error values on risk. A natural idea seems to
be to leave the conditional distribution of price changes (or changes in portfolio values) completely
unspecified and proceed with a nonparametric method. Due to the curse of dimensionality, the
nonparametric approach can be applied to the changes in portfolio value when they have short
memory, that is when the number of autoregressive lags in the polynomial is small. For this reason,
we assume in this section that the process (y;) is stationary Markov of order 1, and we focus on the
estimation of the conditional distribution of y; given y;_1, or equivalently of the joint distribution
of (ye—1,Yt)-

It is known that the joint cdf of (y;—1,y:) can be decomposed into the marginal distribution

and a term that represents serial dependence. More precisely, we have [Sklar (1959)]:

Fy(ys,ys—1) = PYi <y, Y1 <ye1]

= PIF(Yy) < F(ys), F(Yi—1) < F(yi—1)],

where F' denotes the marginal cdf of y;. Since F'(Y:) follows a uniform distribution on [0,1], we

find that:

Fy(yt,yt-1) = CIF(ye), F(Y:-1)], (4.7)

where C is the joint cdf of Uy = F(Y;),U;—1 = F(Y;—1). The function C is called a copula
cumulative distribution function. Due to the constraint imposed on the marginal distributions of

Ui, Ui, the copula satisfies:

C[Ut, 1] = Ug, Vut,

Cllyug1] = w1, Yug 1.
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The VaR at horizon 1 can be easily expressed in terms of the marginal distribution F' and the

copula C'. Indeed, we have:

PlY; < VaR:|Y:—1 = yr—1]
= P[F(Y}) < F(=VaRy)|F(Yi—1) = F(yt—1)]

= P[Ut < F(—VaRt”Ut,l = F(ytfl)]
ocC

= aUH[F(_VaRt),F(yt_l)]-

Thus the VaR is the solution of:

oC

Ou—1

[F(=VaR:), F(yi-1)] = a. (4.8)

It seems natural to estimate nonparametrically the functions F and C by their ( kernel
smoothed) empirical counterparts and then to solve equation (4.8) after replacing the functions
F and C by these counterparts. However the difficulty encountered in estimating the empirical
quantile described in section (3.1) gets worse in the bidimensional framework and results in inac-
curate VaR estimates. Indeed, the rate of convergence of this estimator depends on the dimension
of distribution. To circumvent this problem it has been proposed to constrain the copula nonpara-
metrically. For instance, we can consider an Archimedean copula. An Archimedean copula is

defined by:

C(u,v) = T T(u) + T(v)], (4.9)
where ¥ is a real function °. Thus, for an Archimedean Copula, serial dependence is captured by
the one dimensional function ¥ (instead of the bidimensional function C' in the unconstrained case
and of the scalar autoregressive parameter p in the gaussian case). It is easy to check that:

PIC(U,Us_1) < s] =s— ¥(s) %(s), Vs. (4.10)

This equality can be used to obtain a consistent functional estimator of the function ¥. The

estimation method consists of three steps.

i) First step: We use the data on y;,t = 1,...,T to find approximations of the uniformly
distributed variables U; = F(Y;) in the following way. First, the data are ranked in ascending
order y(;) < ... < y(7)- Then we assign to each y;,t = 1,...,T" its rank divided by 7. The rank

divided by T is called d;. It is a value of F'(y;), where F is the empirical cdf inferred from the data.

9% has to be the Laplace transform (moment generating function) of a positive random variable [see Joe (1997)].
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A similar approach is applied to the lagged values y;,t = 0, ...,T — 1 to derive approximations @1

for us_q.

ii)Second step: The copula cumulative function evaluated at ¢, @;—1 can now be approxi-

mated by its empirical counterpart:

C(Utaut 1 T E 1u1—<ut,ur 1<tig—1-+

iii) Third step: By applying formula (4.23), we find a smoothed estimator of the function
A(s) = U(s)/ZE(s) by:

TZ

where @ is the cdf of the standard normal used for smoothing and h is the bandwidth. Then the

ut:ut 1) S]
)

estimator of function ¥ is derived by integration:

W (u) = exp [/u s—iz(s)ds

4.3 Miscellaneous

In this section we review three types of other methods for VaR computation that exist in the
literature. They can be based on dynamic specifications other than those considered so far. Also,

they may arise as generalizations of some of the approaches described in Section 3.

i) Switching Regimes

The idea is to extend the basic gaussian model by allowing for endogeneous switching regimes.
Conditional on a given regime the distribution of price changes is multivariate normal. However,
when the endogeneous regimes are integrated out,it becomes a mixture of gaussian distributions.
This approach accommodates heavy tails, persistence and nonlinear dynamics. More precisely, let
us denote by k = 1,..., K the admissible regimes and by Z; with values in {1,..., K} the market
regime at date . It is assumed that:

a) (Z;) is a Markov chain with transition matrix Q.

b) The distribution of price changes Ap; conditional on Z; = k, Apy, Z; is multivariate normal
Nk, Q]

Then the conditional distribution of price changes is:

K
HApAp—1) = pe(Ape—1) N (i, %), (4.11)

where pk(APt—l) = P[Zt = k|Apt_1].
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The probabilities py can be computed numerically and the parameters uy, 2, k varying, and
@ can be estimated by means of the Kitagawa’s algorithm [see e.g. Hamilton (1989)]. Then
the conditional VaR is estimated from drawings in the mixture distribution (4.11), after replacing
Dk, Ik, g by their estimates [see Billio, Pelizzon (2000) for an application]. Note that this approach
is different from the mixture of normal distributions proposed by J.P. Morgan as a new methodology
of measuring VaR [Longerstay (1996)]. Under the J.P. Morgan approach, the regime indicators

(Z:) are assumed time independent.

ii) Conditional Autoregressive Value at Risk (CAViaR)
The approach developed by Engle and Manganelli (2001) is a one-dimensional approach, that
has to be implemented for each portfolio separately. The basic idea is to write directly a dynamic

specification for the VaR, such as:

VaR: = fo+ iVaRi—1 + Balys—1]

= (8 + Z%‘(ﬂﬂyt—ﬂ , say,
j=1

where 70 (8),7;(8), j varying, are functions of o, 51, B2. The parameter f is estimated by regression
quantile [Koenker, Basset (1978)] that is by:

T

B = Argming, 5,5, y_{alye —70(8) = D1 (B)lye—il1" + (L= )lge =28 = D% (Blye—[17}.

t=1 j j

The VaR estimator is:

VaR =7 (3) + > %(B)lye—j-
j=1

This approach is quite easy to implement, but its drawbacks are twofold. First, the CAViaR
models written for different portfolio allocations can be incompatible [see remark in section 4.1].
Second the CAViaR models has to be specified separately for each different risk levels . This

leads to VaR estimates:

VaR(a0) = %0(Bag) + Y 7 (Bao)ly—l,

j=1

m(al) = 70(3&1) + Z'Yj(3m)|yt—j|7

j=1

that do not necessarily satisfy the monotonicity property:
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m(ag) > m(al), if ap < 3.

iii) Local maximum likelihood

Let us assume that the process (y;) of changes in portfolio values is a Markov process of order
one. Gourieroux, Jasiak (2000) approximate the tail of the true conditional density !(yi+1|y: = y),
say, by a parametric distribution such as a gaussian distribution. The procedure is as follows:

First step: Compute the 1%-empirical quantile from the sample ¥y, ..., y7. It is denoted by §.

Second step: Compute the mean and variance in a neighborhood of 411 = § and y; = y. For

the kernel K and bandwidth h, the approximate mean and variance are:

-2 (2 (B e () (257),

T=1

:i’((‘yrh—d)K(”‘Z_y)y?/éf((y%d) (yrl y) .
)

Third step: Apply the gaussian VaR formula with inputs m.(q, yr), 5%(4,y7) to get:

V{(:RT = _m(Q7 yT) + @71(1 - a)6(Q7 yT)
5 Porfolio with Derivatives

In financial theory a considerable attention is given to derivative pricing and hedging, especially for
derivatives such as European calls written on an underlying asset. Let us recall that a European
call with maturity 7' and strike K will pay (S7—K)* = Maz(St—K,0) at date T, where Sy is the
price at T of the underlying asset. Since the payoffs of derivatives with any strike, written on the
same asset, depend on the same benchmark S7 and are defined by nonlinear payoff functions, people
tend to believe that prices of such derivatives are strongly and nonlinearly dependent '°. Various
theories have been developed to support this belief. They provide derivative pricing formulas of
two types. Under the complete market hypothesis, the price at ¢ of a European call with strike K

and maturity 7' can be written as:

Ct(K7T):C(St7rt7K7T_t)7 (5]‘)

where r; is the interest rate and C' is a deterministic function that depends on the dynamics of the
underlying asset price. The Black-Scholes [Black, Scholes (1973)] formula is a typical example of

this approach.

101n reality they also depend on other factors wich influence the demand and supply of derivative assets, especially
when these are rather illiquid.
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Under incomplete markets, the price can also depend on other factors Z; that are not the

underlying asset prices:

Ct(K,T):C(St,Zt,T’t,K,T—t). (52)

An example of this approach is the Hull- White model [Hull, White (1987)], in which the unob-
servable factor is stochastic volatility.

The approaches under both complete and incomplete markets rely on some restrictive assump-
tions. For example, they assume !! that a) all assets including the derivatives are liquid, b) they can
be traded at any time, c) the derivative prices are functions of state variables (S, r;) or (St, Z;,7¢)
only, d) the state variables are Markov processes. However, these assumptions are not satisfied
in practice. For example, the index derivatives are written on a market index that is not directly
traded on the market '2, the derivative securities are generally not liquid and their prices may
depend on some demand and supply effects.

Since derivative trading is a potential cause of financial losses, it is natural to introduce VaR
measures for portfolios that include derivatives. Due to the lack of liquidity of such complex assets,
it is difficult to come up with a VaR measure based on lagged observed derivative prices, such as for
example, the historical simulation method. The challenge of this section is to use the theoretical
pricing formulas derived under the liquidity assumption in order to derive reasonably good approx-
imations of the VaR for portfolios with derivatives. The accuracy of such an approximation will
depend on the model used by the bank for derivative pricing (called internal model, henceforth).
Therefore it will be necessary to examine the sensitivity of the VaR with respect to departures

from the internal model.

5.1 Parametric Monte-Carlo Method

For ease of exposition let us consider a portfolio of European calls, all written on the same asset.
This portfolio is defined by the set of associated strikes and maturities: (K;,T;),i = 1,...,n. If
one of the strikes is zero, then the portfolio contains the basic asset too. In a complete market
framework, the change of the portfolio value is:
n
Yt+1 = AWH_l (a) = Z ai[C(St+1,rt+1;Ki, Ti —t— 1) — C(St, T't; Ki, Ti — t)] (53)
i=1
It is a known function of the current and future interest rates and asset prices. Moreover it depends

on the unknown parameter 6 that characterizes the dynamics of the price S;. Let us denote the

IGee e.g. Merton (1974) for a complete list of assumptions for the Black-Scholes model.

1230me index mimicking portfolios can actually be traded, such as the SPDR (Standard and Poor Depository
Receipts) that mimicks the S&P 500. However the nonlinear dynamic properties of the S&P 500 and of the SPDR
are significantly different, especially for extreme values.
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function in (5.3) by:

Yer1 = We(St, Se1,Te, Te415 0)- (5.4)

The conditional distribution of y;y1 has generally no closed-form expression and has to be
approximated by Monte-Carlo experiments. Under the assumption of a deterministic interest rate,

the procedure is implemented as follows '3:

i) First step: Estimation of the parameter 6
The dynamics of (S;) is described by the conditional historical distribution of S; given S;_i:
1(S¢|St—1;6), (say). The parameter 6 can be estimated from the historical data on (S;) by the

maximum likelihood, for example (the so-called historical approach). The estimate is denoted Or.

ii) Second step: Simulation of future values of S:
For a given value of S; we can draw simulated values S¢,;,s = 1,...,S in the conditional

distribution 1(Sy41|Ss; f7).

iii) Third step: Simulation of y;11

We simulate the values '* of y;1; as:

Yir1 = we(Se, Siy1,7e,reg1507), s =1,...,S.

iv) Fourth step: Estimation of the VaR

Finally, the conditional VaR estimate can be derived directly from the empirical quantile of the
distribution of y{,,,s =1,...,S.

It is interesting to discuss this approach in the framework of the Black-Scholes model, in which

the asset price follows a geometric Brownian motion:

dSt = ,uStdt + UStth,

where (W}) is a standard Brownian motion. The asset price dynamics depends on two parameters
6 = (u, 0), whereas the option price depends on the volatility o only. However, both parameters u
and o have to be estimated in order to apply the procedure of VaR estimation. Indeed, while the
derivative price depends on o only, its conditional distribution depends on both the volatility ¢ and
the drift p. This explains why it is necessary to use the historical data Si,t = 1,...,T to recover

i in the estimation procedure, rather than use only the data on derivative prices (cross sectional

I31f the interest rate is stochastic, it is also necessary to estimate the dynamics of the rate and to simulate the
future interest rates.

141n the formula below we assume analytical expressions of the derivative prices. Otherwise they have also to be
approximated by Monte-Carlo [see Gourieroux, Jasiak (2001)a, Chapter 11].
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or implied volatility approach), since the derivative prices allow for estimation of the volatility o
only.

Finally the approach outlined above can be extended to an incomplete market framework by
considering for estimation and simulation the distribution of all state variables, including the

unobservable factor Z.

5.2 Taylor Expansion of Nonlinear Portfolios

Approximated closed form expressions of the VaR have also been proposed by the industry to avoid
simulation.

i) The Delta method

Let us consider the complete market framework. It is possible to build an instantaneously
riskless portfolio that consists of a position in a European call and a position in the underlying
asset. This riskless position can be reached with an allocation of -1 in the European call and
(K, T) = %(St,rt,K,T —t) in the underlying asset. ¢; is called the delta of the derivative
security. In this framework, the European call is equivalent to a portfolio in the underlying and
riskfree assets with allocations d;(K,T) and «;(K,T), say, respectively.

Several authors have proposed to apply this result in the following way. Let us consider the

initial portfolio of European calls. This portfolio is equivalent to a portfolio including;:

Yo @i (K;, T;) units of the underlying asset and a quantity >, a;a¢(K;, T;) of the riskless
asset. Then the conditional VaR is computed as in section 4 for a linear portfolio in S. It is
important to remark that this attractive and simple approach differs from the initial idea of VaR
developed by the Basle Committee. According to this idea, the VaR has to be computed for a
portfolio with fixed allocations and doesn’t take into account portfolio updating during the holding
period. In contrast, the d-method assumes continuous updating of the allocation performed in the
optimal way if the internal model is well specified. As a consequence, the §-based VaR is less
than the VaR with constant allocations and underestimates the true VaR. In an extreme case, the
internal model views a portfolio with -1 in the derivative and §; in the underlying asset as riskfree.
Thus, a slight misspecification of the internal model suffices to perceive as riskfree an extremely

risky portfolio.

ii) The delta-gamma method.
It has been proposed to extend the previous approach by considering a second order Taylor

expansion of the derivative price with respect to the price of underlying asset:

1
AC(St, Tt, K, T — t) Qi + 5tASt+1 + 57t(ASt+1)27 (55)
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where the second order derivative -; is the so-called gamma of the option. This expansion now
includes a nonlinear quadratic function of AS. Several authors [ see e.g. Jorion (1997) p. 144]
proposed to apply the method of the variance-covariance matrix [see 2.2 i)] under the conditional

normality of AS;;1. The derivative portfolio is such that:

AW (a Zalat Zal YASi 1 + = Zaﬁt t+1' (5.6)
i=1

We get:

nooa 1S,
E[AWii1(a)] ~ Z aiag + () aib}) Ey(ASe11) + 5(; i) [Ve(ASe11) + (Bt ASp11)°);

i=1
I
Veil[AWiii(a)] =~ Zal Vi(ASpt1) + (5 > a) Vil(ASi11)?)

i=1

+(Z aiag)(z a;7;)Covy(ASp41, ASE, )

i=1

| PN
Zal *Ve(ASp41) + 5(;%%)2[‘4(Ast+1)]27

X

since Cov[AS, (AS)?] = 0 and V[(AS)?] = 2[V(AS)]? for a gaussian variable. Therefore the first
and second order conditional moments of AWy (a) are easily computed from the first and second
order conditional moments of AS;y;. However this approach often used in practice has several
drawbacks. First, the expansions are valid when the derivative price is differentiable with respect
to S and don’t apply to situations close to the expiry date of the option. Second, the mean-variance
approach assumes implicitly the approximate normality of the change in portfolio value. Even if
AS; 41 is conditionally normal, this property is no longer satisfied by the portfolio value due to the
presence of a quadratic term. Finally the second order Taylor expansion is not properly derived

as explained below.

iii) Linearization of nonlinear portfolios
Note that the characteristics of a European derivative change in time; in particular the residual
maturity decreases while the interest rate varies in time. A proper first order expansion of the

derivative price is:

C(St+1,7’t+1,K,T—t— 1) - C(StartaKaT_t)
80(
0S

It differs from the previous first order expansion by the presence of the first order derivatives

¢ St,T't,K T—t)

oC 0
St,’l“t,K T )AStJrl + — 6 (St,T't,K T )Art+1 8T(

with respect to the interest rate and to the residual maturity. The same remark holds for a second

order Taylor expansion.
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The last formula can be extended to include time varying parameters. For example, it is
common to use the Black-Scholes model with a time varying volatility o;, say. In this case, the
expansion is also written with respect to the volatility (or the log-volatility) and involves the
associated derivative of the price, that is the vega of the option. Then the expansion is easy
to use under the assumption of the conditional distribution of ASy;1, Ariy1, Alogoiy: be jointly
normal. This approach is suggested by the RiskMetrics Group [see e.g. Malz (2000)], who report
variance-covariance matrices, as well as the returns on implied volatilities. However the normality
assumption is very unrealistic and the observed implied volatility returns are generally highly

leptokurtic and skewed.

iv) The normality assumption in the case of option prices

The idea of using the first order expansion is to extend the normality assumption on the
price change of the underlying asset to the change in derivative prices. The argument is that the
normality is satisfied by ”sufficiently large portfolios of independent options”, to which the Central
Limit Theorem can be applied [Finger (1997)]. However this argument is not valid, since the
derivative prices are highly correlated and because the normal approximation is poor in the tails.
In fact the conditional distributions of derivative prices are generally far from gaussian. They can
admit several modes, feature skewness and fat tails [see e.g. Gourieroux, Jasiak (2001)a, chapter

12].

Despite the aforementioned limitations, the use of delta or delta-gamma methods is recom-
mended as a standard approach by the Capital Adequacy Directive (1993) and by the Banking
Supervision Proposal (1995) of the Basle Committee. A survey of the Group of Thirty (1994)
showed that 98% out of 125 operators who responded, were using delta or delta-gamma methods.
It is important to note that the parametric Monte-Carlo methods don’t have the aforementioned

drawbacks and nevertheless are easy to implement.

6 Credit Risk

As mentioned in the introduction, the main causes of losses incurred by banks are corporate loans
and mortgages. The risk is essentially due to default of payment ', and thus to the evolution of the
solvency of a borrower. Two features have to be taken into account in a study of credit portfolio.
These are the heterogeneity of borrowers and contracts, and the lack of liquidity for the majority
of loans. Indeed, only a fraction of loans can be traded on secondary markets and have market
prices; these are generally corporate bonds and mortgage backed securities. The other types of

risky credits are mortgages, consumption loans, revolving credit (credit cards), over-the-counter

5and also to prepayments of mortgages. The prepayment risk is not discussed in this section.
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(OTC) corporate loans, cash advances, known as retail credits.

In the first section, we discuss the link between the distribution of default and the actuarial value
(resp. market price) of an OTC loan (resp. bond). In the second section we discuss the assessment
of past default rates from i) the data on individual behavior of borrowers, ii) observations on bonds,
iii) observations on equity prices. The credit migration approach is described in the third section.
Finally, the last section contains the analysis of the profit and loss distributions for portfolios of

either bonds, or retail loans.

6.1 Spread of Interest Rates

To set the stage for a discussion on the relation between prices and default probability, we first
consider a consumer loan with an initial balance By and a fixed interest rate r, to be repaid in H
units of time by means of constant monthly payments of amount m. If the borrower has a zero

probability of default, the following actuarial relationship holds:

I LU I L
S l+r o (147)2 (1+r)H’

which equates the initial balance to the sum of discounted cash-flows. This relation can be used

By (6.1)

to find the balance By that corresponds to given m,r, H, or to find the rate r for given By, m, H.

The actuarial formula (6.1) needs to be modified when the probability of default is different
from zero. Let us denote by Y the time to default ( with the time origin Y = 0 set at the date
when the credit is granted), and assume that after Y the borrower will not repay, even a fraction
of the remaining balance (i.e. the recovery rate is equal to zero) 6. Then, the actuarial convention

implies:

m* m*
B = PlY>1l+---+——-P[Y > H
0 1+r* [ - ]+ +(1+r*)H [ - ]
S(1) S(H)
— * T S 2
K e e (6.2)

where S denotes the survivor function for time to default. Formulas (6.1), (6.2) can be compared
in two different ways.

i) If the rate r* = r and the monthly payment m* = m are given, we get different actuarial
values for the loan depending on the presence of potential default. The value computed without
default risk, that is By = Ethl ﬁ, is strictly larger than the value B} = Ele ("fiy)‘z The
omission of default risk causes overevaluation of the credit portfolio.

16The magnitude and timing of the recovery should also be taken into account. For ease of exposition, we assume a
zero recovery rate. Even though this assumption is unrealistic, it is important to note that it is used by the markets
to recover the implied probability of default from bond prices. Moreover, when the recovery is assumed independent
of default, the actuarial prices are simply inferred from the proposed ones by multiplying by the expected recovery
rate. This approach is recommended by the Basle Committee.



THIS VERSION: December 20, 2002 33

ii) If the value Bj = By and the monthly payment m* = m are given, we get different rates
that satisfy the actuarial conditions. It is easy to check that the rate r is strictly higher than the
rate r* to compensate for default risk. The difference s = r — r* is called the spread of interest
rate.

As an illustration , let us assume an exponentially distributed time to default Y with default

intensity \. We get S(h) = exp(—Ah) and,

[ S(1) S(H)
B = T Sl A
0 m |1+ (14 r*)H
- [exp —\ exp —\H
N | 1+ 7> (14 r*)H
-exp—/\ exp —A H
1+4r* 1+ r*

We find that

1+r=(1+7r")expA

& s=r—r"=(1+r")expA—1].

The spread is an increasing function of default intensity A.

Until now, the approach assumed a constant rate of interest and a flat term structure. It can
easily be extended to any type of fixed income bonds (or retail loans without indexed payments)
and to a varying term structure of interest rates. Let us consider a bond with known future
payments F, (say) at dates 7, and denote by B(¢,t + h) the price at ¢ of the zero coupon bond
that pays 1 § at date ¢ + h. Without default risk, the price of this bond at date ¢t is:

P(F) = i FrnB(t,t+h). (6.3)
h=1

The price formula is derived by observing that a fixed income bond is a portfolio of zero
coupon bonds and by applying the arbitrage free condition. In the presence of default risk due
to the borrower, the price of bond will decrease. If default is independent of the evolution of the

riskfree interest rate, the price of bond with default for a risk neutral investor is:

Pi(F,S) =Y FuynB(t,t + h)Si(t,t + h), (6.4)
h=1

where Si(t,t + h) = P[Y > t+ h|Y > t] and the time to default is measured since the time origin.
The conditioning is necessary because the bond can only be priced for a contract while it is still

alive, and the index ¢t means that the information set used to predict Y increases.
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Formulas (6.3) and (6.4) involve two term structures of interest rates: the term structure
without default risk is characterized by the set B(t,t + h), h = 1, ..., H; the term structure with
default risk is characterized by B*(¢,t + h) = B(t,t + h)S¢(t,t + h),h = 1,..., H, and depends on
the distribution of time to default. Si(t,t + h),h =1, ..., H , defines the term structure of spread

that is the mapping h — s¢q4n = reepn — 174 = 7 108 % = —1log Si(t,t +h) 7.

6.2 Assessment of Default Rates

There are two sources of randomness in the future price of a bond or a retail loan. Therefore we
have to predict the future riskfree term structure and the future probability of default. Since these
features are generally treated independently we will focus on the estimation of past probabilities
S¢(t,t + h). There exist two approaches, that differ with respect to the assumption on the loans
being traded on a secondary market.

Recall that typically the bond market trades corporate bonds offered by some thousands of
issuers. The issuings are regular, most of them standardized and provided with information on
the rating of the firm and its balance sheet. On the other hand, retail loans are, for example,
retail consumer loans or mortgages for several millions of borrowers held in the portfolio of a given
bank. In general, the contracts concern small amounts and are very heterogeneous with respect to
the initial balance,maturity, interest rate, pattern of monthly payments and characteristics of the
borrower.

i)Recovering default rates from market bond prices

Let us consider a given corporation j that issued bonds [ = 1,..., Lj¢, which are traded on the
market at date t. At date t these bonds differ with respect to their payoff patterns F] 1, and prices
Ptjl(F, S). They are related by:

PIY(F,S) Zngh (t,t+h)SI(t,t+h), I=1,.., L, (6.5)

where the conditional survivor function depends only on the borrower j and not on the bond.
Let us assume that the number L;; of traded bonds is large and that their cashflow patterns
are very diversified. Then we can apply a standard approach to recover the term structure of these
corporate bonds, such as the regression method, local polynomials or splines, which belongs to the
smoothing techniques used for recovering the term structure of Treasury bonds. This procedure

yields the approximated term structure of firm j:

B*I(t,t + h) ~ B(t,t + h)S} (t,t + h), for any t,h.

17Similarly, when the recovery rates are taken into account, there exists a term structure of recovery rates.
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Then by using an estimated riskfree term structure B(t,t + h),t, h varying, based on the T-bond

prices, we find the estimators of individual default probabilities 8:

SHi(t,t+ h) = B*(t,t + h)/B(t,t + h). (6.6)

This approach requires only the knowledge of bond prices recorded on the market. Therefore it
can be used by banks that don’t own the data on individual credit histories of customers. Practice
shows that the market based information is rather poor and leads to biased estimators of past
rates of default. This is easy to explain since, for a given issuer j, the number of corporate bonds
that are actively traded on the market at a given date is limited. For this reason the quoted prices
can be quite different from the theoretical values and the standard approach outlined above fails.
To partly circumvent this difficulty firms can be classified in homogenous categories kK = 1, .., K.
Typically, the categories are defined according to the actual Standard and Poor (resp. Moody’s)
rating of each firm, starting from the highest rating AAA (resp. Aaa), to the lowest one CCC

19 Then, the term structure of spread is assumed identical for all issuers in the same

(resp Caa)
rating category. This allows to use a larger number of traded bonds to recover the past rates of

default. This approach is discussed in greater detail in section 6.3.

ii) Recovering default rates from equity prices

It has also been proposed to use the Merton’s model [Merton (1974), Crosbie (1998), Janosi,
Jarrow, Yildrim (2001)] to recover default probabilities from data on equity value. More precisely,
let us consider a given company j with equity value, firm asset value and liabilities denoted by
VEt,Va, and Ly, respectively. Then the equity can be considered a call option on the future value
Va t+1 with strike Ly1,. If the liabilities are predetermined and the asset values follow a Black-
Scholes model, than the value Vg can be derived by the Black-Scholes option pricing formula as
a function of V4 + and volatility o4 of the asset value. Moreover, under the Black-Scholes model,

the equity and asset volatilities are related by:

oEVE:r = Vaoa0s,

where J; is the delta of the call option. Therefore, given the data on equity value and equity
volatility, we can find 04 and V4, by using the last equality and the Black-Scholes option pricing
formula, respectively. The results allow further computation of the conditional probability of

default at ¢t + h:

18called the implied survivor probability.

19The complete list of ratings assigns one of the following 10 symbols:
Moody’s: Aaa, Aa, A, Baa, Ba, B, Caa, Ca, C, D.
Standard and Poor: AAA, AA, A, BBB, BB, B, CCC, CC, C, D.
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Si(t,t+h) = P[Vaitn < Lign, Vassn—1 > Ligp—1, -, Vai41 > Lip1|Vae-

This approach has been recommended by the KMV corporation. It can be criticized for dis-
regarding the information contained in bond prices and for assuming the future liabilities known,
which is equivalent to disregarding the possibility of future borrowing and debt renegotiation. As

well, the method is very sensitive with respect to the continuous time model of the firm value.

iii) Recovering default rates from individual credit histories

Let us now consider the retail loans. To eliminate a large part of incompleteness due to individ-
ual (contract) heterogeneity, we first define homogenous categories of the same type of contracts
(that is with identical initial balance, term, interest rate, contractual pattern of monthly payments)
and similar individuals, with almost the same attitude towards default (and prepayment). These
categories are indexed by k,k = 1,..., K. Then these categories can be partitioned with respect to
the generation of loans, leading to a set of cohorts doubly indexed by k, 7, where k is the category
index and 7 the starting date of contract. If the number of contracts in each cohort is sufficiently
large (greater than 200-300), we can eliminate a large part of incompleteness by averaging out
homogenous contracts. In such a case, we essentially consider aggregate data on default rates
(prepayment rates, recovery rates) cohort by cohort. To simplify exposition, we focus on default

and don’t consider eventual prepayments or partial recoveries.

Let us consider a time unit of one semester. For each cohort, we observe default rates over all
semesters between the starting date of credit and the current date. We denote by Dy (7;h) these
rates for cohort k, T at semester T+ h; h denotes the age of contract, that is the time elapsed since
the agreement was signed. For each category k, we get a double entry table, which may contain
various pairs of entries, such as the generation and current date, the generation and age, or the
current date and age. For illustration, we show in Tables below data on loans with maturity equal
to two years. Accordingly the maximal age is 4 semesters. The starting date indicates the year and
semester. The index of each category is not given. The most recent semester observed is (the end
of) 99.2. In practice, Tables 6.2 and 6.3 are easier to read and require less memory for computer

storage 20.

20Similar tables can be designed for the recovery rates.
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Table 6.1 : Default rate by generation and current date

current date

generation 97.1 97.2 98.1 98.2 99.1 99.2
97.1 D(97.1;1) | D(97.1;2) | D(97.1;3) | D(97.1;4)
97.2 D(97.2;1) | D(97.2;2) | D(97.2;3) | D(97.2;4)
98.1 D(98.1;1) | D(98.1;2) | D(98.1;3) | D(98.1;4)
98.2 D(98.2;1) | D(98.2;2) | D(98.2;3)
99.1 D(99.1;1) | D(97.1;2)
99.2 D(99.2;1)
Table 6.2 : Default rate by generation and age

age

generation 1 2 3 4

97.1 D(97.1;1) | D(97.1;2) | D(97.1;3) | D(97.1;4)

97.2 D(97.2;1) | D(97.2;2) | D(97.2;3) | D(97.2;4)

98.1 D(98.1;1) | D(98.1;2) | D(98.1;3) | D(98.1;4)

98.2 D(98.2;1) | D(98.2;2) | D(98.2;3)

99.1 D(99.1;1) | D(99.1;2)

99.2 D(99.2;1)

37
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Table 6.3 : Default rate by age and current date

current date

age 97.1 97.2 98.1 98.2 99.1 99.2

1 D(97.1;1) | D(97.2;1) | D(98.1;1) | D(98.2;1) | D(99.1;1) | D(99.2;1)
2 D(97.1;2) | D(97.2;2) | D(98.1;2) | D(98.2;2) | D(99.1;2)
3 D(97.1;3) | D(97.2;3) | D(98.1;3) | D(98.2;3)
4 D(97.1;4) | D(97.2;4) | D(98.1;4)

6.3 The Credit Migration Approach

Due to heterogeneity of bond issuers in section 6.2i) we distinguished conditional distributions of
time to default for each category of rating. The inconvenience is that the approach needs to be
applied sequentially at each date and regularly updated. The objective of the credit migration
approach is to analyze the joint dynamics of rating and default.

i) The model

The model was initially conceived as a continuous time model and introduced by Jarrow, Lando
and Turnbull (1997). In this section we present an extended and discrete time version of the original
model. The key assumption is the existence of a finite number of states £ = 1,..., K that represent
risk quality. At each date the borrower occupies one state, and at a future date he can stay or
migrate to another state. We denote by (Z;) the qualitative process formed by the sequence of
states occupied by the borrower. In general, it is assumed that this process is a Markov chain with
a transition matrix @ = (q;), with elements g = P[Z; = k|Z;—1 =1].

The knowledge of recent state history is assumed to be sufficient to define the term structure
of credit spread. More precisely, if the borrower has spent h periods of time in state k, after a
transition from state [ into k, the credit spread is captured by the value of survivor function Sy;(h)
indexed by k,l. Thus the model is parametrized by the transition matrix () and the set of survivor
functions Sy, k,l varying. To illustrate the zero coupon price dynamics, let us consider a given

risk state history. The term structures with and without default risk are given in Table 6.4:
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Table 6.4: The Term Structures

date t | Z; | B(0,t) B*(0,1)

1 1 | B(0,1) .

2 3 | B(0,2) | B(0,2)Ss5(1)
3 3 | B(0,3) | B(0,3)S5(2)
4 3 | B(0,4) | B(0,4)S3(3)
7 2 | B(0,7) | B(0,7)S21(2)
8 3 | B(0,8) | B(0,8)Ss:(1)
9 3 | B(0,9) | B(0,9)Ss5:(2)
10 3 | B(0,10) | B(0,10)S32(3)

Some versions of the model appeared in financial literature under simplified assumptions. For
example, Jarrow, Lando, Turnbull (1997) assumed that the spread is a constant function of the
current state only: Sgi(h) = exp(—Arh). Longstaff, Schwartz (1995), Duffie, Kan (1998), Lando
(1998) allowed for more complicated term structure patterns, but assumed also dependence on the
current state only. Intuitively, it is clear that the past state contains information about future
default too. Loosely speaking, we don’t expect to observe the same spread term structure for a
borrower with AA rating who was AAA before and for another borrower with the same current

AA state, but who was rated A before.

ii) Statistical inference when the state is observable

Let us assume independent risk dynamics for different borrowers. When the state histories are
observed, the transition matrix is easily estimated and replaced by its empirical counterpart. Then
we can consider all the observed histories with a spell in k after a transition from [, and infer an
estimator of the survivor function Si; from the observed bond prices that pertain to these spells.

This approach is followed by market practitioners with admissible states defined as ratings
AAA, AA, A, BBB, BB, B, CCC determined by the Standard and Poor 2!. For this purpose, the
consulting firms report regularly the estimated transition matrix and spread term structures at

horizon of one year that depend only on the current state k [see Tables 6.5 and 6.6].

Table 6.5: Estimated Transition Matrix

rating | AAA | AA A BBB B BB | CCC | Default
AAA | 90.81 | 8.33 0.68 | 0.06 0.12 0 0 0
AA 0.70 | 90.65 | 7.79 | 0.64 | 0.06 | 0.14 | 0.02 0
A 0.09 2.27 | 91.05 | 5.52 0.74 | 0.26 | 0.01 0.06
BBB 0.02 | 0.33 5.95 | 86.93 | 5.30 1.17 | 0.12 0.18
BB 0.03 | 0.14 | 0.67 | 7.73 | 80.53 | 8.84 1.00 1.06
B 0 0.11 0.24 0.43 6.48 | 83.46 | 4.07 5.20
ccc 0.21 0 0.22 1.30 2.38 | 11.24 | 64.86 19.79
2INote that the Standard and Poor rating and the Mooody’s rating are not completely compatible, especially for

dates close to a change of rating, that is to a sudden change of risk level [see,e.g. the discussion in Kliger, Sarig
(2000)].
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Table 6.6: The Spread Curve

Category | Year 1 Year 2 Year 3 Year 4
AAA 3.60 4.17 4.73 5.12

AA 3.65 4.22 4.78 5.17
A 3.72 4.32 4.93 9.32
BBB 4.10 4.67 5.25 5.63
BB 3.55 6.02 6.78 7.27
B 6.05 7.02 8.03 8.52

CCC 15.05 15.02 14.03  13.52

We observe that the spread is not constant. It increases generally with the term, but may
decrease for low rating. Indeed, the long term spread takes into account the fact that the contract

is still alive which is a very positive information on a priori risky borrowers.

iii) Unobservable States

The previous approach is appealing since it is easy to implement and to understand, and capable
to accomodate the joint dynamics of rating and default. However this approach identifies the risk
category with a rating assigned by a private company, which has a time varying rating strategy.
For example, the transition matrices reported by Moody’s are clearly time varying and seems to
reflect their tendency to tighten the rules of evaluating borrowers. Moreover, even though the
details on how the Moody’s ratings are computed are not exactly known for confidentiality reason,
we can expect that the ratings depend not only on the structure and dynamics of the balance sheet,
but also on the market price history. This dependence is not compatible with the assumption on
the evolution of Z; as a Markov chain, and the dependence of the current state on the last state
only.

When the state is considered unobservable, the model becomes a complicated Hidden Markov
model, which requires simulation based methods for estimation and recovering the underlying
state histories. To our knowledge such an estimation with unobservable states has not been yet

performed.

6.4 VaR for Credit Portfolio

There exist various approaches to the analysis of profit and loss distribution and determination of
the VaR. We describe below two of them. The first approach is based on implementation of the
credit migration approach for prediction making and is suitable for corporate bonds. The second
one assumes that heterogeneity is exogenous, and is more appropriate for retail consumer loans.
Finally, we discuss the problem of default correlation.

i) The future portfolio value

Before determining the VaR, we need to define precisely the future value of portfolio that

contains bonds. Indeed, for a given bond, there is a time varying cash-flow pattern and also
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possibly coupon payments during the holding period. To simplify the discussion, let us consider a

single bond with a cash-flow sequence F.,7 =t+ 1,t+ 2,.... Without default risk its price at ¢ is:

Wy = Py(F) =Y _ FynB(t,t+h). (6.7)
h=1
With default risk, its price becomes:

(oo}
Wi =P/(F,S) =Y FiynB(t,t +h)Sy(t,t +h). (6.8)
h=1
Its future value at t + 2, say, will depend on the coupons which have been paid at dates ¢t + 1 and

t + 2, and on the value at t 4+ 2 of the residual bond with cash-flows F,7 > ¢t + 3. To aggregate
these components, we have to explain how the cashed-in coupons are reinvested. To simplify the
exposition we assume that they are invested in the riskfree asset.

Without default risk the future value of this bond is:

Wito = F[BE+1,t+2)]7 + Fra + Y FrpognB(t+2,t +2+h).
h=1
With default risk the future value of this bond can be:

Wiqo = 0, if there is default at ¢ + 1;

Witz = Fepa[B(t + 1,t + 2)] 71, if there is default at ¢ + 2;

Wiso = Fia[B(t+ 1, +2)] 7V + Fryo + > pe Froyn Bt + 2,6+ 24+ h)Sppa(t + 2,6 + 2+ h),
otherwise.
At date t this future value is stochastic since i) we don’t know if the credit agreement will still be
alive at dates t+ 1 and ¢+ 2. ii) the future term structure is unknown, iii) the conditional survivor
probabilities have to be updated.

ii)The credit migration approach

The credit migration model is convenient for approximation of the profit and loss distribution
by simulation. Before explaining the procedure, let us first describe in detail the credit portfolio.
The portfolio contains the bonds of n issuers ¢ = 1,..,n. Each issuer i is characterized by his state
history Z; , = (Zit, Zi,t-1,---,); the different bonds of the same issuer i included in the portfolio
can be aggregated leading to a sequence of aggregated cash-flows F; ., 7 =t + 1,t +2,.... We
denote by P; +(Z; ;) the price at ¢ of this sequence of cash-flows, and by P; t1r(Z; ;) the price at
t + h of the residual sequence F; ,,7 >t + h + 1. These prices include the cost of default risk and
depend on the individual state history, which influences the evaluation of default probabilities.

The current value of the credit portfolio is:

n n
W= Wie=> PiulZ;y),
i=1 i=1
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where W; ; denotes the total value of all bonds of issuer ¢ in the portfolio. The future value is:

n
Wisn = Wirsn.

i=1
The conditional distribution of this future value can be approximated by the sample distribution

of:

Wts+h = ZWisﬂH»h: §= 17 "'757 (69)
i=1

where the simulated values for each issuer W, ,, ¢ varying, are drawn independently. Let us now
describe the drawing of the issuer specific value at horizon 2, say. At date ¢, after a transition from
state [, the issuer ¢ stays in state Z; = k; for time H;.

First step: Drawing of the next state Z;;1

The next state Z;, , is drawn in the conditional distribution of Z;,; given Z; = k; by using the
estimated transition matrix.

Second step: Simulation of survival at date t + 1

Two cases have to be distinguished depending on whether Z7 | = Z;.

If Z§, | = Z; = ky, there is default at ¢ + 1 with probability 1 — Si, ;, (H; + 1)/Sk, 1, (H;) and
no default otherwise.

If Zf | = kiy1 # ki, there is default at ¢ 4+ 1 with probability 1 — S, ,, &, (1) and no default
otherwise.

These distributions are used to simulate the potential default at date t + 1.

Third step: Drawing of the state Zy;o.

This step is applied provided that the contract is still alive. The state is drawn in the conditional
distribution of Z; 12 given Z7,, = k¢11, where k; 1 is the state drawn at step 1.

Fourth step: Simulation of time to default at ¢ + 2.

Three cases have to be distinguished. They are described below along with the associated
conditional probability of default.

case 1: Z{, , = Z} | = Z; = ky

probability of default: 1 — S, ;, (H; + 2)/Sk, 1, (Ht + 1);

case 2: Zf o, =Zi = ki1 £ Zi = ky

probability of default: 1 — Sk, &, (2)/Sko 1,k (1);

case 3: Z7, 5 = kiyo # 27 = ke

probability of default: 1 — Sk, , k., (1).

The simulated time to default is denoted by Y*.

Fifth step: The simulated issuer specific value is computed from:
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Wiiss = Fiaa[B(tt + Lt +2)]  yesenr + Fiprelypsere + lypser2 Prra(Z5 140),

where Z7 ;.0 = (2142, 2111, Zip) and lyssepn = 1if V® > ¢ 4+ 1, 0 otherwise, denotes the
indicator function.
This approach assumes that the future riskfree term structure is known and so is the price

P (Z

;+) when the price history is given. Let us focus on default risk and disregard the risk on
T-bond interest rate. The prices P;(Z,;,) [or Pi:12(Z;,, )] are functions of the probabilities
of default. These probabilities are unknown and can be approximated by simulations that take

22

into account future risk migration Let us replace the prices in the last expression by their

approximations 15, say. The change in portfolio value becomes:

n
AWEy =Y {Fun[BE+ 1,1 +2)] Myssi + ysstgoPiia(Z500) = Pis(Ziy)} s =1,..., 8.
= (6.10)
Then the VaR is the empirical a-quantile of the distribution of AW ,, s =1,...,S.

Finally note that the estimated transition matrices admit generally coefficients on the main
diagonal that are all close to 90 % (see Table 6.5). It is often suggested [see e.g. CreditMetrics] to
avoid Monte-Carlo computation of the prices P; ;(Z; ;) [resp. Pit+2(Z,,5)] by assuming that after
t [resp. after ¢+ 2] no migration between risk categories will take place. This crude approximation
greatly simplifies determination of the VaR, but can induce significant bias. To clarify this, let us
consider the most risky category CCC. The computation of the bond price, as if the issuer were to
stay in the same rating category CCC, disregards the high probability of default and the possible
zero price of the bond in the future.

iii) The cohort approach

Let us now consider the retail loans. We introduce a dynamic model for default rates aggregated
by cohorts, which is easy to estimate and simulate. Various specifications can be used to predict the
future default rates. We just give an example, that includes autoregressive effects of lagged default,
macroeconomic factors and allows for unobserved time heterogeneity. Due to the autoregressive
part, the specification for the first semester of a loan agreement of any maturity is different from
the specification for the next semester and the following ones. For the first semester of the loan,
we have no information on past default history of the cohort, but it can be approximated by using
the basic score of credit granting used by the credit institution. We denote by Sj , and 0337 k., the

average basic score and its dispersion for the cohort k, 7. For semester h = 1, we use the following

221t is natural to approximate these prices by simulations because they can be viewed as prices of American
options.
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logistic model:

Dk(r; )] = a1 +bil(Sk.r) + €108, + di Xr 1 + 0nl[Di(r = 1;1)] +ex(731), (6.11)

where the components of X are macroeconomic variables, e (7;1) is an error term and [(z) =
log[z/(1 — «)] denotes the logit transformation. For next semesters of the loan, we can introduce
an additional autoregressive effect associated with the same cohort (7, k) and a lagged effect of the

previous cohort (7 — 1, k):

UDk(m;h)] = an+bul(Sk,r) + cno%y  + dp Xein + anl[Di(T — 15 b))

+ Bul[Dy(r,h = 1)] +er(r,h), h > 2. (6.12)

The joint model (6.11), (6.12) is a spatial regression model. It is completed by specifying the
distribution of the error terms ey (7, h), for any k, 7, h. We assume independence between cohorts

and a possibility of correlation between semesters. More precisely we assume :

[er(m,h),h=1,..., H], 7,k varying, are independent, normally distributed, with zero mean and

variance-covariance matrix X.

The parameters ap, by, ..., Bn,h = 1,..., H and ¥ can be estimated by ordinary least squares.
Even though the number of parameters is large, we have for each semester h a number of observa-
tions equal to the number of generations times the number of categories.

The estimated models are used for prediction making, in particular for finding by Monte-Carlo
the next columns of Table 6.3. For example, for the future date 00.1 (first calendar semester of
year 2000) an error €®(00.1;1) is drawn and the simulated default rate D?(00.1;1) is determined
by model (6.11) from D(99.2;1) and the simulated error. For the second row of that column we
simulate the error €°(99.2;2) and D?(99.2;2) is determined by model (6.12), D(99.2;1), D(99.1;1)
and €%(99.2;2), and so on. Note the difficulty in predicting the future values of macroeconomic
variables X. A solution consists of considering several scenarios of their evolution to assess the
default rate.

iv) Default correlation

The previous procedures assumed independence of risks of various borrowers and disregarded
the possibility of simultaneous bankruptcies. Under the migration approach simultaneous bankrupt-
cies can be examined by considering more complicated transition matrices that represent, for ex-
ample, the joint migration probabilities of two issuers, rated BB and A. Simultaneous bankruptcies

can be incorporated in the cohort approach too by allowing for correlation between the error terms
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of two different generations or categories. These model extensions are difficult to implement, espe-
cially since they involve complicated multivariate distributions. The challenge consists of finding
a constrained multivariate distribution that would provide good fit to the data and be relatively
easy for prediction making. Currently, various parametric families of copulas and factor models

are topics of ongoing research [see e.g. Schonbucher(2000), Gourieroux, Monfort(2002)].

7 Future Directions for Research and Development

In previous chapters, we have described various approaches developed in the academic and pro-
fessional literature to determine the Value at Risk. They can be applied to portfolios of liquid
financial assets, portfolios of derivatives, and also can take into account the risk of default. How-
ever, work in this field is far from completion. The aim of this chapter is to provide some insights

on various promising directions for future research.

7.1 Coherent Risk Measures

Despite its successs, the Value at Risk defined as a conditional quantile differs from the risk mea-
sures usually employed in the insurance industry. The reason is that it disregards the magnitude
of loss when it occurs. To correct for this drawback, Artzner, Delbaen, Heath (1997) proposed,
in a two period framework, a constructive approach to compute the capital requirement. They
introduced four axioms given below.

Let us denote by R;(W) the required reserve amount for the future portfolio value W. The
axioms concern the properties of monotonicity, invariance with respect to drift, homogeneity and

subadditivity.

(i) Monotonicity
If W is less preferable than W* for the stochastic dominance at order 1 (that is if the cumulative

distribution function of W* is larger than the cumulative distribution function of W), then

R, (W) > R,(W™).
(ii) Invariance with respect to drift
Rt(W + C) = Rt(W) —cC,

for any W and any deterministic amount c.

(iii) Homogeneity
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Ry(AW) = AR,(W), VA > 0,V

(iv) Subadditivity

Ry(W + W*) < Ry(W) + Ry(W*), YW, W*.

Homogeneity and subbadditivity imply the convexity of the function R;. It is easy to check that
the conditional quantile does not satisfy the convexity condition. Artzner et alii (1997) have
described all functions Ry, the so called coherent risk measures that satisfy the four axioms,
and given their interpretations in terms of expected utility. In particular, they show that the

expected shortfall or Tail VaR.:

TV(LR((L, a) =F; [Wt+1 (a)|Wt+1 (a) - Wt(a) + VaRt(a, a) < 0], (71)

is a coherent risk measure. TVaR measures the expected value of the portfolio conditional on a
loss of probability a. It can be considered as the (historical) price of a reinsurance contract and
the capital requirement is viewed as a self-reinsurance.

The axiomatic approach is useful as a basis for discussion about the nature of risk measure.
Typically, it emphasizes the importance of the size of loss, and not only of its occurrence. However,

it can be criticized for the following reasons.

i) Even if the (conditional) quantile function doesn’t satisfy the convexity property for any
portfolio value, this property can be satisfied for the conditional distribution of returns and the
portfolio allocations, which are encountered in practice [see e.g. Gourieroux, Laurent, Scaillet

(2000)].

ii) The homogeneity and subadditivity axioms are clearly not satisfied in practice. Indeed the
price per share depends on the traded quantities. For example, it decreases with the quantity
for a sell transaction. This effect is especially strong, when the market is close to a crash. This
stylized fact is not compatible with axioms (iii) and (iv), which assume that by increasing the size
of portfolio risk is diminished.

Moreover, if a coherent risk measure had been selected by the regulators, the banks would
have interest in merging to diminish the amount of required capital (due to axioms (iii) and (iv)).

Clearly such an incentive to merge may create non competitive effects and increase the risk.

However it is still important to discuss some conditions that need to be to imposed on a risk
measure prior to implementation. For example, such a condition can be the requirement that the

role of any new risk measure is to reduce risk. This condition is not satisfied by the Value at Risk
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defined as a conditional quantile. Indeed the portfolio manager has an incentive to modify the
usual mean-variance strategy and to select a portfolio allocation which minimizes the VaR under
a constraint on the expected value of the portfolio [see e.g. Foellmer, Leukert (1998), Gourieroux,
Laurent, Scaillet (2000)]. When applied to a portfolio which includes derivatives, this strategy
implies much riskier positions on derivatives than the standard mean-variance strategy. This is
easy to see; in order to diminish the probability of loss, which is the only constraint, the portfolio
manager increases the size of loss. Such a strategy is prevented under the variance-based measure
of risk. In general, such strategies can be avoided by imposing several constraints, such as joint
constraints on the Value at Risk and the tail VaR. However the method for fixing the required

capital as a function of the VaR and tail VaR is not known.

7.2 Infrequent Extreme Risks and Utility Functions

Before defining coherent risk measures it is necessary to specify the risks to investigate and to
describe the agent aversions for these risks. Intuitively, we wish to study extreme risks that induce
large losses, but are infrequent. Otherwise extreme risks could be examined and easily hedged for
by the investors. Gourieroux, Monfort (2000) have developed a simple framework for examining
this problem. Typically a sample of excess returns Y featuring infrequent extreme risks is obtained
when the distribution of Y is a mixture of gaussian distributions:

1 1

The mean is EY = m and the variance VY = Q; + Q5. However when « tends to zero, the
first regime becomes infrequent whereas the covariance matrix %Ql tends to infinity, creating
extreme risk. It is easy to check that the standard utility functions such as the exponential (or
CARA: Constant Absolute Risk Aversion) utility function, are not appropriate in the presence
of infrequent extreme risks. Indeed there is zero demand for risky assets from investors who
maximize an expected CARA utility function. As a consequence, there is no trading of these
assets at equilibrium.

Gourieroux, Monfort (2000) characterized the class of utility functions for which there exists a

nonzero demand for infrequent extreme risks. These functions may be written as:

Uw) = — /(w —z)"dG(z) + cw, (7.2)

where G is a cumulative distribution function and ¢ a nonnegative scalar. These functions are
called LIRA for Left Integrable (absolute) Risk Aversion.

The associated expected utility has a simple expression . Indeed we get for ¢ = 0:
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EuU(w) = —EyEy(w —2)~,

where E,, and F, denote the expectations with respect to the distribution of the portfolio value

and to distribution G, respectively. By commuting the expectations, we get:

E,U(w) =—E,Ey(w—2)” = —E, P[z], (7.3)

where P[z] is the price of a European put written on W with strike X (computed under the
historical probability). The expected utility is the opposite of the average price of puts, where the
average is the strike average. This is an interesting interpretation of expected utility, since it links

the treatment of extreme risk to the price of puts with strikes selected in an appropriate way.

7.3 The Dynamics of Infrequent Extreme Risks

Infrequent extreme risks have to be analyzed in a dynamic framework. Loosely speaking in the
case of a single asset, extreme risks correspond to infrequent jumps in the return trajectory that
cause large negative returns (or large positive returns, if the quantity of assets in the portfolio is

negative). The following questions concerning the dynamics have been considered in the literature.

i) How to construct a dynamic model that allows for infrequent extreme risks, and is compatible
with some stylized facts, such as the clustering of extreme risks and the possibility for standard
and extreme risks to have very different dynamics? The approach followed by Gourieroux, Jasiak
(2001) a,c is an example of this literature. They introduced Levy distributions to represent the
conditional distribution of returns. The family involves four parameters: a location parameter, a
scale parameter, a skewness parameter and a tail parameter. The four parameters are considered
as stochastic factors with their own dynamics. Distinct dynamics of standard and extreme risks
is obtained by introducing different serial dependence for the scale and tail parameters. It also
allows for clustering of extreme risks, when the dynamics of the stochastic tail parameter features

a unit root.

ii) Another important question concerns the misspecifications (also called model risks in the
VaR framework). What arises when infrequent extreme risks exist but are neglected in a dynamic
model? It has been proven that this misspecification induces a spurious long memory effect [see
e.g. Lobato, Savin (1997), Diebold, Inoue (2001), Gourieroux, Jasiak (2001)b, Gourieroux, Robert
(2001)]. In some sense it is a good news that the omission of the occurence of extreme risks induces
serial smoothing of theValue at Risk, which can be interpreted as a kind of implicit insurance in

time against stochastic risks.
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7.4 Portfolio of a large number of assets

To understand why a large number of assets can cause a difficulty for risk analysis, let us review
the standard mean-variance framework and assume that the conditional distribution of returns
is multivariate normal ¥ ~ N[m,X]. The allocation of a mean-variance efficient portfolio is
proportional to a = ¥7!'(m — rye), where ry is the riskfree rate and e = (1,...,1)" [see e.g.
Gourieroux, Jasiak (2001)a, section 3.4]. The joint dependence between the n assets is summarized
by the volatility matrix ¥ or better by its spectral decomposition. Let us consider the eigenvalues
ranked in descending order A\; > ... > A, and the corresponding eigenvectors ay, ..., an, say. aj [resp.
ap] provides the portfolio allocation with the largest [resp. smallest] return volatility. Moreover,
if m = 0 (the efficient market hypothesis) we see from equation (2.7) that a; [resp. a,] maximizes
[resp. minimizes] the gaussian Value at Risk; this result is valid for any risk level a.

Finally, when n is large, the smallest eigenvalue A, is close to zero. This can give a spurious
impression of perfect arbitrage opportunity,, and implies a rather inaccurate computation of X!
and of the optimal allocation. A number of methods have been proposed in the mean-variance
framework to avoid misunderstanding and to correct for the lack of robustness.

Despite of much efforts, analogous approaches for handling the fat conditional tails have not

been yet developed. Some important questions remain to be answered:

i) How to model tails that depend on portfolio allocation, that is are gaussian for some alloca-

tions and Pareto for others?

ii) Are the VaR minimizing (resp. maximizing) allocations independent of the risk level a? If

they are dependent, what is the o dependence pattern?

iii) In the mean-variance framework, can the structure of dependence be simplified by impos-
ing, for instance, an equicorrelation constraint? How to define a notion of equidependence in a

nongaussian framework? [see e.g. Gourieroux, Monfort (2002)].

7.5 Extreme Value Theory

The analysis of stochastic properties of extremes is a significant part of probability and statistical
theory [see e.g. Embrechts, McNeil, Straumann, Kaufmann (1998) for a survey oriented towards
applications to insurance and finance]. The extreme value theory (EVT) has been developed for
applications in various fields, initially not including finance. Nowadays, it is used to study extreme
risks on large portfolios of individual contracts, and to predict the occurrence and size of the
centenary wave, for example. We can distinguish different related topics treated by the EVT in

the one-dimensional framework. These are:
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i) the definition end estimation of the magnitude of the tail;

ii) the asymptotic behavior of the sample mean % Zthl y¢, from the point of view of both the

law of large numbers and large deviation properties;
iii) the asymptotic behavior of the sample maximum: Mt = max;eq1,... 7} Y¢;

iv) the distributional properties of the count process measuring the dates at which the process
(y¢) is larger than a given threshold 7, function of T'.

Due to initial domain of applications other than finance and to mathematical complexity,
the EVT has essentially been developed for i.i.d. observations or for data with rather simple
dynamics. A limited number of results exists for the complicated nonlinear dynamics encountered in
Finance [see e.g. Hsing (1991), Resnick, Starica (1995) for estimation of a tail index, Robert(2000)
for determination of the tail parameter in an a-ARCH model, or Gourieroux, Robert (2001) for
complete analysis of stochastic unit root models].

Let us now discuss how these results might be used for improving the specification in the

presence of extreme risks or for estimation of the Value at Risk.

i) Magnitude of tail

EVT provides classifications of tails compatible with the asymptotic theory. Such a classifica-
tion has been given for instance in section 2.2ii). The EVT also explains how to estimate the tail
parameter and describes the asymptotic properties of different estimators of the tail index. Such
an estimator (i.e. the Hill estimator) has been used in one of the model building approaches [see
section 3.3].

It is well-known that the Hill estimator and its extensions are not very accurate since it is
difficult to estimate the characteristics of an infrequent event. A particularly serious problem is
due to the fact that this type of estimators vary with the number of observations, possibly in a
very erratic way. Moreover, the properties of such estimators have been established in an i.i.d.
framework (whereas nonlinear serial dependence is crucial in Finance) and under the assumption
that the risk level « tends to zero when the number of observations tends to infinity (whereas it is

small, but fixed, according to the perception of regulators).

ii) Asymptotic behavior of the sample mean

These results can be applied to a sample mean %(yt +yir1+- .. +yi1n) to study the dependence
of the term structure of VaR on serial dependence and on the tails of the conditional distribution.
An illustration is given in section 2.2 iii) for a simple case of i.i.d. a-stable distributed returns to

show that the term structure depends on h!/%, where a is the stability coefficient.
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iii) Asymptotic behavior of the maximum

This part of the EVT is not very useful for determination of the Value at Risk for market risk.
Indeed the maximum operator is not involved in the computation of the portfolio value (except
in the case of a derivative written on the maximum of the return over a contractual period). The
theoretical results are typically used for insuring against catastrophic events. As such they will
likely be useful for defining the capital requirement for operational risk due to events such as a
hacker attack aimed at a computer system of the bank, the closure of trading room due to fire [see
the example of Credit Lyonnais in France], etc. But clearly this problem is more related to the

domain of insurance than to finance.

iv) The count process of large events

This part of the theory explains how the distribution of the count process of large events depends
on nonlinear serial dependence and on the tail of conditional distribution [see e.g. Gourieroux,
Robert (2001) for a detailed illustration of this relation]. It is potentially useful for two important
purposes which are: a) the prediction of the date (and magnitude) of the next future loss, and b)
the control of VaR implemented by banks. The observed distribution of dates on which losses were

recorded can be compared to the distribution of a process of exceedances.

8 Concluding Remarks

The review of literature on the Value at Risk given in this chapter emphasizes the variety of financial
assets for which risk has to be measured, controlled and managed. To these assets belong assets
and derivatives traded on an organized financial market or over the counter. Despite the variety
of assets and the large number of techniques developed for the computation of VaR, it is possible
to point out a common feature in many existing methodologies. They all rely on internal models
for the underlying asset dynamics, derivative pricing and assessment of default probabilities. Also,
the internal models often assume that risk is characterized by latent state variables. Therefore, the
VaR needs to be determined by Monte-Carlo simulations of future prices and default evolutions.
The intense use of internal models requires strict monitoring. In this respect, the Basle Com-
mitte has explored two types of regulation. The first one is standardizing the internal models
used by banks. The second one is conducting sensitivity analysis of VaR with respect to various

deviations from the internal models.
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Fig 2.1: Comparison of Normal and Logistic VaR
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Fig 3.1: Finite Sample Distributions of 1% Empirical Quantile
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Fig 3.2: Finite Sample Distributions of 5% Empirical Quantile
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Fig 3.4: i.i.d. Double Exponential Price Changes
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Fig 3.5: i.i.d. Cauchy Price Changes
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