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1 Introduction

The title of this paper is clearly overoptimistic and a bit misleading: another appropriate
title, perhaps more to the point, would have been “discretely sampled diffusions”, but this
was already used by other contributors to this volume... and somehow our title stresses
our ambition, which is to write a sort of commented review of the topic of inference for
diffusion processes.

The reader should ask himself right away whether it is really possible to describe such
a topic in any sort of depth within a score of pages 7 For example Prakasa Rao devoted
two thick books [32] and [33] to this, without exhausting the subject. But here our aim is
much more modest and also slightly different in spirit: we essentially consider parametric
inference for diffusion processes observed at discrete times, and for each setting we usually
describe a single estimation method, sometimes very quickly, and of course no proof is
given; on the other hand we describe a variety of observation schemes and we try to
compare these various schemes when it comes to applying the methods to concrete data.

Considering only diffusion processes is motivated by their wide use in finance and also
by the fact that essentially nothing is known about statistics for other continuous-time
processes, apart from point processes which occur in quite other contexts, very far from
finance. Considering only parametric inference is motivated mainly by the fact that so
far most models used in finance are parametric models, but also by the facts that little
is known about non-parametric inference for one-dimensional diffusions, while for multi-
dimensional diffusions non-parametric inference is perhaps even meaningless as soon as
one wants to infer the diffusion coefficient (the volatility).

As in most statistical contexts, the first concern of the statistician is the structure of
the available data. This is all the more important for continuous-time processes, since
many different observation schemes might be thought of: one may observe the whole path
of the process over some time interval (a very rare occurence indeed), or the exact values
taken by the process at some “discrete” times, either regularly spaced or not, or even at
random times; one may also observe a “regularization” of the path (this is certainly the
case in physical applications, probably much less the case in finance), or the values taken
by the process at some times, but blurred by some kind of error, and so on... Here we
mainly consider the case where n observations are given, regularly spaced on a grid with
mesh A,. The number n is usually very large, this is why we are interested in asymptotic
properties as n goes to infinity; as for the mesh A, it might be “small” (relatively to the
characteristics of the diffusion process), or not: so we study both the case where A, — 0
and the case where A, = A is fixed; in practice, though, n and A,, are given, and we have
to decide whether one can consider A,, as small or not...

Another question will be closely looked at in the paper: what happens when the data
are blurred with measurement errors 7 Surprisingly enough, very few papers have been
devoted so far to this topic, which we feel to be of much importance. Two kinds of
errors will be considered, both of them quite likely to occur in finance as well as in other
situations: first when each value of the process is measured with an additive independent
error, next when each value is measured with a round-off error. We also put a lot of
emphasis on the asymptotic “optimality”, or lack of optimality, of the procedures we




describe.

The structure of the paper is as follows: we start with a very brief account on diffusion
processes (Section 2), and another short reminder about asymptotic optimality in statistics
(Section 3). In Section 4 we give some general facts about statistics of diffusions. Sections
5 and 6 are devoted to regularly spaced observations, with a mesh A,, going to 0 or being
fixed, respectively. In Section 7 we study the situation when the process is observed with
measurement errors. Finally Section 8 is devoted to some concluding remarks and some
hints about discontinuous processes.

2 About diffusion processes

There is a large litterature on diffusion processes, and one can for example refer to Jksendal
[29] for an introductory account, or to “classical” books like Stroock and Varadhan [36],
Liptser and Shiryayev [28], Ikeda and Watanabe [15] or Revuz and Yor [35]. Of special
interest for finance is of course the book of Karatzas and Shreve [20]. For likelihood ratios
we refer to [28] or [16].

In most of this section, we consider only a single given diffusion process: this is in
contrast with the rest of the paper, where a whole family of diffusion processes, depending
on some parameter 8, is given.

2.1 The basic setting

By a “diffusion process”, we mean the solution X = (X;) of the following stochastic
differential equation (SDE in short):

dXy = a(t, Xp)dt +o(t, X,)dW;,  Xo="U. (2.1)

Here, time ¢ typically ranges through the real half-line IR = [0, 00); the process X takes
its values in JR? for some integer d, so X; has d components (X{)1<i<a; next, W = (Wy)e>o
stands for a d'-dimensional standard Wiener process. The other ingredients of Equation

(2.1) are:

(i) The initial condition U = (U%)1<i<q, Which is a random vector with values in JR?,
and independent from the Wiener process W.

(ii) The dr;’ft coefficient a = (a*)1<i<q Which is a measurable function from R, x IR%
into IR®.

(iii) The diffusion coefficient o = (o®J )i<i<di<j<a which is a d x d’-matrix-valued mea-
surable function on IR, x IRY. We also associate with o the d x d symmetrical
non-negative matrix c(t,z) = o(t,z)o(t,z)* (where “*” stands for the transpose):
sometimes c is also called “diffusion coefficient”.

Now that the basic terms are defined, we can introduce the notion(s) of a “solution”.
The simplest notion is called a solution-process: in addition to the data a and o, we




start with a given initial condition U and a given Wiener process W, all defined on
some probability space (2, F, IP) endowed with a filtration (F;). This space supports a
d-dimensional random vector U (the initial condition) which is Fy-measurable. It also
supports a d'-dimensional Wiener process W which is in fact an (F;)-Wiener process: it is
adapted to the filtration (F;) (each variable W, is F;-measurable), and for any 0 < s < t
the variable W; — W, is independent of . The term (Q, F, (F;), U, W, IP) will be called
an SDE basis. Then a solution-process of (2.1) on this SDE basis is any IR%-valued process
X which is continuous in time, adapted to the filtration (F;), and which satisfies the
following (written component-wise):

. oot . 4t o
Xi = U‘+/ a(s,Xs)’ds+Z/ ol(s, Xo)WdWi,  i=1,....d  (22)
0 . 0
j=1

The second integrals above are stochastic integrals with respect to the 1-dimensional
Wiener processes W7, uniquely defined up to a null set only; of course, writing (2.2)
supposes that all the integrals make sense. When the filtration (F;) is the one “generated
by” the Wiener process W and the initial condition U, then a solution-process is called a
strong solution.

Let us now recall a set of hypotheses which yields ezistence and uniqueness of a solution
process for our SDE (the uniqueness is to be understood up to null sets, that is if X and
X' are two solutions, then the set of all w for which the paths ¢ — X;(w) and t — X{(w)
do not agree is of probability 0). These hypotheses are:

(L) Local Lipschitz condition: For all T > 0, K > 0 there is a constant C(T, K) such
that (with |.| being the Euclidian norm on any relevant space)

te[0,T], |zl lyl <K = la(t,z)—a(t,y)l+|o(t,z)—o(t,y)| < C(T, K)jz—y| (2.3)

(G) Linear growth condition: For all T' > 0 there is a constant C(T") such that

te0,T] = lat,z)|+lo(t,2)| < C(T)(1 + |=]). (2.4)

If (L) holds but (G) fails, then a (unique) solution exists up to the “explosion” time:
there is a stopping time T" such that (2.2) holds for ¢ < T, and lim supr | X¢| = 0o on the
set {T < oo}.

So far, the Wiener process W and the initial condition U were given. In financial
applications, though, the actual Wiener process does not really matter. Similarly the
actual variable U has no importance, only its law p matters. Hence it is meaningful to
speak about X when the coefficients a and ¢ and the law p of the initial condition are
given, without reference to any pre-defined Wiener process W and random variable U.
Mathematically, this means that we are interested in the law of X. And, in statistics also,
one is usually interested in the laws of the data and not in the actual probability space on
which these data are defined.




A weak solution to Equation (2.1) is the law of any solution-process of this equation.
As the law of any random variable, the law of X will be a probability measure on the space
in which X takes its values. So, let us denote by £ the space of all continuous functions
from IR, into IR? (here d is fixed and does not appear in our notation). We endow this
space with the so-called “canonical process” Y, defined by Y;(w) = w(t) when w € Q,
and with the Kolmogorov o-field Y = o(Y; : ¢t > 0), and with the canonical filtration
Vi = Ng>t0(Yy : v < 8). Then if X is a solution-process on any given SDE basis, its law is
a weak solution. The law u of the initial condition U (which is also the law of Y; under
the weak solution) is called the “initial condition” of the weak solution.

Studying weak solutions scems to be a rather difficult task, since a priori different
solution-processes, possibly defined on different spaces, lead to different weak solutions.
However, due to two remarquable results, weak solutions are indeed quite tractable:

Theorem 2.1 (Yamada and Watanabe) Let 11 a probability measure on R?, and sup-
pose that, on any SDE basis such that L(U) = u, Equation (2.1) admits a unique solution-
process. Then the weak solution with initial condition p (which of course exists !) is unique.
[This holds in particular under (L) and (G).]

Theorem 2.2 (Stroock and Varadhan) Suppose that the coefficients a and o satisfy
the linear growth condition (G) and are continuous in x, and also that the matriz c(t,z) =
o(t,x)o(t,x)* is everywhere invertible. Then for any probability measure . on IR® there
s one and only one weak solution with initial condition p.

2.2 The Markov property and the infinitesimal generator

In the sequel we assume that our SDE admits, for every initial measure p, a unique weak
solution. Denote by IP, the weak solution associated with the initial measure p. A crucial
property of our diffusion is that the process Y is, under each IP,, a Markov process, Of
course it is in general non-homogeneous, and it becomes homogeneous when the coefficients
a and ¢ do not depend on time.

We will denote by (Pst)o<s<: the (non-homogeneous) transition semi-group, that is
P i(x,.) is the law of Y;, under each IP,, conditionally on the fact that Y = z. In the
homogeneous case we get a one-parameter semi-group, denoted by (P;)s>o.

Another characteristic of our diffusion is its infinitesimal generator, which is useful
mainly in the homogeneous case. So, assuming that the coefficients a and ¢ do not depend
on time, we introduce the following second order elliptic operator:

A = S (el Ly i O 2.5
fl@) = 3 ala) axif(‘”H%Z::lc(”) %iawjf(w)- (2.5)

=1

Then one can show that a probability measure IP on the canonical space is a weak
solution to our SDE if and only if, for any twice continuously differentiable function f on
IR%, the following processes

t
M{ = f(Y;) - f(Yo) — /0 AF(Y,)ds (2.6)
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are local martingales under .

This “martingale characterization” of weak solutions is most useful (a similar state-
ment holds in the non-homogeneous case). We will call the operator A the infinitesimal
generator of the diffusion process, although this is a slight abuse of terminology (our
operator A is more like the so-called “extended generator” of Kunita, except that we do
not bother here about the actual domain of this unbounded linear operator, using only
the fact that C? functions are in the domain).

2.3 Examples - Diffusions on a domain

Below we list a number of examples, some of them having an explicit solution in terms of
the driving Wiener process: this is rather rare, but such situations are worth mentionning
because they provide some of the most commonly used diffusion processes in finance,
and also they provide simple case studies in which various statistical procedures can be
tested. All these simple examples below concern the 1-dimensional case, d = d' = 1. The
reader will observe that in all cxamples there are parameters coming naturally within the
coefficients.

Example 1) Wiener process with drift: This is Equation (2.1) with the coefficients
a(z) = p and o(z) = o, where y € IR and o > 0 are given constants. The “solution” is of
course X; = Xg + pt + oW;.

Example 2) Geometric Brownian motion, or Black-Scholes model: This is Equa-
tion (2.1) with the coefficients a(z) = pz and o(z) = oz, where p € IR and o > 0:

dX: = pXidt+ o X dWy, Xy =U. (27)

This equation is a “linear” equation, which admits an “explicit” solution given by

X: = Uexp ((,u - E;) t+ orWt) . (2.8)

Example 3) Ornstein-Uhlenbeck process: This is the equation
dXt = - /j,Xtdt + Uth, X() = U, (29)

where 1 € IR and o > 0. This is again a linear equation with an explicit solution given by

4
X, = Ue* 4o / e~HE=3) aw,. (2.10)
0

The above stochastic integral is a Wiener integral (the integrand is a deterministic func-
tion), so it gives a centered normal variable with variance [} e"2#(t=5)ds = (1 — e~ 24%) /24
if u#0,and tif p=0.

Example 4) The Vasicek model: This is the equation
dX; = plv - X)dt +odWy,  Xo="U, (2.11)




where p,v € IR and o > 0. This generalizes the Ornstein-Uhlenbeck Equation and is
again a linear equation with an explicit solution given by

t
X; = Ue™# + cr/ e P qW, 4+ (1 — e, (2.12)
0

Example 5) The Cox-Ingersoll-Ross model: This is the equation
dX; = ,U,(l/ - Xt)dt + o/ X dWs, Xo=U, (213)

where ¢, v € IR and 0 > 0 and U is a positive random variable. In this case (G) is satisfied
but not (L); however a “version” of (L) holds on (0, 00), namely (2.3) holds for z and y
in any compact subset K of (0, c0), and we have a unique solution-process up to the first
time when this solution hits 0. In other words, there is a unique solution-process on the
whole half-line as soon as we are sure that this solution never hits 0: this is the case iff
2uv > 02 and pu > 0.

In the last example it is crucial that the solution remains positive. In the Black-Scholes
model, we see from (2.8) that, if the initial condition U is positive, then X remains always
positive: in both cases we can consider that the state space is (0, 00) instead of IR.

These are examples where the solution takes its values in a domain D of IR®. Consid-
ering for example Equation (2.1) on such a domain D means that the functions a and o
are defined on IR, X D and that the solution takes its values in D. Two extreme cases
are possible:

1 The domain D is open: one extends a and o over the whole set IR, x IR% in an
arbitrary fashion, and consider initial conditions U taking values in D only. One
solves the equation in JR? and with some luck the solution will not leave D. However,
it is not always easy (nor even possible) to extend a and ¢ in such a way that (L) and
(G) or the conditions for Theorem 2.2 hold, and further there is no general criterion
yielding that X will stay in D; only ad-hoc arguments for each special case, as for
the Cox-Ingersoll-Ross model, will (sometimes) do the job.

2 The domain D is closed. It is then more difficult because one has to specify what
happens when the solution X hits the boundary dD: it can reflect instantaneously
towards the interior of D, or stick for a while on the boundary 0D at the hitting
point, or diffuse over the boundary itself for a while before bouncing back inside the
interior of D. All these behaviours necessitate additional requirements.

And, of course, there are “mixed” cases, where D is neither open nor closed, and the
specifications of the process arc even harder in these cases... However, in Case 1 above, all
what we have said for diffusions over JR? remains true for diffusions over an open domain
as soon as we know that the process never exits the domain. As a matter of fact, in this
paper we will always assume that we are in Case 1, whenever the state space is a domain D
of IR%: that is, we can and will always do as if the state space were the whole of IR (this is
an important remark, because when a diffusion hits its boundary the statistical properties




might be radically modified, and in particular the rates of convergence of estimators might
be greatly improved, or on the opposite the asymptotic variance of the estimators can be
increased. ..). That means that for the Cox-Ingersoll-Ross process for example, we restrict
our attention to the set of parameters {(u,v,0) : u > 0, 2uv > o?}.

2.4 Likelihood ratio

One of the main tools in statistics is the likelihood ratios for the solutions of Equation
(2.1) associated with various coefficients.

Let us consider two sets of coefficients (a,0) and (a’,0’) with the same dimensionality,
and ¢ = oo* and ¢ = ¢'0’™, and consider solutions X and X' corresponding to these
coeflicients, and starting at the same point z( for simplicity. The likelihood ratio “of X’
w.r.t. X 7 is the likelihood ration (or Radon-Nikodym derivative) of the law IP' of X’
w.r.t. the law IP of X: that is, we consider the weak solutions IP and IP’ of our equations,
and we want to compute the likelihood ratio in terms of the coeflicients.

Two preliminary remarks are in order: first, as seen for example in Theorem 2.2, the
weak solution IP depend on a and ¢, but not on ¢ itself (we may have different functions o
with the same “square” oo™): so the likelihood ration can at the best be expressed in terms
of a,a’,¢,c: for example the two “equations” dX; = dW; and dX| = —dW; have the same
unique weak solution, and thus we cannot discriminate between the two equations upon
observing even the whole processes X and X'. Second, we obviously need that IP and IP’
be completely characterized by the pairs (a,c) and (a/, '), that is we need existence and
uniqueness of the weak solutions to our two equations. And, the likelihood ratio will be
computed on the canonical space (Q,Y).

Next, an extremely important observation: before computing any likelihood ratio, we
need to specify on which o-field this ratio will be computed (in statistical terms: what is
the form of the actual observations). This is because on the largest o-field ) the measures
IP and /P’ are — typically — mutually singular: in statistical terms, if the whole process is
observed (up to infinity!) then one can discriminate for sure between (a,c) and (da’,c').

Although one may think of several other possibilities (some of them considered later
on), we mainly consider two main schemes:

(1) The o-field is G = Y for some given T' < co; this corresponds to observing the path
of the solution over the interval [0, 77].

(2) The o-fieldis G = o(Y;, : i =0,1,...,n) for some times 0 < ¢ < #1 < ... < t,: this
corresponds to observing the solution at discrete times ;.

Let us congider first (1). If we do not have ¢’ = ¢, or at least if the two processes
¢(t,Y:) and ¢/(¢t,Y:) do not coincide P-almost surely on the interval [0, T], then P’ is not
absolutely continuous w.r.t. I’ on the o-field G: so for simplicity we assume that ¢’ = c.
We also need that for each (¢, 1) the vector o' (t, ) — a(z,t) be of the form

a'(t,z) —a(z,t) = c(t, )b(t, x) (2.14)




for some measurable vector-valued function b which is such that the integrals in the next
formula below make sense. Then the likelihood ratio of P’ w.r.t. IP, in restriction to
G = Yr, takes the form

T 1 T
Zr = exp {/0 b(ta Yt)*dYt - 5/0 b(t7 Yf,)*(a’(ta Yt) + al(tv )/t))dt} . (215)

Next we consider (2). The o-field G is much smaller now, so it is much easier for /P’
to be absolutely continuous w.r.t. IP in restriction to G: in particular we no longer need
something like ¢’ = ¢. In fact, as soon as for instance c is invertible on the domain D
where the diffusion process lives (an hypothesis usually satisfied by financial models), the
transition semi-group admits positive densities w.r.t. Lebesgue measure on D: that means
that the measures P;;(x,.) admit positive probability densities y — p;+(z,y) for all z € D
and all s < t.

Suppose that our two diffusion processes live on the same domain D, with transition
semi-groups admitting positive densities p, ; and p;’t respectively. Then, due to the Markov
structure, the likelihood ratio in restriction to G = o(Y, : ¢ =0,1,...,n) is

7 = f[ pgi—l»ti (Yti_uYti)
i=1 Pti_ati (Yti—l ) Yrt,) '

(2.16)

3 Parametric estimation: asymptotic optimality criteria

Let us now come to statistical estimation, from the asymptotic point of view. We have a
parameter set © C IR, and for each 8 € © a probability measure Py on our basic space
(22,Y) (for diffusions, each IPy is the weak solution of an equation (2.1) with coefficients
depending on the value 6).

Typically (at least in the diffusion setting) one does not observe the whole o-field Y,
but some sub-o-field G,,: here n stands for the “number” of available data, it is large, and
we are looking at what happens when n — co. More precisely, we want to construct for
each n an estimator §n for 6, in such a way that the sequence (gn)n behaves as well as
possible when n grows. This question of asymptotic optimality in estimation for general
statistical models was taken on essentially by LeCam (see [26] or LeCam and Yang [27];
see also the book of Ibragimov and Khashminski [13]).

We suppose that all measures Py are equivalent on the o-field G,,, and we use the
following notation for the likelihood ratios:

aiP;
Zn(¢/0) = — .

Let us assume that the “true” value of the parameter is 6, some point in the interior
of © C IRY. For each ¢ the sequence of random variables (Z,((/0)), is tight, so it is not
a drastic assumption to assume that these sequences converge in law (under IFy). Two
extreme phenomena, can arise:




1) For all ¢ in © the limit of Z,(¢/6) under [P is a strictly positive variable; then
“in the limit” we still have a statistical model where all measures are equivalent.
For diffusions this arises for example if at stage n one observes the values Y; /n for
i =0,...,n, and when all measures IP; are equivalent on the o-field Y; (typically
when the diffusion coefficient ¢ does not depend on the parameter): in the limit
we have the full observation of the diffusion over the time interval [0, 1], and the
likelihood is then given by (2.15).

2) For any ( the sequence Z,(¢/6) goes to 0 in [Py-measure: that means that “in the
limit” the measures become mutually singular and a “perfect” estimation becomes
possible. For diffusions this arises for example if at stage n one observes the values
Yi/n for i =0,...,n, and when all measures IP; are mutually singular on the o-field
Y1 (typically when the diffusion coefficient c(#,.) are distinct for different values of
6): in the limit we have the full observation of the diffusion over the time interval
[0,1], which gives us the function ¢, hence the value 6.

In case (1) above there is nothing more to say, except to wish good luck to the statis-
tician (observe that there is then no consistent sequences of estimators). In case (2),
contrarywise, we can go much further since it is possible to find weakly consistent se-
quences of estimators (é‘n)n this means that @n — 8 in IPy-probability for any 6. Then
one can look for rates of convergence, and this is what the so-called “local behaviour”
around the “true” value 6 is all about. More precisely consider a sequence u,, going to
0 (and which may depend of course on the value #). Here again several situations are
possible:

(i) up — “slowly”: then Z,(0 + unh/0) goes to 0 in Pyg-measure and, exactly as in (2)
above one can “asymptotically” estimate perfectly the parameter at the scale u,,.

(ii) up — 0 “fast”: then Z, (0 + uph/0) goes to 1 in IPy-measure. This means that the
measures Py and Py, ;, become more and more indistinguishable as n increases
and we cannot do any sensible estimation at the scale u,,.

(iii) In between, there is hopefully a choice of u, such that for any choice hy, ..., h, of
vectors in IR? the sequence (Z,(0 + unhi/0)n)1<i<r converges in law under /Py to a
limit whose components take their values in (0, 00) and have expectation equal to 1.

Suppose now that we can find a sequence w,, such that (iii) above holds. The value
6 is fixed here. One can find a statistical model B’ = (,G’, (IP})heme) (everything
depends on ) such that the measures IP; are all equivalent, and the likelihood ratios
Z'(h/0) = dIP}, /dIP; are limits in law of the variables Z(0 + unh/6)y, under IPy. Then one
says that the local models BS = (Q, Gn, (IPy1u,n)nere) converge weakly to B'.

In the limit we can identify be with B’, and LeCam showed interesting properties,
which we state in a rather heuristic way: if h is an estimator of h for B’ , there is a sequence
8,, of estimators for 8 such that ;}:(én —(0+unh)) converges in law under Py.,,, » towards
the law of kA — h under IP} for any h; conversely for any sequence of estimators 6,, such
that the sequence t(én — (@ + uph)) converges in law under Py, 5 to a variable Uy, for

all h, then there exists an estimator h on B' such that the law of Up, is the same as the
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law of h — h under IP;. Further, at least in a neighbourhood of 6 (shrinking to 0 at speed
uy, ), the “asymptotically beft” estimators én converge to the true value of the parameter
with the rate 1/u,, and 51;(0,1 — 6) converges in law under Py to the “best” estimator A of
h at point 0 for the model B, if such a best estimator exists.

In particular if the weak convergence of local models holds at any point 8, with a rate
4 (0) which in principle may depend on 6, we will say that a sequence 6, of estimators is
rate-efficient if for any value 6 the sequence #(00(0" — ) is tight under IP;.

Remark: When the paramecter is multi-dimensional, there is also the possibility that
the rate differs according to the components of the parameter. So we can do the same
analysis with a g-dimensional vector u, whose components decrease to 0, and the change
of parameter becomes, componentwise: (* = 0° + vl h?, for i = 1,...,q. We will see such
an example for ergodic diffusions later.

3.1 The LAN property

Finding rate-efficient estimators is good, but in some cases we can even go further: when
it is possible to derive “best” estimators for the limiting model B’ we can in principle find
accordingly “best” estimators, in the asymptotic sense, for the original model.

The simplest of these cases is by far when B’ is the so-called Gaussian shift: let I be
an invertible symmetric ¢ x ¢g-matrix); the associated Gaussian shift experiment consists
in taking ' = IR? and G' = RY (the Borel o-ficld) and P, = N(h,I7!) (the Gaussian
distribution with mean h and covariance matrix I~!. With the notation X (w') = w', we
thus have

Z'(h/0) = exp (h*IX - -;— h*Ih) . (3.1)

Observe that the matrix I is also the Fisher information matrix of the model B’, for all
values h € IRY.

We will say that the LAN (“local asymptotic normality”) property holds at point 8, with
rate uy, if the sequence of local models be around 6 converges weakly to the Gaussian
shift experiment B’ described above. Of course the matrix I depends on 6, and is usually

written I = I(6).

Due to the Gaussian property of the limit, we have LAN at point # as soon as the
following convergence in law holds true:

Zn(0 + unh/8) —LF) exp (h*X - % h*I(H)h) (3.2)
for all h. Equivalently, we have LAN as soon as we can write
1
log Z,,(6 + uph/0) = h*U, — 3 h*Ty(0)h + R, (h) (3.3)

where I',,(0) — I(6) and R,(h) — 0 in IPs-probability and U, converges in law under [Py
to NV(0, 1(0)).
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Now the model B’ is the simplest of all possible models, for which the best estimator
for h (recall that I(f) is known) is obviously 4 = X, in all possible senses of “best”.

~

Moreover under IP;, the variable h — h has the law N(0,1(6)71).

Therefore if the LAN property holds at a point 8, a sequence 6, will be asymptotically
optimal in a neighbourhood of 8 if

t(é\" —6) L) N(0,I(6)~1), or equivalently

~ (3.4)
@(an —0) =L®) A0, 1,)

Un

where I, is the g x q identity matrix. Observe that these estimators achieve asymptotically
the Cramer-Rao bound for the estimation variance. Moreover, such estimators will also
satisfy for all h:

(B~ (04 unh) —EForan) N (0,2(6)7) (3.5)

as well. Finally, such estimators are, in principle, easy to get: it suffices to set §n =
T (6)~U,; however in practice finding I',,(6) and U, is quite a different matter !

Sequences of stimators having the property (3.4) are called asymptotically efficient
around 6, and simply “asymptotically efficient” if this holds for each 8 (with u, = u,(0)
if it happens that u, actually depends on ).

3.2 LAMN, LAQ

Of course there are other limiting models than Gaussian shifts. Two of them are of
particular interest, and are sometimes obtained when dealing with diffusion processes:

Suppose that the likelihood ratios of the local model Bﬁ satisfy (3.3). Suppose also
that the pair (U,,['»(#)) converge in law, under [P, to a limit (U, I(#)), and that the
(random) matrix I(6) is everywhere invertible. Then

a) We have the LAMN (“local asymptotic mized normality”) property at point 0 with
rate uy if further we can write U = I(#)Y/2U’ where U’ is independent of I(#) and
distributed according to N(0,1;). The matrix I1(8) is called the random Fisher
information matriz.

b) We have the LAQ (“local asymptotic quadraticity”) property at point 6 with rate uy
if further for any h € IR? we have

E (M U-ENIO8) =, (3.6)

“Quadraticity” means that the log-likelihood is approximately a quadratic form in
h (in (3.3)), while mixed normality means that the variable U has a mixed Gaussian
distribution. Obviously LAQ = LAMN = LAN.

The LAMN property was introduced by Jeganathan [19], see also [27]. The LAQ
property has been introduced by a number of different authors: see LeCam and Yang [27],
Shiryaev, Spokoiny, etc...
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Exactly as for LAN, if the LAMN property holds at a point 8, a sequence 6,, will be
asymptotically optimal in a neighbourhood of 6 if we have the analogue of (3.4) (note that
the first line in (3.4) makes no sense here):

VInO) @ gy L N(,1,)

U,

(3.7)

51;(()” — 6) converges in law, under [Py, towards a

centered mixed Gaussian variable, with condional covariance matrix I(8)7.

Equivalently, one says: the sequence

4 Diffusions and Statistics

Let us now come back to our diffusion processes. We have a parameter set © C IR? and,
for each 0 € O, a pair (a(6,.),0(6,.)) of coefficients with the same dimensionality, and a
given starting point zg. We set ¢(6,.) = o(6,.)a(0,.)*. We suppose that the equation

dXt = CI.(Q7 t, Xt)dt + 0'(0, t, Xt)th, X() =Xy (41)

has a unique weak solution /P for every 6 € ©. Our statistical model is (22, Y, (IPs)sco),
where (2 is the canonical space with the canonical process Y. Recall that according to the
end of Subsection 2.3, we assume that the state space of our diffuions is the whole of IR%.
Taking a deterministic and known starting point z is just for convenience, most of what
follows accomodates random initial conditions (in most observation schemes anyway the
value of the process at time 0 is observed and may thus be considered as known).

We also have a set of data, which generates a sub-o-field G,, of ), where n here stands
for the size of the data set. On the basis of these data we want to construct an estimate
5,, for 6, and we are particularly interested in the asymptotic optimality as n — oco. As
a matter of fact, estimation procedures and even rates of convergence may greatly differ
for the drift coefficient and for the diffusion coefficient. So it might be useful to label
the parameters on which a and ¢ depend with different symbols. This leads to write the

equation as
dX; = a(01,Xt)dt + U(Gz,Xt)th, Xo = xop. (4.2)

The full parameter is then 8 = (6;,602). The two equations (4.1) and (4.2) are two ways
of writing the same thing, and the most convenicnt one depends on the problem at hand,
and especially on the structurc of the set ©: in the extreme case where 6; = 6, for all
(61,62) € O one prefers (4.1), while (4.2) is handier in the other extreme case where
O = @1 X @2.

Since we want to have at least consistent sequences of estimators, we obviously need
a minimal identifiability assumption, which can he expressed as follows: the measures Py
should be mutually singular for different values of 8, in restriction to the o-field G, =
V,, Grn which represents the biggest possible observed o-field (note that the sequence (G,)
is not necessarily increasing, though). Of course this is not fully satisfactory, since checking
this property on the coefficients a and ¢ themselves is not always a trivial matter. So in
practice we sometimes impose more restrictive identifiability assumptions, which are not
necessary but much handier than the minimal one.
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Let us now quickly review below a number of more or less commonly encountered
observation schemes, which amounts to specify the observed o-field G,. Some of these
schemes are studied more leisurely in the forthcoming sections. But, all throughout we
apply the methods to a special case in order to make comparisons, namely to the Ornstein-
Uhlenbeck process because, due to its Gaussian properties, it is particularly amenable to
explicit computations. In accordance with the notation of (4.2), we write it as

dX; = —61 Xdt + \/6?_2th, Xo = zg, (43)

and the natural parameter space is © = ©; x O, with ©; = IR and O3 = (0, 00).

4.1 Observation over a whole interval

A) The mathematically simplest case is when the whole path t — Y; is observed over an
interval [0, T,]: that is G, = V1, := (Y, : 0 <t < T,,). The theory has been established
mainly by Kutoyants (see [25] and many subsequent papers by this author).

This observation scheme has an immediate and obvious drawback: it is stricto sensu
impossible to achieve, since any conceivable mean of observation will end up with a finite
set of numbers. And even if this set of numbers is very large, it is difficult to obtain a
good approximation of the path ¢ — X;, which is quite irregular: it is Holder continuous
with arbitrary index o < 1/2, but not with index 1/2. Nevertheless, it is in principle
possible to achieve an approximation of the path which is as good as one wishes by, say,
discrete observations on a grid with sufficently small mesh. So, even if this continuous-time
observation scheme is not feasible strictly speaking, it can be viewed as an idealization
of real observation schemes. In this sense it has a lot of mathematical interest, because
it gives an “upper limit” of what can be achieved by observing X an any (regular or
irregular) grid inside the interval [0, T,].

As seen in Subsection 2.4, the measures [Py are mutually singular if the diffusion
coefficients ¢(, .) differ for distinct values of . And, by computing the quadratic variation
fOT " c(6, s,Y;)ds (a theoretically possible computation if the whole path is known), we can
compute exactly the true value of 6. In other words the statistical problem is completely
solved, with no estimation error,

The situation is totally diffcrent for the drift coefficient. So let us assume that ¢(0,.) =
¢(.) does not depend on 6, and further that it is invertible and that the functions b¢ /o(.) =
c(.)"a(¢,.) — a(8,.)) are, say, locally bounded for all §,¢. Then the measures /Py are all
equivalent on G, and the likelihood Z,,((/9) is given by (2.15) with b, /4 instead of b and
T="T,.

The asymptotic is then when T, — co: for getting any kind of results we need some
nice behaviour of the diffusion process at infinity. In practice, we need our diffusion
processes to be homogeneous and ergodic, with an invariant probability measure g whose
support is IR? (or, the domain D over which all our diffusions live). Then, using the ergodic
theorem and the associated central limit theorem, and if further the matrix ¢ is everywhere
invertible, one can prove that, under mild smoothness assumptions on the coefficients, we
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have the LAN property with rate 1/+/T,, and with asymptotic Fisher information matrix

I1(0);; = /a—i;a(e,x)*c(w)_laieja(e,a:),ug(dx). (4.4)
Further the maximum likelihood estimators (MLE) are asymptotically efficient, as soon
as for example the parameter set © is compact. Using the explicit expression (2.15)
we can in principle compute the MLE, but this involves computing two integrals, one
being a stochastic integral; for this one needs to do some approximation, like a Riemann
type approximation, and it is difficult to keep track of the errors introduced through
these approximations: a lot of papers have been devoted to methods allowing practical
approximations of the likelihood or to alternative methods.

But, appart from the drawback stated at the beginning and from the difficulty of
concrete calculations involving (2.15), one should emphasize the assumption that our dif-
fusions are ergodic: the examples 3, 4 and 5 of Section 2 have this property if and only if
the parameter p is positive, while the Black-Scholes diffusion is never ergodic; more impor-
tant even, all these examples are 1-dimensional, but if the diffusion is multi-dimensional
it is much more difficult to have ergodic properties. And further, it is very unlikely that
accurate models in finance can be at all ergodic (or even homogeneous) since there are
obvious trends, at least for assets prices: so modelling with a Vasicek model or a Cox-
Ingersoll-Ross model can be good only over a finite horizon, and this is of course totally
contradictory with the fact that T, — oo above.

The Ornstein-Uhlenbeck process: For the process (4.3), with 65 fixed and 6; un-
known, we can write explicitely the likelihood ratio and find the MLE, which takes the
form

~ Th Ty
A / Y,dY, / / Y2ds. (4.5)
0 0

The process is ergodic if and only if 6; > 0, in which case the stationary measure is
po = N(0,05/26,). As said before, we have the LAN property with rate 1/y/7}, at each
point 8; > 0, and the asymptotic Fisher information is I(#) = 1/26,, and of course the
MLE is then asymptotically efficient.

What is interesting here is that we can also derive the local asymptotic properties of
this model at the points 6; < 0:

a At point 6; = 0 we have the LAQ property with rate 1/7,,, and the variable I(0) is
(3.6) has the law of the variable fol W2dW,, where W is a Brownian motion. Observe
that for ; = 0 the diffusion is just a non-standard Brownian motion, recurrent but
not ergodic.

b At all points 6; < 0 we have the LAMN property with rate e27=, and the conditional
Fisher information I(6) has the law of the square of an A ((—\7—_%%——-1—5, ﬁ) random
variable. Observe that for §; < 0, the diffusion is transient: this explains why the

starting point x¢ has an impact on the asymptotic behaviour.

In all cases the MLE is asymptotically efficient. But the rate of convergence of (9\1,,1 to
0;, which is /T;, in the ergodic case, is much faster in the other cases, especially in
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the transient case. This is very specific to the O-U process, and for other transient or
null-recurrent diffusions essentially nothing is known, and in particular not the rates of
convergence if they exist at all.

B) Another related problem. A closely related asymptotic problem is as follows.
Instead of (4.1) we consider the equation

dXt = a(O,Xt)dt + EnO'(Xt)th, X() = Xy, t e [O,T] (46)

Here, T is fixed and o is a known function and the known parameter ¢, is supposed to be
small, so the above equation is a “noisy” version of the ordinary differential equations

dX; = 0(9, Xt)dt, Xy = xp, te [O,T] (47)

with a “small noise” ,W. Then as €, — 0 the solutions of (4.6), say, converge to the
(deterministic) solution of (4.7), under appropriate assumptions on a.

There is a big difference hetween the two settings (4.1) as T, — oo and (4.6) as
€n — 0: the first one corresponds to modelling an intrinsically random phenomenon,
while the second one corresponds to modelling a deterministic phenomenon with a small
random noise. However, although the second problem is somewhat easier to handle and
requires much less assumptions on a and almost no assumption on o, both problem present
many mathematical similarities. For instance we get (under appropriate assumptions) the
LAN property for the model associated with (4.6) with rate ¢,.

4.2 Discrete observations

Now we proceed to more realistic observation schemes. The process is observed on a
regular grid, at n regularly spaced values in time, say at times (0, A,,24A,,...,n4,). The
observed o-field is G, = o(Y;a, : 0 <4 < n). Then, as seen in Subsection 2.5, under mild
assumptions the measure JPy arc all equivalent on G,,, and the likelihood ratios Z,,(¢/6) are
given by (2.16), which here take the following form (pf ; denoting the transition densities
for the parameter 6):

¢
n Phona, i, (Yi-1a, Yia,)
Zn(C/a) = II g D -

i=1 p(i—l)An,iA”(Y(i—l)AnvY'L'A") '

(4.8)

Mathematically speaking, we are observing a realization of a Markov chain, and asymp-
totic statistical theory for Markov chains is well established, at least in the homogeneous
and ergodic case. However we have two main problems here: first, it may happen that A,
actually depends on n, so indecd we observe different Markov chains for different values of
n; and, more important, we do not know explicitely the transition densities of our Markov
chain, so the classical techniques for Markov chains cannot be used here.

Let us review the most important situations:

A) Constant stepsize. The stepsize is A, = A, independent on n. This setting is the
most natural one (apparently at least), but also the most difficult because the transitions
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are not explicitely known. Further, to provide asymptotic results we need homogeneity
and ergodicity, a set of assumptions which is probably rather rare in finance, as already
said before. We study this case in Section 6.

B) Decreasing stepsize. Another possibility is to let A, — 0 as n — oo: this will be
studied in details in Section 5. Then, although we do not know the densities pg,t, we have
good approximations for them as soon as ¢ — s is small: the first order approximation is
a Gaussian kernel, and there exist approximations at any order under enough smoothness
of the coefficients. So we have approximate expressions for the likelihood which are good
when A,, is small, and we can expect to find concrete estimators which perform as well,
or almost as well, as the MLE.

In fact, we can single out two very different situations:

1) The first one is when nA, (that is the maximal length of the observed interval) is
also big. This amounts to say that nA, — oo. The drawback is again that we
need homogeneity and ergodicity. Let us mention right away that, in the setting of
Equation (4.2), the rates of convergence differ for 6; and 6.

2) The second one is when nA,, stays bounded, in which case we can as well suppose
that nA,, = T is constant. In this situation we of course cannot do better than
if we were observing the whole path of the diffusion over the interval [0, 7], and
consequently we cannot have even consistent estimators for 6; in (4.2): so only 65
(that is, the volatility, which fortunately is the most crucial parameter in finance)
can be consistently estimated. On the other hand, we need neither homogeneity nor
ergodicity.

Yet another situation which frequently occurs in practice is when the process is ob-
served on a regular grid, but with missing observations. This is akin with the situation
where the observations are made on an irregular grid. The mathematics for theses situa-
tions is not really more complicated than in the regular grid case, and we will not touch
upon this topic here.

4.3 Observations with errors

So far we have examined the cases with complete observation on an interval (an idealized
situation), or observation along a regular grid. Even this is an idealization of the reality,
since it is not so often than one can observe exactly the values at any particular time.
More realistic schemes are as follows, and will be studied in Section 7 in the setting of
discrete observations:

A) Additive errors. Each observation suffers from an additive (random) error: instead
of Y;a, one observes Y;a, +&;,i, where the variables ¢, ; are independent of Y and usually
ii.d. and centered when ¢ varies. Rates of convergence of estimators then depend on the
variances of the additive errors.

B) Round-off errors. Another kind of errors can occur, especially in financial data:
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instead of observing Y; one observes a rounded-off value (this is also called space quan-
tization). More precisely one fixes a step o, > 0, and instead of Y;o, one observes the
smallest multiple of o, which is smaller or equal (or alternatively closest) to Y;a,. The
rate of convergence of estimators then depend on ay,.

C) Partially observed diffusion. Another situation is when the diffusion X is, say,
2-dimensional and one observes only the firt component X! of X (according to one the
schemes mentioned above). This happens for example in finance, where X! is the price
of the asset and X2 represents the “volatility” of this price. Such a setting is somehow
related to Problem A) above. This is quite difficult to study on the mathematical level,
and more or less hinges upon filtering theory and may also be viewed as an avatar of the
theory of hidden Markov chains. Very few definitive results are known here, and one has
to resort on procedures which are not known to be optimal. We will not touch upon this
problem here.

5 Discrete observations with decreasing stepsize

We start studying the problem B of Subsection 4.2: we are in the setting of Section 4, and
we observe our diffusion at times 1A, for ¢ =0, 1,...,n, without any measurement error,
and A, — 0. As said before, we should single out the two cases where T}, = nA,, goes to
infinity, or stays constant, and we begin with the second one, which is somewhat easier to
grasp (although the proofs are more difficult).

5.1 Observations on a fixed interval

Here we suppose that A, = 7'/n for some T' > 0. The observed o-fields G, = o(Yir/y, :
i = 0,...,n) are not increasing, but “in the limit” the o-field G, is Y7: so we have
no consistent estimators for ¢;, but only for 6, in (4.2), and it is natural to look at the
following equations

dX; = a(t,Xt)dt+a(0,t,Xt)th, Xy = 9. (51)

The coefficient o is not specified at all (we are in a semi-parametric setting), except that
we assume it is continuous. The coefficient o (or equivalently ¢ = oo™) is smooth enough
and with linear growth in z: for example twice continuously differentiable in all variables
is more than enough for most rcsults below. For simplicity we suppose that © is a compact
interval of IR, but everything would work as well in the multidimensional case for 6.

We need also an identifiability assumption: there are several possibilities, but again
for simplicity we assume the simplest one to check, namely that

6#£C = c6,0,20) # c(¢,0,0) (5.2)

(the minimal one would be that for any ¢ # 6, the IPy-probability that the two processes
t— c(6,t,Y;) and t — ¢((,t,Y;) agree on the interval [0, 7] equals 0).
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The first (theoretical rather than practical) question which arises is whether the local
models around some value § € © converge in the sense of subsection 3.1, with an ap-
propriate rate. To solve this, and in addition to the smoothness of ¢, we need two extra
assumptions: first, a mild assumption is that ¢, the derivative of ¢ in 6, is not identically
0 along the path of Y, for example we have ¢(6,0,2) # 0 (to be compared with (5.2));
asecond, a much stronger assumption is that the matrix c(6, ¢, z) is invertible for all (¢, z).
Then, one can show that we have the LAMN property, with rate u, = ﬁ and random
Fisher information given by (since © C IR, the random Fisher information is not a matrix
but a random number):

1 T
I(6) = 2—T—/0 trace(éc ™ ec1)(6, s, Yy )ds. (5.3)

This result has been shown by Dohnal [5] when X is 1-dimensional, by using an explicit
expression of the densities of the transitions in terms of the scale function and of an
extra Brownian bridge; it was next extended in [10] in the d-dimensional case when the
coefficient ¢ derives from a potential (the same explicit expression being still available),
and it was given its final form by Gobet [12], using Malliavin calculus.

Hence the rate-efficient estimators will converge at rate \/n, and asymptotically effi-
cient estimators will further be asymptotically mixed Gaussian centered around the true
value and with conditional variance I()~!.

The second question which arises, and s of much practical interest, is to find such
rate-efficient or even asymptotically efficient estimators. This turns out to be relatively
eagy. We can for example construct the following contrasts:

Vo(€) = i (logdet (c (C, %,Yﬁrn_lg_))

i=1

n

,— 1
+%(YQ - (i—l)T)*C_l (C, L - ,Y(i—-l)T) (Yir — Ygi—l)T)) . (5.4)

Then one takes the following estimator:

0, = ArgMin V() (5.5)
(the function ¢ — V,((), being continuous, admits an absolute minimum on the compact
set ©; if there are several, take any one of them in (5.5)). It can then be proved that
the sequence \/ﬁ(gn — 6) converges in law under Py towards a centered mixed Gaussian
variable with conditional variance I()~!, provided 8 is in the interior of ©. The proofs
are a bit complicated, but the reasons for both the LAMN property and the optimality of
the above estimators are simple enough:

o If ¢(6,t,2) = c(d,t) does not depend on = at all and if a = 0, then under each
IPy the process Y is Gaussian, with mean zg, and the densities pg,t are explicitely
known. Then a tedious but elementary computation shows that the LAN property
holds, with rate %{ and limiting Fisher information & fi| trace(¢c1éc™)(6, s)ds. In
addition, the variable V,,(¢) in (5.4) is — log Z,,(¢/0), up to a multiplicative constant;
hence (5.5) gives the MLE, which in the Gaussian case is known to be the best
estimator.
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e Coming to the general case, under /Py and conditionally on Y(i-1)T/n the vari-
able Y1/, is approximately Gaussian with mean Y{;_1y7/, + Op(1/n) and vari-
ance ¢(8, (i—1)T/n, Y(;_1)r/n)/n. Then our statistical model behaves asymptotically
like another model constructed as such: we have first our canonical process Y and
the law IP5; then we have another process U which, conditionally on the path t — Y,
is Gaussian with mean z and covariance E(U,U}) —zoz§ = [; c(6,r,Y;)dr for s < ¢;
finally, we observe the variables U;r/,,. Therefore one can argue “conditionally on
the process Y” and, at the heuristic level, we can apply the (elementary) results
valid for Gaussian processes.

The previous results hold under the crucial hypothesis that the matrix c is everywhere
invertible. If this fails, the formulae (5.3) and (5.4) make no sense. However it is still
possible to obtain reasonable estimators, as shown in [9]. For instance, instead of defining
Vr, by (5.4), we can set

2

2_%2‘1’:cii (vavyi“_rjﬁ)) (5.6)

i=1 n

ValC) = Z(

i=1

Yir —Yi-pr

and still define 8, by (5.5). Then /n(6,, — §) converges in law under PP to a centered
mixed Gaussian variable with conditional variance

2Ty (S0 Suy(c)?) (6,5 Vo)ds
(E (e 2(0,0, 1)is)"

One can check that, as it should be, this quantity is always bigger than 1/I(f) when c is
invertible. Once more, the contrast (5.6) is only one among many different possibilities.

(5.7)

Remarks: 1) The same method accomodates the case where there are missing data, or
where the observations take place at an irregular grid. For example if the observations
are at times 0 = ¢(n,0) < t(n,1) < ... < t(n,n) = T,,, we can take the following contrast
(extending (5.4), and with the notation A(n,7) = t(n,1) — t(n,: — 1)):

Va(Q) = En: (log det (c (C, t(n,i — 1), Yt(n,i—l))>

i=1
1 * —1 .
+ A(n,i) (Yt(n,i) - Y;(n,i—l)) c (C,t(n,z — 1)aY;5(n,i—1)) (Yt(n,i) - Yt(n,i—1))> . (5.8)

Then we have exactly the same asymptotic result for 8, given by (5.5), provided T, — T
and the “empirical” measure %Zle Et(n,i) Of the observation times converges weakly to
the uniform measure over the interval {0, 7.

2) When c is not invertible, the estimators minimizing (5.6) converge with the rate \/n,
but this does not mean that they are rate-efficient: although this remains an open question,
it might happen that the singularity of ¢ induces the LAMN property with a smaller rate,
that is a rate u,, such that u,/n — 0: then rate-efficient estimators 5;1 are such that the
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sequence %(@1 — 0) is tight under IPy, while of course the sequence t(é\n — 6) with 8, as
above is not tight under Py, and 5,, is not rate-efficient. Nevertheless, the estimators é\n
stay “reasonable” in all cases.

The Ornstein-Uhlenbeck process: Let us consider the process (4.3). In the present

setting, 6, is a nuisance parameter and 6, is the parameter we wish to estimate. It turns
out that we have not only the LAMN, but even the LAN property, with rate % and

Fisher information I(8) = 1/202. The contrast (5.4) takes the form
1 n
Va(2) =n (108 Cot = R Z(YE - Ygz'—lzT)2> ,
and the minimum contrast estimator is
92n=_z _T" i-)T )2-

Note that this works wheneveE the value of 6; is. Now, if further 8; is known, one can
derive the genuine MLE, say f)é,n, which takes the following form, to be compared with

62,11, above:
7 —’——nu Dy Lim (Yir — e T/Y —ur))? if 0,40
BRI D> ¢ i = Ymyr))? if 6;=0.

The sequence (5’2,,1) is also asymptotically efficient, and indeed \/5(52,,1 - 5’%) goes to 0
in IP,-probability.

5.2 Observations on an increasing interval

Now we suppose that at the same time A, — 0 and T}, = nA,, = oco. Here again the
observed o-fields G, = o(Y;a, : @ = 0,1,...,n) are not increasing, but “in the limit”
Goo = Y: so as soon as the minimal identifiability assumption is met, namely that the
measures I[Py are all mutually singular on the largest o-field ), we can hope for consistent
estimators for 6.

Constructing estimators which are, first, consistent, and further with a reasonable (or
optimal) rate of convergence is however a very different matter. This is where the place
where the parameter comes in (in the drift term or in the diffusion term) makes a lot of
differences. This is why we write the equations in the form (4.2), and some preliminary
remarks are more or less obvious:

a - For 6, we can apply the previous method; by keeping only the first I, = [1/A,]
observations (where [z] denotes the integer part of z) and discarding the others, we
are in the previous setting with [,, observations, and we can construct estimators
which converge to the true value 62 with the rate /I, ~ 1//A,; this is of course
not very good if A, goes slowly to 0, but at least it gives consistent estimators.
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Using all the data we can of course hope for better estimators for #3, but then to
derive any kind of asymptotic properties we have to assume that our diffusions are
homogeneous and ergodic.

b - For 6, it is quite another matter: first, to obtain any kind of reasonable result we
must again assume that our diffusions are homogeneous ergodic. Second, we cannot
do better than if the whole path of our process had been observed over the interval
[0,T,), and we have seen already that the best possible rate in the later case is /T,.

Therefore in the rest of this subsection we assume that the coefficients a and ¢ depend
on 61 and 6 respectively, and on z, but not on time. We suppose that the set © of
all possible values for § = (6,,6s) is a compact subset of IR? (higher dimension for 8 is
purely a notational problem). Finally we assume that the diffusions are ergodic, and that
the unique invariant probabilities pug = 4, g, all have IR? as their support. Within this
setting, the minimal identifiability assumption stated above has a simple expression in
terms of the coefficient:

a(61,z) = a((y,z) for all z = 01 =G } (5.9)
c(02,z) = ¢((a,z) for all z = 0y = (5. '

There are several ways of finding good estimators in this setting: see e.g. Florens-
Zmirou [8] or Yoshida [37]; here we expound a method due to Kessler [22]: this method
has been derived for the 1-dimensional case, so we suppose here that our diffusions are
1-dimensional, but there would be no difficulty to extend it to the multi-dimensional case,
except for very cumbersome notation. It is based on the consideration of the infinitesimal
generator Ay of the diffusion, which takes the form (see (2.5)):

Ao (3) = a(01,2)1'(2) + 3¢(62,2) " (3).

and its iterates Ay form = 2,..., and Ag is by convention the identity operator. For taking
AZ'f we need of course f to be of class C2m, while the coefficients a and ¢ should be at
least of class C2(™=1) in : for simplicity we assume that they are infinitely differentiable
in z, and also 3 times differentiable in #, with all derivatives with polynomial growth
and the first derivatives in z bounded. Finally, we assume that ¢ < ¢(f2,z) < 1/e for
some € > 0 and all 03, z, and that the measure uy has moments of all orders and that
sup; IEg(|Y:|P) < oo for all p < co. All these assumptions are satisfied in most applications,
as soon as the processes are ergodic.

Let us introduce a number of notation. We denote by ¢(z) = z the identity on IR.
Then we define the functions

Ap(x) S App(z) Ajé(x)

r! s!

izl = gy =2(y—2)
rs>1,r+s=j




=y
1,6, z) Zh Z*,

I'; is a polynomial of degree [ in h, w1th no constant term and first order term equal to
he(62,z), so T'y(h,8,z) = %%Q—f)z is a polynomial of degree [ — 1 in h with constant term
equal to 1. Then we can denote by d;;(6, ) and e;;(6,z) the coefficients of order j > 0
of the Taylor expansion in A, around 0, of the functions 1/T}(h,6,z) and logj(h, 0, )
respectively. Finally, we consider the contrast

n !
Vin(Q) =) (108 (G2, Yii—nya,) + O Aeji1 (0, Yio)a,)

1 (Yian = 11(8n, ¢, Yiimn)a,)? 1+iﬁjd'z 1(¢, Y ) | |5.10)
Anc($a, Yi-na,) 15 X(i-1)A, 25 i+1(C Yiio1)a, :

This expression looks complicated, all the more when [ is large, but it must be observed
that it is “explicit” in the sense that if one knows the functions a and ¢, everything in
(5.4) can be explicitely computed. Then one consider the estimator

Ol (0 1n,02 n) = ArgMin Vj ,(.), (5.11)

which exists since © is compact and V;, is a continuous function.

Now the result is as follows: suppose that A,, is such that nAf{ 2 0 for some integer
[ > 2, and also that 0 is in the interior of ©. Then the pair (\/nAn(@l’n —0), \/ﬁ(@n -
02)) converges in law, under Py, towards a pair (U, V) of independent centered Gaussian
variables with respective variances given by

. 2 -1 -1
(/ ac((%lz:z))_/w(dw)> ; 2 </ cEZ;—’;zug(dmO . (5.12)

Remarks: 1) The contrast (5.10) is an approximation of the log-likelihood (up to a
multiplicative negative constant), which converges to the true log-likelihood as | — oo for
each fixed n. This is why the estimators based on this contrast work well when [ is large
enough relatively to the size of A,,, a fact expressed by the property nAf{2 - 0.

2) We do not know about the optimality of the second component 1’972,,1, although it is
certainly rate-efficient at least. But the first component 91 n 18 asymptotically efficient:
in fact, if instead of the values Y;a, one observes the whole path of Y over [0,T},], from
the results of Subsection 4.1 we know that 65 is known exactly and that for #; the LAN
property holds with rate 1/4/nA, and asymptotic Fisher information being the inverse
of the first expression in (5.12) (compare with (4.4)): so @ln performs as well as the
asymptotically efficient estimators for #; when we observe the whole path over [0, T5,].

3) Let us emphasize once more the two different rates we get for the estimation of the two
components #; and 65.
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4) How to apply the previous method, and in particular how to choose ! ? This is of
course a crucial point. On the theoretical level, the sequence A,, is given, and we have
nAi,/ 2 5 0foralll bigger than some Iy, in which case one should take [ = [, or it may also
happen that nA2 — oo for all p < 0o, in which case the previous method breaks down. In
practice it is quite a different matter, since indeed n and A,, are given ! ; hopefully n is
large and A,, is small, and one may perform the previous estimations for increasing values
of I, until the estimators 91 n and 02 » more or less stabilize.

To accomodate more preciscly this sequential procedure, one may also give an adaptive
version of the previous estlmators (see the thesis of Kessler [21] for a precise definition)
where the computation of 0 is based on the previous value @ !. then one stops when
9 0 -1 is small w.r.t. 1/\/——and02n 0%7} is small w.r.t. 1/\/_

The Ornstein-Uhlenbeck process: Let us consider the process (4.3). By looking at
the explicit form for the likelihoods, one can prove that in our setting (the ergodic case,

so that 6; > 0) the LAN property holds, \/— for
the f2-component, and with asymptotic Fisher information matrix
1 1
I10)11=— 1(0)22 = — I1(0)12 =1(0)21 =0. .
(0)1,1 TR (0)2,2 2% (0)12 =1(0)21 =0 (5.13)

Comparing with (5.12), we observe that the covariance matrix of the centered Gaussian
variable (U, V) introduced just before this formula is exactly I(#)~!: in other words, as
1/2

soon as nf,,” — 0, the sequence of estimators (5,,) is asymptotically efficient for estimating
0 (with of course different rates for the two comonents).

Now, it turns out that we have also local asymptotic properties when 6; < 0, exactly
as for observations over a whole interval (Section 4): if #; = 0 we have the LAQ property
with rates % for 61 and —\}—— for 0y; if 6 < 0 we have the LAMN property with rates e®1T»

for 6; and 7= for 62; further the components 1(6); ; of the associated random matrix I(6)
are given by by (5.13) if (4, ) is either (1,2) or (2,1) or (2,2), while I(6)1 is as given in
Section 4. As a matter of fact, one could prove that the MLE is asymptotically efficient
in these two cases as well.

6 Discrete observations with constant stepsize

The setting is the same as in Section 5, except that here A, = A. In a sense, this scheme of
observations seems the most natural one when observations are discrete in time. However,
as in Subsection 5.2, we must assume that the diffusions are homogeneous ergodic, with
unique invariant probability mcasures pg whose supports are IR? (or D if all diffusions live
on the domain D). Observe that here, in accordance with the results of this subsection,
the rates for 6; and 6y should both be y/n: so there is no reason to single out these two
components, and we come back to Equation (4.1), with coefficients not depending on time,
and some given starting point o (the same for all 6’s).

Next, about the necessary identifiability assumption: at first glance one should take
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the analogue of (5.9), that is
a(¢,z) =a(0,z) and c({,z) =c(8,2) forall z = ¢=0. (6.1)

However this turns out to be not enough: indeed “at the limit” we have Goo = 0(Yia : 4 =
0,1,...), and the restriction of /Py to G is entircly characterized by the kernel P4, where
(Pto))tzo is the semi-group of the diffusion with parameter 8. So the right identifiability
assumption is in fact

P{(z,.) = Pi(z,.) forall z = (=6, (6.2)

an assumption which is strictly stronger than (6.1), and which unfortunately cannot be
read in a simple way from the coefficients (in the examples 3, 4 and 5 of Section 2, however,
this identifiability assumption is satisfied).

Apparently the problem is much simpler here than before, since we observe the se-
quence (Yja)o<i<n, an homogeneous Markov chain with transition P4 under each IPy.
And as soon as the matrices ¢(#, z) are invertible these transitions admits positive densi-
ties p% (z,.) w.r.t. Lebesgue measure. So the likelihood on the o-field Gy, is given by (4.8),

ie.
7.(¢/0) = ﬁ pA(Yi1)a, Yia)
n - *
i=1 peA(Y(i—l)A)Yi )
Then, since our Markov chains are in addition ergodic, it is well known since a long time
ago (see for example the book of Roussas [34]) that under some reasonable smoothness
assumptions on the densities p} (implied by suitable smoothness of a and c), we have
the LAN property with rate 1/\/n, with asymptotic Fisher information matrix at point 8
given by

(6.3)

a .6 a .0
26:PA (%, Y) 55-PA (7, Y)
1(0); = / L & pig(dz)dy. (6.4)

PA(z,y)
Now the problems begin, since we aim to getting asymptotically efficient estimators,
if possible. The MLE is of course asymptotically efficient, but it is also unavailable be-

cause we have no explicit exprssion for the densities pg in terms of the coefficients of the
equations. So we have to resort on other methods.

6.1 Approximating the likelihood

A first method consists in computing an approximation of the likelihood (6.3) and then
maximizing in ¢ this approximation; more precisely we have to compute an approximation
p”CA(m, y) for all pairs of the form (z,y) = (Y(;-1)a, Yia) and all values of ¢, and minimize

¢ = VaQ) = [[ 764 (Yiz1)a, Yia)-
i=1

The key point is to compute ﬁi: for this, we can use expansions of pcA as a power

series in A and stop the expansion at some prescribed degree. This is for example the
point of view taken by Ait-Sahalia [1]: he first makes a space transorm which render pa
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relatively close to a Gaussian kernel, and then uses an expansion in Hermite polynomials,
but unfortunately this works only in dimension 1; other expansions are also possible. But
in a sense this is not much different from the undcrlying idea behind the method explained
in Subsection 5.2, and it is likely to work only for relatively “small” values of A.

The nice thing about such methods is that they give right away the function ﬁi(m, Y)
(as a function of z, y, and (), and often also allow to keep track of the error pi - ﬁCA.

Another possibility is to use Monte-Carlo techniques to approximate pCA: this has been
developped by Pedersen in {30], [31]: these work for any value of A, but the error ]Sg - pg
is difficult to control.

This method is relatively efficient, but its main drawback is that it allows to nicely
approximate pi(w y) for any given individual value of (z,y, (), but not as a function of
these variables, which we need because we have to maximize V,,. So we can either compute

for all ¢ in a finite set ©,, consisting in grid with a mesh mush smaller than ﬁ (since
we want an estimate whose error is of order W)’ or we can use a gradient method or
more sophlstlcated minimization methods, which necessitate e.g. the approximation of
the derivatives of p A in ¢. All these are again much computing-intensive. And once again,
it is extremely difficult to keep track of the approximation errors of the method.

6.2 Contrast functions and estimating functions

Another idea, which has many similarities with the method explained in Section 5, consists
in using a contrast function of the form

n

ValQ) =Y F(Yi—1ya, Yia, Q) (6.5)

i=1
for a suitable smooth function F, and to take for estimator B, the value, or one of the
values, which minimize V,,(.), as in (5.5).

When F is differentiable in ¢ and when 8, above is not on the boundary of ©, then
0, also solves the system of equations a%Vn(( y=0fori=1,...,q (q is the dimension of

6. That is, with G denoting the gradient of F' (as a function of the parameter), 8, solves
the following equation, called an estimating equation:

Wn(§n) = 07 (6.6)

where W, is .
Wa(¢) =Y G(Ys_1ya: Yia, Q). (6.7)

i=1

In the sequel, we suppose for simplicity that € is 1-dimensional, so the function G
above is also 1-dimensional; but everything would work in the multidimensional case as
well. First, the ergodic theorem says that

ZWal0) = WO,0) = [ polim) PA (2, dy)G ., 3:) (638)
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in IPy-probability. Therefore if G is smooth enough and chosen in such a way that
[ mo@)Ph(e,dn)Glay,) =0 & 0=, (6.9)

then the sequence 8, of (6.6) converge in IPyp-probability to 6, for every 8 € ©: that is, the
estimators are weakly consistent. Similarly one has that

1. . .
WalQ) = W(0,0) = [ o(do) PA(z, dy)C(a,0) (610)
in IP,-probability, and this convergence holds even uniformly in ¢ (for each fixed ; as

usual a “dot” means taking the derivative in 6).

Suppose next that G satisfies in addition
/ G(z,y,0)Pi(z,dy) =0  for all z,6. (6.11)

We then say that the estimating function W, is a martingale estimating function, because
the summands in (6.7) are martingale increments (note that (6.11) yields the implication
from right to left in (6.9)). Then the central limit theorem for ergodic Markov chains
and the martingale property imply that the sequence :}—EWn(G) converges in law under Py

to a centered Gaussian variable with variance [ jig(dz)P{ (z,y)G(z,y,8)2, under suitable
assumptions. Now, suppose that 6 is in the interior of ©; for n large enough, 0, is also
in the interior of ©, so we can write 0 = Wn(§n) = Wn(6) + (én - e)Wn(gn), where (, is
between 6 and 8, (and random). These facts, together with (6.10), yield that the sequence
V(B — ) converges in law under Py to a centered Gaussian variable with variance

. 2
o= [ md)Pye 08P | ([ mfoPencenn) . 612)

In other words, the sequence of estimators 6, defined by (6.6) is rate-efficient, provided
the function G is smooth enough and satisfies (6.9) and (6.11). Then, among all possible
choices for G, one should choose one which minimizes the variance « in (6.12).

Of course (6.9) and (6.11) are not so easy to fulfill, and especially the last one, since
one still does not know the transitions Pg ! One may think of several possibilities:

1- For each 0 take a function ¢(.,8) which is an eigenfuntion of the generator Ay
of our diffusion, with eigenvalue () (note that A(f) < 0). Then G(z,y,0) =
g(z,0)(p(y,0) — e~ ¢(, ) will satisfies (6.11), whichever the function g is. Lin-
ear combinations of such functions also do the job. This is done e.g. by Kessler and
Sgrensen [24]. Observe that since Ay is given in terms of the coefficients a(#,.) and
c(0,.), finding eigenfunctions for Ay is in principle easier than finding P§.

2 - We take an arbitrary smooth function f on IR? x R% and let G(z,vy,0) = f(z,y) —
f'(z,8), where f'(x,0) = [ P{(x,dy)f(x,y), so (6.11) is obvious. The function f’
is, once more, not explicit; but it is possible to approximate it by Monte-Carlo tech-
niques for example, with the same drawbacks than the method using approximated
likelihoods. This method is akin with the so-called “simulated moments method”
developped by many authors in practical studies.
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3 - One can relax (6.11), for instance by taking G(z,y,6) = g(z,6) not depending on
y, but such that [ pg(dz)g(z,8) = 0 for all §: this property replaces (6.11) and
is enough to obtain that \/n(6, — 6) converges in law under [Py to some centered
Gaussian variable, although with a variance having a much more complicated form
than (6.12). The advantage is that finding functions g satisfying [ pg(dz)g(z,0) =0
is much easier than finding functions satisfying both (6.10) and (6.11), because ug is
reasonably often explicitely known (when the diffusion process is 1-dimensional for
example). The main disadvantage is that the minimal variance we can thus obtain
by appropriately choosing g is always bigger than the minimal variance « in (6.12)
when G is appropriately chosen. This was done by Kessler [23], who in particular
stidied the Ornstein-Uhlenbeck case completely.

Many other possibilities are indeed available in the literature: one can consult Prakasa,
Rao [33] for an extensive account on this, and of course the paper [2] of Bibby, Jacobsen
and Sgrensen in this volume for many more details about estimating functions. But one
must say that indeed there is no universal method in this setting, working for all diffusions:
the comparison between the various methods is largely empirical and done only for special
diffusion processes.

A last remark: if one wants to get rid of the identifiability problem stated at the
beginning (that is, replace (6.2) by (6.1)), a possibility is to assume that the observations
take place at times T7,T3,...,T,, the occurence times of a Poisson process independent
of the diffusion, and with parameter 1/A: this seems strange at first glance, but in fact it
is compatible with many sets of data, in which the inter-observation times are not really
regularly spaced (see Duffie and Singleton [6]).

7 Observations with errors

When there are errors of various kinds, or incomplete observations, very little is known so
far. The problem becomes difficult because we loose the Markov struture of the process
and introduce complicated dependencies between the observed variables.

We will give very few elements here, and only for a single observation scheme: namely
when the process is observed at times i7'/n for i = 0,1,...,n. In view of the discussion
in subsection 5.1, we consider Equation (5.1):

dXy = a(t, X¢)dt + o (0,t, X )dWy,  Xo = 20

with a not depending on 6. For simplicity we also assume that X and 6 as well are 1-
dimensional, that ¢ (or ¢ = ¢2) does not vanish, and that a and ¢ are smooth enough
in all variables. Further we assume some kind of identifiability assumption, say that
(6,0, zg) # c(¢,0,z9) whenever § # ¢ (as said before this could be much weakened). This
choice of our observation scheme is due to the fact that this is almost the only situation
for which the influence of error measurements has been studied so far.
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7.1 Additive errors

The simplest possible kind of error, if not the most natural one, is when each observation
is blurred with an additive error, all errors being i.i.d. and independent of the diffusion
itself and with a known distribution. As a matter of fact, we can only deal with Gaussian
errors. So we suppose that the actual observations are of the form

Zi" =Yir/n + /Pnki, (7.1)

where p, is a known positive number, and the ¢; are ii.d. variables with law A(0,1),
independent of the process X.

We let the error variance p,, depend on n: this is because we are interested again in
asymptotic properties, and it may seem natural that the measurement error be small when
there are many observations; on the other hand, the case where p, = p does not depend
on n may also seem quite natural.

Mathematically speaking, the statistical modcl at hand may be described as follows: let
still (2, ), (IPs)gco) be the canonical space with the canonical process Y and the weak so-
lutions 1Py of our diffusion equations; let (2”7, )", )) be another probability space on which
are defined i.i.d. N(0,1) variables ,,; then we take the statistical model (', Y', (IP})sce),
where

A=axQ", YV=y)Y', | P=PFPQ.
Further we define the variables Z!' on this space by (7.1). The observed o-field at stage
n is then G, = o(Z0* : 1 = 0,1,...,n). Here, not only the o-fields G,, are not increasing,

but as said before we have lost the Markov property for the chain (Z7);>o.

7.1.1 Neglecting the errors

The first try to estimate might be to neglect the measurement errors and to use the
method explained in Subsection 5.1. Let us try this in the very simple case where o = 0
and a = 0 and ¢(0,t,z) = 0 and © = (0,00). Then of course our Equation (5.1) reduces
to X = vOW, where W is a Brownian motion.

If we observe without error (which amounts to taking p, = 0), we have the LAN
property with rate 71; and asymptotic Fisher information I(0) = %g; this can be seen
from (5.3), but it also reduces to very old results since here we observe equivalently the
normalized increments U* = \/—%— (Yii—1y7/n = Yir/n), which are i.i.d. N'(0,8). The contrast
(5.4) writes as
Yir/n — Yiciyr/n)?

ValQ) = nlog¢ + 13
i=1

C ¥
whose minimum is achieved at the point
) 1 & 2 - ny2
O =7 > Yirjn — Yi-nyrm)? = D_(UM?. (7.2)
=1 i=1

Since the U} are i.i.d. N(0,8), it is also well known that 8,, is optimal for estimating 6 in
all possible senses, not only asymptotically but for every n.
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Now we have measurement errors, but we still use the contrast above, just replacing
the unobserved Y. /n by the variables Z7 of (7.1). This amounts to taking the estimate

8, of (7.2) with Z instead of Y. /n- Since all variables are Gaussian, it is elementary to
check that

- 5,, — 6 in IPp-probability if and only if np, — 0: so if np, does not go to 0 the
sequence 6, is not even consistent, and in fact it goes to +oo !

o~

- v/n(6, — 0) converges in law under IP; to an N(0,20%) = N(0,1/I(#)) random
variable if and only if n3/2 )
efficient.

pn — 0: in this case, the sequence 6, is asymptotically

- /n(0, — ) converges in law under P} to an N'(v,20%) = N(v,1/I(6)) random
variable if and only if n%/?p, — v € [0,00): if v > 0 the sequence 8, is rate-efficient,
but not asymptotically efficient because of the bias.

- If n®/2p, — oo, then the sequence /7(6,, — ) is not tight under IPy: so in this case
the sequence 8, is not rate-efficient.

The main point coming out from this analysis is that it is very dangerous to forget
about measurement errors: if these are “small enough”, meaning that n®/2p, is small,
then there is no harm (this is obvious from a heuristic point of view, except for the power
3/2 which comes from precise calculations), but otherwise one gets bad estimators, and
even inconsistent estimators when np, does not go to 0.

7.1.2 Taking care of the errors

In view of what precedes we should take the errors into consideration, at least to get
consistent estimators, and if possible to find asymptotically efficient estimators. For this,
we reproduce some (unfortunately not quite complete) results from [11].

Let us first single out three cases corresponding to different asymptotic behaviour of
prn (Case 3 below accomodates the situation where p, = p does not depend on n), and
introduce some notation:

Case 1: npp > u=0, then set wu, =1/y/n
Case 2:  np, = u € (0,00), then set u, =1/4/n (7.3)
Case 3: NPy, —> U =00, Sup, P < 00, then set wu, = (Pn/n)1/4,
-2%27 if u=0
2(94 .
u(z,v) =1 57k /(f(L/x%s - if 0<u<oo (7.4)
2 .
82377 if u=o00

Next, in agreement with the case without errors, we can hope for the LAMN property
to hold, perhaps. We have been unable to prove this, but we can prove it in the particular
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case where a = 0 and c(6,t,z) = ¢(6,t) does not depend on z (then the solution of (5.1)
is a Gaussian process with constant mean ). We also assume that c is smooth and that
both ¢ and ¢ do not vanish (the last assumption may be somehow relaxed, but we want
to keep things simple here). In this case, and if further p, = 0, according to Subsection
5.1 we have the LAN property with asymptotic Fisher information

1 (T 6,s)? .
2T Jo ¢(8,s)?

1(6) = (7.5)

If measurement errors are present and if p, is such that we are in one of the three
cases above, one can then prove that the LAN property hold with rate u,, and asymptotic
Fisher information

/ du(Tc(8,5),Te(0,s))ds. (7.6)

Observe that (7.6) and (7.5) agree when u = 0. Observe also that the rate is ﬁ as soon

as np, — u < oo: in this case, and even when n3/ 2p,, does not go to 0, one should be able
to find asymptotically efficient estimators with this rate ﬁ, a property not enjoyed by
the estimators (7.2).

Now, let us turn to constructing estimators. We go back to the general situation of
Equation (5.1). We first choose a sequence ky, of integers in such a way that nu2 /k, — 0
and k,/nu, — 0, by taking for example

[n'/4] in Cases 1 and 2
in Case 3.

(/% pnl")

We also set I, = [n/ky], and we take n large enough to have k, > 2 and [, > 2. Next we
consider the (k, — 1) x (k, — 1)-matrix D™ whose entries are

20n if i=3j
Dly={ —pn  if li-jl=1
0 otherwise

and whose eigenvalues are

}\’l?=2p7,,<1—cos;—7r), v=1,...,k, — 1,

1

and we write D" = P"L"P"* where L" is diagonal with entries given above and P" is

orthogonal. Next we set sy, k—"(mTl)— form=1,...,1l,, and, recalling the observations
Z7 of (7.1),
kn—1

Fj™ = Z B(ZR m-1)4i — Zemp—1)pi1)r G =Lkn =1, m=1,. 1,

kn—1
l n
STT:l = 7 E Z’?ﬂ(7,.’,’_2)_+_I/7 m = 2,...,ln,
kn—1 =
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n,m _ jm TC(C,sn,Sn) .
@J (C)_2(1_cos.k—:1;>+—_nl;:l—nl—., ]:1,-.-7k’n_1) mzz,...,ln,

Then at this point we can write a contrast function as

Iln kpn—1 an)z
- 2% (g ). 7

m=2 j=1

Finally B, is a point achieving the minimum of W,(.) over ©: observe that W,,({), hence
B,, can actually be computed (in principle) from the observations.

Then one can prove that, provided 6 is in the interior of ©, the sequence i(é\n —0)
converges in law under JP; towards a centered mixed Gaussian variable with conditional
variance I(6)~!, where

1 T
16) = /0 bu(Tc(B,5,Y,), Té6, 5, Ya))ds. (7.8)

Remarks: 1) When c(6,¢,z) = c(6,t) does not depend on =z, then (7.6) and (7.8) agree;
so if futher a = 0 the estimators 6, above are asymptotically efficient.

2) Although we cannot prove the LAMN property in general, a comparison with the case
c(0,t,z) = c(8,t) strongly supports the fact that we indeed have the LAMN property with
rate u, and asymptotic conditional Fisher information I(#) given by (7.8), together with
the fact that the estimators 6,, are asymptotically efficient, also in the case of genuine
diffusions (5.1).

3) It is noteworthy to observe that all ingredients above use the known value p, and of
course the observations themselves, but they do not depend on the case we are in (see
(7.3)). This is of big practical importance because, although we know n and p,, it is
difficult to decide whether the product np, is “very small” or moderate or big... In fact,
in all cases our estimators will be optimal (asymptotically speaking), within the relevant
asymptotic framework.

4) Assuming that the errors are Gaussian is rather strong, but we know nothing about
more general errors.

The Ornstein-Uhlenbeck process: We just mention here the case of the process
(4.3), to see more explicitely on an example the value taken by the conditional Fisher
information (7.8). We get in fact a deterministic quantity, given by

571}? if u=90
VT(2+T82 /u) .
I(O) = 4\/1702/2(4_'_,1,02/“)3/2 if 0<u<oo
;/52 if u=o00

One can observe that T comes in explicitely, except when v = 0.
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7.2 Round-off errors

Another sort of error consists in round-off errors: instead of the true value z of the
diffusion at some time, only a rounded-off value of z, at some level & > 0, is available to
the statistician: that is, instead of = one observes the value a[z/a] (recall that [v] denotes
the integer part of v € IR). This sort of measurement is particularly relevant for financial
data, where one models prices or interest rates with a diffusion, although the actual values
in the market are always multiples of some basic currency (dollars, or cents, or 0.1%’s,...).

Recall that everything here is 1-dimensional (# as well as the diffusion), and a and ¢
are smooth and c¢ does not vanish. Exactly as in the previous subsection where the error
level p,, was possibly depending on n, here the round-off level will also possibly depend on
n, say oy,. That is, at stage n we observe the variables

ZP = ay, [Y_T /an] . (7.9)

Contrarily to the previous case there is no need to enlarge our probability space: the
statistical model is thus (Q2,), (IPy)gco) (the canonical space with the canonical process
Y), but the observed o-field is G, = o (Z' : 1 =0,1,...,n).

7.2.1 Neglecting the errors

Here again we can first try to use the method of Subsection 5.1 without taking care of the
errors, and we again do this in the simple case where zp = 0 and a = 0 and ¢(0,t,z) =
and © = (0, ), that is X = /AW, where W is a Brownian motion.

1

Recall again that without round-off error we have the LAN property with rate N and

asymptotic Fisher information 7(8) = %;, and the optimal estimators are given by (7.2),
that is

~ 1 &
O =7 > Yirjn = Y—iyrym)*. (7.10)
i=1

Now we have round-off errors. If we just use 6,, above with ZT given by (7.9) instead
of Y7/, we get the following asymptotic behaviour (see [17]):
- If apy/n — 0, then 8, — 0 in Pp-probability.

- The sequence ﬁ(én — 6) converges in law under IPy towards an N(0,26%) random
variable if and only if o,,n — 0; and it is tight if and only if the sequence ay,n is
bounded.

- If apy/m = B € (0,00), then 8, converges in IPs-probability to some constant de-
pending on 3, which is strictly bigger than ¢: so the estimators 8,, are not consistent.

- If apy/n — oo and ay, — 0, then #ﬁaﬂ converges in IPy-probability to some positive

constant: so the estimators 6, are not consistent, and even converge to +oo.
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- If o, = a € (0,00), then the sequence _\}_ﬁgn converges in IFy-probability towards a
constant times the sum of the values of the local time of Y taken at all level ko for
k € Z, taken at time T

We can draw the same conclusion from this analysis than for additive errors: it is very
dangerous to forget about round-off errors: if these are “small enough”, meaning that na,,
is small, then there is no harm in doing that, but otherwise one gets bad estimators, and
even inconsistent estimators when a;,+/n does not go to 0.

7.2.2 Taking care of the errors

Now we take the round-off errors into consideration and we exhibit asymptotically efficient
estimators. The method explained below is due to Delattre: see [3] and [4].

First, it is possible to prove the LAMN property when ap/n — 8 € [0, 00). Describing
the asymptotic random Fisher information is a bit lengthy, and we need some preliminary
notation. First, consider a Brownian motion W over IR (such that Wy = 0) and a random
variable U which is uniform over [0, 1] and independent from W; for a > 0, let H,, be the
o-field generated by all variables of the form o [U + %"], i € Z; then for all i € IN and all
a € (0,00) we define the random variables ¥ = E((W; — W;_1)? — 1|H4). The following
formula defines a positive function over IR, :

oo

J(e) = B((€1)%) +2)_ E(¢7€7),

=2

and J(0) := limy g J(c) equals 2 and J strictly decreases from 2 to 0 when « increases
from 0 to co. Then, assuming that ¢ and ¢ are smooth enough and that ¢ does not vanish,
if apy/n — B € [0,00) we have the LAMN property with rate ﬁ and conditional Fisher
information given by

1 [T 0,s,Y,)? B
10) =3 [, SRR J( C(G,S’Ys)> ds. (7.11)

Observe that if 8 = 0, and since J(0) = 2, the above I(6) is also the value given in (5.3),
corresponding to observations without errors. If § > 0 then the above I(6) is strictly
smaller than the value given in (5.3), which corresponds to the intuitive idea that if the
round-off error is “big” then we obtain less information on the process.

When ap+/n — o0 and a,, — 0 it is also possible to prove the LAMN property, but
the rate is now «, and the conditional Fisher information takes yet another form.

Now let us come to constructing estimators. Here again, 8, will be a point achieving
the minimum of a contrast function which takes the form

(i — )T

Wa@) = 3 Flonvme(, CT o4 00y mzr—zry)), (1)
i=1

n 2

where F is a suitable (known) function on R, x IR, X IR, so 0, can actually be computed
(in principle) from the observations.
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Then when apy/n — B € [0,00) one can prove the following, as soon as the function
F is smooth, with polynomial growth at most, even in the last variable (i.e. F(q,z,z) =
F(a,z,—z)), and such that the function z — [ du [ h(y)F(, 2, afu + 2'y/c])h(y)dy
(where h is the density of the law A(0,1)) admits a unique minimum at point z' = z: pro-
vided @ is in the interior of ©, the sequence 1/n(6,, — 6) converges in law under IP; towards
a centered mixed Gaussian variable with conditional variance Y 3(6) (an expression in
terms of F' and its derivatives and of 3, looking a bit like (5.7) in a more complicated
way). Examples of possible such functions F are

|z[?

(2, @)

1 P
Fy(a,z,2) = +logv,(2,a), where 7,(z, ) =/0 du/h(y) ‘a[u+ g]‘ dy.
The estimators such constructed are thus rate-efficient; they are usually nor asymptotically
efficient, and indeed one does not know how to choose F' in such a way that é\n becomes
asymptotically efficient (ie. Tpg = I(6)7!, see (7.11)). However with F» as above,
we obtain g = I(8)!, so the associated estimators are asymptotically efficient when
any/n — 0 at least.

When ay,4/n — 00 and a,, — 0, one can use the same contrasts, except that we need
some additional assumptions on the behaviour of the function F(«, z,z) as @ = co. Then
the sequence —&1;(5” — 0) converges in law under Py towards a centered mixed Gaussian
variable with conditional variance X p o (6) (which indeed is the limit of 5152 F.o 88 @ — 00).
So again these estimators are rate-efficient.

An example of function F' which works for all cases (a,+/n bounded, or going to
infinity) is

_ L _BP m(e)
1Va v(z,aq) 1Va
Remarks: 1) Exactly as in Remark 3 of Subsection 6.8.1, one sees that with e.g. the

function in (7.13) we have estimators 8, which do not depend on the asymptotic behaviour
of the sequence ap/n: this is again of big practical importance.

F(a, z, 1) (7.13)

2) The fact that a, goes to 0 is crucial to all what precedes. If for example we take
o, = o not depending on n, then apart from the convergence in probability of 6y, //n for
the estimators in (7.10) towards a sum of local times, essentially nothing is known, but
even the identifiability of the parameter in this case could be a problem.

The Ornstein-Uhlenbeck process: Again, we mention the case of the process (4.3), to
see more explicitely on an example the value taken by the conditional Fisher information
(7.11). We get again a deterministic quantity, which is I(6) = ﬁJ (8/v02): we see
clearly on this formula the influence of the “asymptotic” round-off factor 8, and that the
key quantity is the quotient 3/1/0z, as it should be by scaling arguments. And, contrarily
to the case with additive errors, the quantity 7' does not come into the picture.
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8 Concluding remarks

We now have seen a series of methods for etimating parameters in diffusion processes,
mainly when the observations are regularly spaced at times iA,, for ¢ = 0,...,n. Obvi-
ously we have let aside a number of problems, even in this setting: first we have made
assumptions on the coefficients which are not necessarily met in practice, like in particular
the invertibility of the diffusion coefficient which plays an important réle in several cases.
Second, and probably more importantly, we have not really studied the case where the
diffusions live on a domain D, and especially the case where the boundary 8D can be
attained. Third, the case where there are measurement errors has been studied in quite
specific situations only, and there is obviously a need to go further in this topic.

Let us stick to the case of pcerfect observations on a regular grid. In a concrete situation
we have a number n of observations, and a stepsize A = A,. Then, which one among the
various methods should we choose 7 Since in practice n is (relatively) large, this question
boils down to determining in which asymptotic situation we can reasonably assume we
are: is A small, in which case we may assume that A = A, — 0 ? is it “really” small, in
which case we can suppose that nA,, is more or less constant ? Related with this problem
is, of course, the kind of parameter we wish to estimate: in the setting of Equation (4.2),
is it 61, or 02, or both ? keeping in mind that the volatily is probably the most important
parameter, we can think that in most cases we are interested essentially in 65; keeping in
mind that as soon as T}, = nA\,, — oo we essentially need the process to be ergodic, is it
reasonable to believe that our phenomenon is truly stationary ?

All these questions are crucial in a sense, and so far there is no definitive answers. In
fact there is a need for numerical experimentations on some case studies (for models more
involved than the Ornstein-Uhlenbeck process which, because of its Gaussian property,
might present too much specific structure to be truly representative of general diffusions):
one should check the validity of the different methods with the same set of data, perhaps
with simulated data to be sure of the underlying model. And also, before using a method
which necessitates ergodicity, we should perhaps make a test of the stationarity of the
process, or at least do the estimation on disjoint pieces of data and check whether the
estimates on each piece are more or less consistent with one another, or whether there is
a clear trend.

It might of course be the case that all reasonable methods give more or less the same
results, at least as far as the second component 6, is concerned: a close examination of the
methods suggests such a nice property (except for the methods using simulated moments
or simulated likelihoods), but there is of course no garantee for that.

Finally, we end this paper with some words about inference for discontinuous processes,
letting apart the case of point processes, which has been extensively studied but is not
relevant for finance. There is a number of papers about general estimation problems for
possibly discontinuous semimartingales, but mainly when the whole path of the process
is observed on an interval [0,7},], the asymptotic being T,, — co. More interesting would
be to look at discontinuous processes observed on a regular grid, just as above: but the
problems seem then to be quite difficult, and very few results have been obtained so far.

More precisely, if the grid has a constant stepsize A, and provided our discontinuous
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processes are Markov, we are again in the situation of observing n successive values taken
by a Markov chain, and if it is ergodic the methods of Section 6 can still be applied, with
obvious modifications. If our processes are Lévy processes, and although they are never
ergodic, some reasonably complete answers are available: see Jedidi [18].

However if the stepsize A, goes to 0, then very unexpected phenomena appear. Assume
for example that A, = T'/n and that the observed processes are X; = 67, where Z is a
given process whose law is known, and 6 is the parameter to estimate (8 € (0,00)). If Z is
a stable process with index a € (0, 2], then by the scaling property we easily find that the
LAN property holds with rate ﬁ If now Z is the sum of a symmetric stable process of
index o € (0,2] and of a standard Poisson process, then Far [7] proved that when a = 2
(i.e. Z is the sum of a Brownian motion and a Poisson process) we have the LAMN

property with rate 711; (and asymptotically efficient estimators can be derived and behave

better than if we had a Brownian motion alone); and if o < 2, then we have convergence
of the local model with a “random rate” which is ﬁ with positive probability, and nﬂl;
with also positive probability: so asymptotically efficient estimators converge to the true
value at a random rate which is \/n with positive probability, and n'/® (much bigger than
v/n) also with positive probability. And of course nothing is known when the observed
process is the solution of an SDE driven by, say, a Lévy process, and with a coefficient
depending on the parameter of interest.
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