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Abstract

This chapter develops Markov Chain Monte Carlo (MCMC) methods for Bayesian

inference in continuous-time asset pricing models. The Bayesian solution to the infer-

ence problem is the distribution of parameters and latent variables conditional on ob-

served data, and MCMCmethods provide a tool for exploring these high-dimensional,

complex distributions. We first provide a description of the foundations and mechan-

ics of MCMC algorithms. This includes a discussion of the Clifford-Hammersley

theorem, the Gibbs sampler, the Metropolis-Hastings algorithm, and theoretical con-

vergence properties of MCMC algorithms. We next provide a tutorial on building

MCMC algorithms for a range of continuous-time asset pricing models. We include

detailed examples for equity price models, option pricing models, term structure mod-

els, and regime-switching models. Finally, we discuss the issue of sequential Bayesian

inference, both for parameters and state variables.
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1 Introduction

Dynamic asset pricing theory uses arbitrage and equilibrium arguments to derive the func-

tional relationship between asset prices and the fundamentals of the economy: state vari-

ables, structural parameters and market prices of risk. Continuous-time models are the

centerpiece of this approach due to their analytical tractability. In many cases, these mod-

els lead to closed form solutions or easy to solve differential equations for objects of interest

such as prices or optimal portfolio weights. The models are also appealing from an empiri-

cal perspective: through a judicious choice of the drift, diffusion, jump intensity and jump

distribution, these models accommodate a wide range of dynamics for state variables and

prices.

Empirical analysis of dynamic asset pricing models tackles the inverse problem: ex-

tracting information about latent state variables, structural parameters and market prices

of risk from observed prices. The Bayesian solution to the inference problem is the distrib-

ution of the parameters, Θ, and state variables, X, conditional on observed prices, Y . This

posterior distribution, p (Θ, X|Y ), combines the information in the model and the observed
prices and is the key to inference on parameters and state variables.

This chapter describes Markov Chain Monte Carlo (MCMC) methods for exploring

the posterior distributions generated by continuous-time asset pricing models. MCMC

samples from these high-dimensional, complex distributions by generating a Markov Chain

over (Θ,X),
©
Θ(g), X(g)

ªG
g=1
, whose equilibrium distribution is p (Θ,X|Y ). The Monte

Carlo method uses these samples for numerical integration for parameter estimation, state

estimation and model comparison.

Characterizing p (Θ, X|Y ) in continuous-time asset pricing models is difficult for a va-
riety of reasons. First, prices are observed discretely while the theoretical models specify

that prices and state variables evolve continuously in time. Second, in many cases, the

state variables are latent from the researcher’s perspective. Third, p (Θ,X|Y ) is typically
of very high dimension and thus standard sampling methods commonly fail. Fourth, many

continuous-time models of interest generate transition distributions for prices and state vari-

ables that are non-normal and non-standard, complicating standard estimation methods

such as MLE or GMM. Finally, in term structure and option pricing models, parameters

enter nonlinearly or even in a non-analytic form as the implicit solution to ordinary or

partial differential equations. We show that MCMC methods tackle all of these issues.

To frame the issues involved, it is useful to consider the following example: Suppose on
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(Ω,F ,P) an asset price, St, and its stochastic variance, Vt, jointly solve:

dSt = St (rt + µt) dt+ St
p
VtdW

s
t (P) + d

µXNt(P)

j=1
Sτj−

¡
eZj(P) − 1

¢¶
− µPt Stdt (1)

dVt = κv (θv − Vt) dt+ σv
p
VtdW

v
t (P) (2)

where W s
t (P) and W v

t (P) are Brownian motions, Nt (P) counts the number of jump times,
τ j, prior to time t, µt is the equity risk premium, µ

P
t St is the jump compensator, Zj (P) are

the jump sizes, and rt is the spot interest rate. Researchers also often observe derivative

prices, such as options. To price these derivatives, asset pricing theory asserts the existence

of a probability measure, Q, such that

dSt = rtStdt+ St
p
VtdW

s
t (Q) + d

µXNt(Q)

j=1
Sτj−

¡
eZj(Q) − 1

¢¶
− µQt Stdt

dVt =
£
κv (θv − Vt) + λQv Vt

¤
dt+ σv

p
VtdW

v
t (Q)

where all random variables are now defined on (Ω,F ,Q). Here λQv is the diffusive “price of
volatility risk,” and µQt is the jump compensator. Under Q, the price of a call option on St
maturing at time T , struck at K, is

Ct = C (St, Vt,Θ) = EQ
·
exp

µ
−
Z T

t

rsds

¶
(ST −K)+ |Vt, St,Θ

¸
(3)

where Θ =
¡
ΘP,ΘQ

¢
are the structural and risk neutral parameters. The state variables,

X, consist of the volatilities, the jump times and jump sizes.

The goal of empirical asset pricing is to learn about the risk neutral and objective

parameters, the state variables, namely, volatility, jump times and jump sizes, and the

model specification from the observed equity returns and option prices. In the case of the

parameters, the marginal posterior distribution p (Θ|Y ) characterizes the sample informa-
tion about the objective and risk-neutral parameters and quantifies the estimation risk:

the uncertainty inherent in estimating parameters. For the state variables, the marginal

distribution, p (X|Y ), combines the model and data to provide a consistent approach for
separating out the effects of jumps from stochastic volatility. This is important for empirical

problems such as option pricing or portfolio applications which require volatility estimates.

Classical methods are difficult to apply in this model as the parameters and volatility enter

in a non-analytic manner in the option pricing formula, volatility, jump times and jump

sizes are latent, and the transition density for observed prices is not known.
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To design MCMC algorithms for exploring p (Θ,X|Y ), we first follow Duffie (1996) and
interpret asset pricing models as state space models. This interpretation is convenient for

constructing MCMC algorithms as it highlights the modular nature of asset pricing models.

The observation equation is the distribution of the observed asset prices conditional on the

state variables and parameters while the evolution equation consists of the dynamics of

state variables conditional on the parameters. In the example above, (1) and (3) form the

observation equations and (2) is the evolution equation. Viewed in this manner, all asset

pricing models take the general form of nonlinear, non-Gaussian state space models.

MCMC methods are particularly well-suited for continuous-time finance applications

for several reasons.

1. Continuous-time asset models specify that prices and state variables solve parameter-

ized stochastic differential equations (SDEs) which are built from Brownian motions,

Poisson processes and other i.i.d. shocks whose distributions are easy to characterize.

When discretized at any finite time-interval, the models take the form of familiar time

series models with normal, discrete mixtures of normals or scale mixtures of normals

error distributions. This implies that the standard tools of Bayesian inference directly

apply to these models.

2. MCMC is a unified estimation procedure, simultaneously estimating both parameters

and latent variables. MCMC directly computes the distribution of the latent variables

and parameters given the observed data. This is a stark alternative the usual approach

in the literature of applying approximate filters or noisy latent variable proxies. This

allows the researcher, for example, to separate out the effects of jumps and stochastic

volatility in models of interest rates or equity prices using discretely observed data.1

3. MCMC methods allow the researcher to quantify estimation and model risk. Es-

timation risk is the inherent uncertainty present in estimating parameters or state

variables, while model risk is the uncertainty over model specification. Increasingly

in practical problems, estimation risk is a serious issue whose impact must be quan-

tified. In the case of option pricing and optimal portfolio problems, Merton (1980)

1Alternative approaches to separating out jumps and stochastic volatility rely on decreasing interval
estimators. See, for example, Aït-Sahalia (2003), Barndorff-Nielson and Shephard (2002), and Andersen,
Bollerslev, Diebold (2002).
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argues that the “most important direction is to develop accurate variance estimation

models which take into account of the errors in variance estimates” (p. 355).

4. MCMC is based on conditional simulation, therefore avoiding any optimization or un-

conditional simulation. From a practical perspective, MCMC estimation is typically

extremely fast in terms of computing time. This has many advantages, one of which

is that it allows the researcher to perform simulation studies to study the algorithms

accuracy for estimating parameters or state variables, a feature not shared by many

other methods.

Armed with these tools for posterior simulation, we also analyze the problem of se-

quential Bayesian inference: iteratively computing the posterior distribution as additional

data arrives. We discuss two approaches for sequential inference. The first, the particle

filter, discretizes the filtering density and sequentially computes the posterior distribution

by resampling the particles via MCMC or other simulation methods. This approach is par-

ticularly well suited for filtering state variables in continuous-time models. We also briefly

discuss an alternative to the particle filter, the “practical” filter, which is a pure MCMC

method for sequential estimation.

The rest of the chapter is outlined as follows. Section 2 provides a brief, non-technical

overview of Bayesian inference and MCMC methods. Section 3 describes the mechanics of

MCMC algorithms, provides an overview of the limiting properties of MCMC algorithms,

and provides practical recommendations for implementing MCMC algorithms. Section 4

discusses the generic problem of Bayesian inference in continuous-time models. Section 5

provides a tutorial on MCMC methods, building algorithms for equity price, option price,

term structure and regime switching models. Section 6 discusses filtering methods. Section

7 concludes and provides directions for future research.

2 Overview of Bayesian Inference and MCMC

This section provides a brief, nontechnical overview of MCMC and Bayesian methods. We

first describe the mechanics of MCMC simulation and then we show how to use MCMC

methods to compute objects of interest in Bayesian inference.
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2.1 MCMC Simulation and Estimation

MCMC generates random samples from a given target distribution, in our case, the distri-

bution of parameters and state variables given the observed prices, p (Θ, X|Y ). One way
to motivate the construction of MCMC algorithms is via a result commonly known as the

Clifford-Hammersley theorem. The theorem states that a joint distribution can be charac-

terized by its so-called complete conditional distributions. Specifically, the theorem implies

that p (X|Θ, Y ) and p (Θ|X,Y ) completely characterize the joint distribution p (Θ, X|Y ).
MCMC provides the recipe for combining the information in these distributions to gen-

erate samples from p (Θ,X|Y ). Consider the following algorithm. Given two initial values,
Θ(0) and X(0), draw X(1) ∼ p

¡
X|Θ(0), Y

¢
and then Θ(1) ∼ p

¡
Θ|X(1), Y

¢
. Continuing in

this fashion, the algorithm generates a sequence of random variables,
©
X(g),Θ(g)

ªG
g=1

. This

sequence is not i.i.d., but instead forms a Markov Chain with attractive properties: un-

der a number of metrics and mild conditions, the distribution of the chain converges to

p (Θ, X|Y ), the target distribution.
The key to MCMC is that it is typically easier to characterize the complete conditional

distributions, p (Θ|X,Y ) and p (X|Θ, Y ), then to directly analyze the higher-dimensional
joint distribution, p (Θ, X|Y ). In many models, the distribution of the state variables

conditional on parameters and data, p (X|Θ, Y ), can be computed using standard filtering
and smoothing techniques. For example, in linear and Gaussian models, the Kalman filter

generates samples from p (X|Θ, Y ). Moreover, the distribution of the parameters given
observed data and state variables, p (Θ|X,Y ), is typically easy to simulate as it conditions

on the latent states.

MCMC algorithms generically consist of two different steps. If the complete conditional

distribution is known in closed form and can be directly sampled, the step in the MCMC

algorithm is known as a “Gibbs” step. If all the conditionals can be directly sampled,

the algorithm is referred to as a “Gibbs sampler.” In many situations, one or more of

the conditionals cannot be directly sampled and methods known as “Metropolis-Hastings

algorithms” apply. These algorithms sample a candidate draw from a proposal density and

then accept or reject the candidate draw based on an acceptance criterion. These algorithms

generate random samples that form a Markov Chain with the appropriate equilibrium

distribution. An algorithm can include only Gibbs steps, only Metropolis-Hastings steps

or any combination of the two. This latter case, usually encountered in practice, generates

a “hybrid” MCMC algorithm.
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The samples
©
Θ(g), X(g)

ªG
g=1

from the joint posterior can be used for parameter and

state variable estimation using theMonte Carlo method. For a function f (Θ, X) satisfying

technical regularity conditions, the Monte Carlo estimate of

E [f (Θ, X) |Y ] =
Z

f (Θ,X) p (Θ, X|Y ) dXdΘ

is given by 1
G

PG
g=1 f

¡
Θ(g),X(g)

¢
.

MCMC algorithms have attractive limiting behavior as G → ∞. There are two types
of convergence operating simultaneously. First, there is the convergence of the distribution

of the Markov Chain to p (Θ, X|Y ). Second, there is the convergence of the partial sums,
1
G

PG
g=1 f

¡
Θ(g), X(g)

¢
to the conditional expectation E [f (Θ, X) |Y ]. The Ergodic Theorem

for Markov Chains guarantees both types of convergence, and the conditions under which

it holds can be generically verified for MCMC algorithms. In many cases, these limiting

results can often be sharpened by deriving the rate of convergence of the Markov chain and

geometric convergence rates are common. We discuss these issues in detail in Section 3.4.

2.2 Bayesian Inference

We now provide a brief, nontechnical overview of Bayesian inference. We refer the reader to

Lindley (1972) or Bernardo and Smith (1995) for textbook treatments of Bayesian methods.

The main advantage of Bayesian methods are the strong theoretical foundations of the

Bayesian approach to inference and decision making. Bayesian inference provides a coherent

approach for inference and is merely an implication of the laws of probability applied to the

parameters and state variables. This approach is consistent with axiomatic decision theory.

See, for example, the seminal work of Ramsey (1931), de Finetti (1931) and Savage (1954).

We now discuss the key elements of Bayesian inference and decision-making problems.

The posterior distribution
The posterior distribution summarizes the information embedded in prices regarding

latent state variables and parameters. Bayes rule factors the posterior distribution into is

constituent components:

p (Θ, X|Y ) ∝ p (Y |X,Θ) p (X|Θ) p (Θ) , (4)

where Y = {Yt}Tt=1 are the observed prices, X = {Xt}Tt=1 are the unobserved state variables,
Θ are the parameters, p (Y |X,Θ) is the likelihood function, p (X|Θ) is the distribution of
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the state variables, and p (Θ) is the distribution of the parameters, commonly called the

prior. The parametric asset pricing model generates p (Y |X,Θ) and p (X|Θ) and p (Θ)

summarizes any non-sample information about the parameters.

The Likelihood
There are two types of likelihood functions of interest. The distribution p (Y |X,Θ) is

the full-information (or data-augmented) likelihood and conditions on the state variables

and parameters. This is related to marginal likelihood function, p (Y |Θ), which integrates
the latent variables from the augmented likelihood:

p (Y |Θ) =
Z

p (Y,X|Θ) dX =

Z
p (Y |X,Θ) p (X|Θ) dX.

In most models continuous-time asset pricing models, p (Y |Θ) is not available in closed
form and simulation methods are required to perform likelihood-based inference. On the

other hand, the full-information likelihood is usually known in closed form which is a key

to MCMC estimation.

The Prior Distribution
The prior distribution, as an implication of Bayes rule, enters in the posterior distribution

in (4). It is important to recognize that the importance of p (Θ) cannot be ignored: its

presence in the posterior, like the presence of the likelihood, is merely an implication of

the laws of probability. Additionally, this distribution serves important economic and

statistical roles. The prior allows the researcher to incorporate nonsample information in

a consistent manner. For example, the prior provides a consistent mechanism to impose

important economic information such as positivity of certain parameters or beliefs over the

degree of mispricing in a model. Statistically, the prior can impose stationarity, rule out

near unit-root behavior, or separate mixture components, to name a few applications.

Expected Utility
The posterior distribution and Bayesian inference are only the first steps in a more

complicated decision making process. When faced with a decision problem in the presence

of uncertainty, a rational decision maker chooses an action, a, to maximize expected utility

E [U ] , where

E [U ] =

Z
U (a,Θ,X) p (Θ,X|Y ) dΘdX

10



where U (a,Θ,X) is the utility in state X, with parameter Θ, and for action a. When

making decisions, a rational decision maker takes into account the uncertainty in the para-

meters and states by integrating out the uncertainty in these quantities and then maximiz-

ing expected utility by choosing the appropriate action. This shows the central role of the

posterior distribution in decision making problems. For an overview of decision making in

econometrics from a Bayesian perspective, see, for example, Chamberlain (2001).

Marginal Parameter Posterior
The information contained in the observed data regarding an individual parameter is

summarized via the marginal posterior distribution

p (Θi|Y ) =
Z

p
¡
Θi,Θ(−i), X|Y

¢
dXdΘ(−i) (5)

where Θi is the ith element of the parameter vector and Θ(−i) denotes the remaining pa-
rameters. The marginal posterior provides estimates (posterior means or medians) and

characterizes estimation risk (posterior standard deviations, quantiles or credible sets).

State Estimation
State estimation is similar to parameter inference, but it is now important to focus on a

number of different posteriors, depending on how much conditioning information is used.

The following posterior distributions are all of interest:

Smoothing : p
¡
Xt|Y T

¢
t = 1, ..., T

Filtering : p
¡
Xt|Y t

¢
t = 1, ..., T

Forecasting : p
¡
Xt+1|Y t

¢
t = 1, ..., T .

Here Y t denotes the observed prices up to time t. The smoothing problem is a static prob-

lem, solved once using all of the data, the filtering and forecasting problems are inherently

sequential.

The key to filtering latent states is once again Bayes rule which decomposes the filtering

density into its components:

p
¡
Xt|Y t

¢
∝
Z

p (Yt|Xt) p (Xt|Xt−1) p
¡
Xt−1|Y t−1¢ dXt−1.

Here p (Yt|Xt) is the likelihood, p (Xt|Xt−1) is the state evolution and p (Xt−1|Y t−1) is the
“prior” representing knowledge of the past states given prior price information. Simulation
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based filtering methods such as the particle and practical filter provide computationally

tractable approaches to approximate the filtering density, see Section 6.

Model Specification
The posterior distribution provides both formal and informal methods to evaluate model

specification and to compare different models. Informally, the posterior can be used to

analyze the in-sample fit. For example, the posterior can be used to test the normality

of residuals or the independence of random variables, taking into account estimation risk.

When there are a finite set of models under consideration, {Mi}Mi=1, we can compute the
posterior odds of model i versus j. Formally, the posterior odds ofMi versusMj is

p (Mi|Y )
p (Mj|Y )

=
p (Y |Mi)

p (Y |Mj)

p (Mi)

p (Mj)
.

Here, the ratio, p (Y |Mi) /p (Y |Mj), is commonly referred to as the Bayes factor. If it is

greater than one, the data favors model i over model j and vice versa. Formal Bayesian

diagnostic tools such as Odds ratios or Bayes Factors can be computed using the output of

MCMC algorithms, see, e.g., Kass and Raftery (1995) or Han and Carlin (2000) for reviews

of the large literature analyzing this issue.

3 MCMC: Methods and Theory

In this section, we describe the mechanics of MCMC algorithms, their theoretical under-

pinnings and convergence properties. For a full textbook discussion, we recommend the

book by Robert and Casella (1999) which contains numerous illustrations and a historical

perspective.

3.1 Clifford-Hammersley Theorem

In many continuous-time asset pricing models, p (Θ,X|Y ) is an extremely complicated,
high-dimensional distribution and it is prohibitive to directly generate samples from this

distribution. However, MCMC solves this problem by first breaking the joint distribution

into its complete set of conditionals, which are of lower dimension and are easier to sample.

It is in this manner that MCMC algorithms attacks the curse of dimensionality that plagues

other methods.
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The theoretical justification for breaking p (Θ,X|Y ) into its complete conditional distri-
butions is a remarkable theorem by Clifford and Hammersley.2 The general version of the

Clifford-Hammersley theorem (Hammersley and Clifford (1970) and Besag (1974)) provides

conditions for when a set of conditional distributions characterizes a unique joint distrib-

ution. For example, in our setting, the theorem indicates that p (Θ|X,Y ) and p (X|Θ, Y )
uniquely determine p (Θ,X|Y ).
This characterization of the joint posterior into two conditional posteriors may not be

sufficient to break the curse of dimensionality, as may not be possible to directly sample from

p (Θ|X,Y ) and p (X|Θ, Y ). If this case, another application of the Clifford-Hammersley
theorem can be used to further simplify the problem. Consider p (Θ|X,Y ) and assume that

the K−dimensional vector Θ can be partitioned into k ≤ K components Θ = (Θ1, ...,Θk)

where each component could be uni- or multidimensional. Given the partition, the Clifford-

Hammersley theorem implies that the following set of conditional distributions

Θ1|Θ2,Θ3, . . . ,Θk, X, Y

Θ2|Θ1,Θ3, . . . ,Θk, X, Y
...

Θk|Θ2,Θ3, . . . ,Θk−1, X, Y

uniquely determines p (Θ|X,Y ). In the case of the state vector, the joint distribution

p (X|Θ, Y ) can be characterized by its own complete set of conditionals: p
¡
Xt|Θ,X(−t), Y

¢
for t = 1, ..., T where X(−t) denotes the elements of X excluding Xt. In the extreme, the

Clifford-Hammersley theorem implies that instead of drawing from a T +K dimensional

posterior, the same information is contained in T +K one dimensional distributions.

The fact that complete conditionals fully characterize a joint distribution is not at

all intuitively obvious. It is something unique to the problem of sampling from a joint

distribution. A proof of the Clifford-Hammersley theorem based on the Besag formula

(Besag (1974)) uses the insight that for any pair (Θ0, X0) of points, the joint density

p (Θ, X|Y ) is determined as

p (Θ,X|Y )
p (Θ0,X0|Y ) =

p (Θ|X0, Y ) p(X|Θ, Y )
p (Θ0|X0, Y ) p (X0|Θ, Y )

2Somewhat surprisingly, Clifford and Hammersley never published their results as they could not re-
lax the positivity condition. For a discussion of the circumstances surrounding this, see the interesting
discussion by Hammersley (1974) after the paper by Besag (1974).
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as long as a positivity condition is satisfied. Thus, knowledge of p (Θ|X,Y ) and p(X|Θ, Y ),
up to a constant of proportionality, is equivalent to knowledge of the joint distribution. The

positivity condition in our case requires that for each point in the sample space, p(Θ,X|Y )
and the marginal distributions have positive mass. Under very mild regularity conditions

the positivity condition is always satisfied.

3.2 Gibbs Sampling

The simplest MCMC algorithm is called the Gibbs sampler, a label often attributed to the

paper of Geman and Geman (1984), although there are clearly some logical predecessors.3

When it is possible to directly sample iteratively from all of the complete conditionals, the

resulting MCMC algorithm is a Gibbs sampler. For example, the following defines a Gibbs

sampler: given
¡
Θ(0),X(0)

¢
1. Draw Θ(1) ∼ p

¡
Θ|X(0), Y

¢
2. Draw X(1) ∼ p

¡
X|Θ(1), Y

¢
.

Continuing in this fashion, the Gibbs sampler generates a sequence of random variables,©
Θ(g),X(g)

ªG
g=1

, which, as we discuss later, converges to p (Θ, X|Y ). Since the researcher
controls G, the algorithm is run until it has converged, and then a sample is drawn from

the limiting distribution.

If it is not possible generate direct draws from p (Θ|X,Y ) and p (X|Θ, Y ), these distri-
butions can be further simplified via Clifford-Hammersley. For example, consider following

Gibbs sampler: given
¡
Θ(0), X(0)

¢
1. Draw Θ

(1)
1 ∼ p

³
Θ1|Θ(0)

2 ,Θ
(0)
3 ,Θ(0)

r , X(0), Y
´

2. Draw Θ
(1)
2 ∼ p

³
Θ2|Θ(1)

1 ,Θ
(0)
3 ,Θ(0)

r , X(0), Y
´

...

r. Draw Θ(1)
r ∼ p

³
Θr|Θ(1)

1 ,Θ
(1)
2 , ...,Θ

(1)
r−1,X

(0), Y
´

and then draw the states p (X|Θ, Y ). If the states cannot be drawn in a block, then a
similar argument implies that we can factor p (X|Θ, Y ) into a set of lower dimensional
distributions.

3Robert and Casella (1999) provide a discussion of the predecessors at the end of Chapter 7.
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The Gibbs sampler requires that one can conveniently draw from the complete set of

conditional distributions. In many cases, implementing the Gibbs sampler requires drawing

random variables from standard continuous distributions such as Normal, t, Beta or Gamma

or discrete distributions such as Binomial, Multinomial or Dirichlet. The reference books

by Devroye (1986) or Ripley (1992) provide algorithms for generating random variables

from a wide class of recognizable distributions.

The Griddy Gibbs Sampler The Griddy Gibbs sampler is an approximation that can

be applied to approximate the conditional distribution by a discrete set of points. Suppose

that Θ is continuously distributed and univariate and that p (Θ|X,Y ) can be evaluated on

a point by point basis, but that the distribution p (Θ|X,Y ) is nonstandard and direct draws

are not possible. The Griddy Gibbs sample approximates the continuously distributed Θ

with a discrete mass of N−points, {Θj}Nj=1. Given this approximation, Ritter and Tanner
(1991) suggest the following algorithm:

1. Compute p (Θj|X,Y ) for j = 1, ..., N and set wj = p (Θj|X,Y );

2. Normalize the weights to add to unity and use these weights to approximate the

inverse CDF of p (Θ|X,Y );

3. Generate a sample from the approximate distribution by drawing a uniform on [0, 1]

and inverting the CDF .

Ritter and Tanner (1991) discuss issues involved with the choice of grid of points and show

that this algorithm can provide accurate characterization of the conditional distribution in

certain cases. In general, the algorithm performs well when the discretization is performed

on a small number of parameters. In high dimensional systems, the algorithm is not likely

to perform extremely well.

3.3 Metropolis-Hastings

In some cases, one or more of the conditional distribution cannot be conveniently sampled,

and thus the Gibbs sampler does not apply. For example, in models that are nonlinear in

the parameters, parameter conditional distribution may be unrecognizable. In other cases,

the distribution might be known, but there are not efficient algorithms for sampling from
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it. In these cases, a very general approach known as the Metropolis-Hastings algorithms

will often apply.

Consider the case where one of the parameter posterior conditionals, generically, π(Θi) ,
p(Θi|Θ(−i), X, Y ), can be evaluated (as a function of Θi), but it is not possible to generate

a sample from the distribution. For simplicity, consider the case of a single parameter and

suppose we are trying to sample from a one-dimensional distribution, π (Θ). This is equiv-

alent to suppressing the dependence of the other parameters and states in the conditional

posterior, p(Θi|Θ(−i),X, Y ), and significantly reduces the notational demands.

To generate samples from π (Θ), a Metropolis-Hastings algorithm requires the researcher

to specify a recognizable proposal or candidate density q
¡
Θ(g+1)|Θ(g)

¢
. In most cases

this distribution will depend critically on the other parameters, the state variables and

the previous draws for the parameter being drawn. As in Metropolis, et al. (1953), we

only require that we can evaluate density ratio π(Θ(g+1))/π(Θ(g)) easily. This is a mild

assumption which is satisfied in all of the continuous-time models that we consider.

The Metropolis-Hastings algorithm then samples iteratively similar to the Gibbs sam-

pler method, but it first draws a candidate point that will be accepted or rejected based on

the acceptance probability. The Metropolis-Hastings algorithm replaces a Gibbs sampler

step with the following two stage procedure:

Step 1 : Draw Θ(g+1) from the proposal density q(Θ(g+1)|Θ(g)) (6)

Step 2 : Accept Θ(g+1) with probability α
¡
Θ(g),Θ(g+1)

¢
(7)

where

α
¡
Θ(g),Θ(g+1)

¢
= min

µ
π(Θ(g+1))/q(Θ(g+1)|Θ(g))

π(Θ(g))/q(Θ(g)|Θ(g+1)) , 1

¶
. (8)

Implementing Metropolis-Hastings requires only drawing from the proposal, drawing a uni-

form random variable and evaluating the acceptance criterion.4 Intuitively, this algorithm

“decomposes” the unrecognizable conditional distribution into two parts: a recognizable

distribution to generate candidate points and an unrecognizable part from which the ac-

ceptance criteria arises. The acceptance criterion insures that the algorithm has the cor-

rect equilibrium distribution. Continuing in this manner, the algorithm generates samples©
Θ(g)

ªG
g=1

whose limiting distribution is π (Θ).

4Mechanically, the Metropolis-Hastings algorithm consists of the following steps: (1) draw a candidatebΘ from q
¡
Θ|Θ(g)

¢
, (2) draw u ∼ Uniform [0, 1], (3) accept the draw, that is set Θ(g+1) = bΘ if u <

α
¡
Θ(g),Θ(g+1)

¢
, and (4) otherwise reject the draw, that is, set Θ(g+1) = Θ(g).
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The Metropolis-Hastings algorithm significantly extends the number of applications

that can be analyzed as the complete conditionals conditional density need not be known

in closed form. A number of points immediately emerge:

1. Gibbs sampling is a special case of Metropolis-Hastings, where q(Θ(g+1)|Θ(g)) ∝
π(Θ(g+1)) and from (8) this implies that the acceptance probability is always one

and the algorithm always moves. As Gibbs sampling is a special case of Metropolis,

one can design algorithms consisting of Metropolis-Hastings or Gibbs steps as it is

really only Metropolis. The case with both Metropolis and Gibbs steps is generally

called a hybrid algorithm;

2. The Metropolis-Hastings algorithm allows the functional form of the density to be

non-analytic, for example, which occurs when pricing functions require the solution

of partial or ordinary differential equations. One only has to evaluate the true density

at two given points;

3. There is an added advantage when there are constraints in the parameter space –

one can just reject these draws. Alternatively, sampling can be done conditional on

specific region, see, e.g. Gelfand, Smith and Lee (1992). This provides a convenient

approach for analyzing parameter restrictions imposed by economic models.

Although theory places no restrictions on the proposal density, it is important to note

that the choice of proposal density will greatly effect the performance of the algorithm.

For example, if the proposal density has tails that are too thin relative to the target,

the algorithm may converge slowly. In extreme case, the algorithm can get stuck in a

region of the parameter space an may never converge. Later, we provide some practical

recommendations based on the convergence rates of the algorithm.

There are two important special cases of the general Metropolis-Hastings algorithm

which deserve special attention.

Independence Metropolis-Hastings
The general Metropolis-Hastings algorithm drawsΘ(g+1) from proposal density, q(Θ(g+1)|Θ(g)),

which depends on the previous Markov state Θ(g) (and, in general, other parameters and

states also). An alternative is to draw the candidate Θ(g+1) from a distribution indepen-

dent of the previous state, q(Θ(g+1)|Θ(g)) = q(Θ(g+1)). This is known as an independence
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Metropolis-Hastings algorithm:

Step 1 : Draw Θ(g+1) from the proposal density q(Θ(g+1)) (9)

Step 2 : Accept Θ(g+1) with probability α
¡
Θ(g),Θ(g+1)

¢
(10)

where

α
¡
Θ(g),Θ(g+1)

¢
= min

µ
π(Θ(g+1))q(Θ(g))

π(Θ(g))q(Θ(g+1))
, 1

¶
Even though the candidate draws, Θ(g+1), are drawn independently of the previous state,

the sequence
©
Θ(g)

ªG
g=1

will be not be independent since the acceptance probability depends

on previous draws. When using independence Metropolis, it is common to pick the proposal

density to closely match certain properties of the target distribution.

Random-Walk Metropolis Random-walk Metropolis is the original algorithm consid-

ered by Metropolis, et al. (1953) and is the mirror image of the independence Metropolis-

Hastings algorithm. It draws a candidate from the following random walk model, Θ(g+1) =

Θ(g) + εt, where εt is an independent mean zero error term, typically taken to be a sym-

metric density function with fat tails, like a t−distribution. Note that the choice of the
proposal density is generic, in the sense that it ignores the structural features of the target

density.

Due to the symmetry in the proposal density, q(Θ(g+1)|Θ(g)) = q(Θ(g)|Θ(g+1)), the algo-

rithm simplifies to

Step 1 : Draw Θ(g+1) from the proposal density q(Θ(g+1)|Θ(g)) (11)

Step 2 : Accept Θ(g+1) with probability α
¡
Θ(g),Θ(g+1)

¢
(12)

where

α
¡
Θ(g),Θ(g+1)

¢
= min

µ
π(Θ(g+1))

π(Θ(g))
, 1

¶
.

In random walk Metropolis-Hastings algorithms, the researcher controls the variance of the

error term and the algorithm must be tuned, by adjusting the variance of the error term, to

obtain an acceptable level of accepted draws, generally in the range of 20-40%. We discuss

this issue later.
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Langevin DiffusionMetropolis An alternative to independence or random-walkMetropo-

lis is based on the continuous-time Langevin diffusion. For a density π (Θ), the Langevin

diffusion is the solution to the SDE

dΘt =
σ2

2
∇Θ log π (Θt) dt+ σdWt,

where Wt is a Brownian motion with the same dimension as Θ. This algorithm uses the

fact that the solution to this SDE, Θt, has a stationary density of π (Θ), under certain

regularity conditions. To simulate this process, one can use an discrete-time Euler scheme,

Θ(g+1) = Θ(g) +
σ2

2
∇Θ log π

¡
Θ(g)

¢
+ σ (Wg+1 −Wg) ,

where we use superscripts instead of subscripts on the discretized process. As pointed out

by Roberts and Tweedie (1996), the naive discretization may or may not share the same

limiting properties (as g increases) as the continuous-time version.

Roberts and Tweedie (1996), following Besag (1994), suggest the following Metropolis

correction to the naive discretization:

Step 1 : Draw Θ(g+1) ∼ N

µ
Θ(g) +

σ2

2
∇Θ log π

¡
Θ(g)

¢
, σ2
¶

(13)

Step 2 : Accept Θ(g+1) with probability α
¡
Θ(g+1),Θ(g)

¢
(14)

where

α
¡
Θ(g),Θ(g+1)

¢
= min

Ã
π(Θ(g+1))f

¡
Θ(g+1),Θ(g)

¢
π(Θ(g))f (Θ(g),Θ(g+1))

, 1

!
where f (x, y) is the multivariate normal kernel

f (x, y) =
1

(2πσ2)n/2
exp

Ã
− 1

2σ2

Ã°°°°y − x− σ2

2
∇x log (π (x))

°°°°2
!!

.

The Langevin diffusion proposal tilts the draws toward the mode, unlike random walk

which moves symmetrically.

We now turn to the strong convergence theory underpinning MCMC.

3.4 Convergence Theory

OurMCMC algorithm generates sequence of draws for parameters, Θ(g), and state variables,

X(g). By construction, this sequence is Markov and the chain is characterized by its starting
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value, Θ(0) and its conditional distribution or transition kernel P
¡
Θ(g+1),Θ(g)

¢
, where,

without any loss of generality, we abstract from the latent variables. One of the main

advantages of MCMC is the attractive convergence properties that this sequence of random

variables inherits from the general theory of Markov Chains.

3.4.1 Convergence of Markov Chains

Convergence properties of this sequence are based on the ergodic theory for Markov Chains.

A useful reference text for Markov Chain theory is Meyn and Tweedie (1995) or Nummelin

(1984). Tierney (1994) provides the general theory as applied to MCMC methods and

Robert and Casella (1999) provide many additional references. We are interested in veri-

fying that the chain produced by the MCMC algorithm converges and then identifying the

unique equilibrium distribution of the chain as the correct joint distribution, the posterior.

We now briefly review the basic theory of the convergence of Markov Chains.

A Markov chain is generally characterized by its g − step transition probability,

P (g) (x,A) = Prob
£
Θ(g) ∈ A|Θ(0) = x

¤
.

For a chain to have a unique equilibrium or stationary distribution, π, it must be irreducible

and aperiodic. A Markov chain with invariant distribution π is irreducible if, for any

initial state, it has positive probability of eventually entering any set which has π−positive
probability. A chain is aperiodic if there are no portions of the state space that the chain

visits at regularly spaced time intervals. If an irreducible and aperiodic chain has a proper

invariant distribution, then π is unique and is also the equilibrium distribution of the chain.

That is

lim
g→∞

Prob
£
Θ(g) ∈ A|Θ(0)

¤
= π (A)

Given convergence, the obvious question is how fast does the chain converge? Here,

the general theory of Markov chains also provides explicit convergence rates, see, e.g.,

Nummelin (1984) or Chapters 15 and 16 of Meyn and Tweedie (1995). The key condition

to verify is a minorization condition for the transition kernel which leads in many cases to

a convergence rate that is geometric.

While verifying geometric convergence is reassuring, there are well-known examples of

geometrically ergodic Markov chains that do not converge in finite time (see the witches hat

example in Polson (1992)). A stronger notion of convergence, polynomial time convergence,

provides explicitly bounds on the actual convergence rate of the chain. Diaconis and Stroock

20



(1991) show how the time-reversibility property can be used to characterize a bound known

as the Poincare inequality for the convergence rate.

We now discuss the application of these general results to MCMC algorithms.

3.4.2 Convergence of MCMC algorithms

As the Gibbs sampler is a special case of the Metropolis-Hastings algorithm when the

acceptance probability is unity, we can focus exclusively on the convergence of Metropolis-

Hastings algorithms. In general, verifying the convergence of Markov chains is a difficult

problem. Chains generated by Metropolis-Hastings algorithms, on the other hand, have

special properties which allow convergence conditions to be verified in general, without

reference to the specifics of a particular algorithm. We now review these conditions.

The easiest way to verify and find an invariant distribution is to check time-reversibility.

Recall that for a Metropolis-Hastings algorithm, that the target distribution, π, is given and

is proper being the posterior distribution. The easiest way of checking that π is an invariant

distribution of the chain is to verify the detailed balance (time-reversibility) condition: a

transition function P satisfies the detailed balance condition if there exists a function π

such that

P (x, y)π (x) = P (y, x)π (y)

for any points x and y in the state space. Intuitively, this means that if the chain is

stationary, it has the same probability of reaching x from y if started at y as it does of

reaching y from x if started at x. This also implies that π is the invariant distribution since

π (y) =
R
P (x, y)π (dx).

In the case of Gibbs sampling, verifying time-reversibility is an immediate implication of

the Clifford-Hammersley theorem. The Gibbs sampler cycles through the one-dimensional

conditional distributions. This generates the following transition density:

P (x, y) =
kQ
i=1

p (xi|x1, ..., xi−1, yi+1, .., yk) .

By Clifford-Hammersley,

π (x)

π (y)
=

kQ
i=1

p (xi|x1, ..., xi−1, yi+1, .., yk)
p (yi|y1, ..., yi−1, xi+1, .., xk)

which implies that
π (x)

π (y)
=

P (x, y)

P (y, x)
,
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which is precisely the time-reversibility condition.

Checking time reversibility for Metropolis-Hastings algorithms is also straightforward.

The transition function in the Metropolis-Hastings algorithm is

P (x, y) = α (x, y)Q(x, y) + (1− r (x)) δx (y) (15)

where r (x) =
R
α (x, y)Q(x, y)dy and Q(x, y) = q (y|x). For the first term, the detailed

balance condition holds because

α (x, y)Q(x, y)π (x) = min

½
π (y)Q (y, x)

π (x)Q (x, y)
, 1

¾
Q(x, y)π (x)

= min {π (y)Q (y, x) , Q(x, y)π (x)}

= min

½
1,

Q(x, y)π (x)

π (y)Q (y, x)

¾
π (y)Q (y, x)

= α (y, x)Q(y, x)π (y)

and the derivation for the second term in (15) is similar. Thus Gibbs samplers and

Metropolis-Hastings algorithms generate Markov Chains that are time-reversible and have

the target distribution as an invariant distribution. Of course, the Gibbs sampler can also

be viewed as a special case of Metropolis.

It is also straightforward to verify π−irreducibility, see Roberts and Polson (1994) for
the Gibbs samplers and Roberts and Smith (1993) and Robert and Casella (1999) for

Metropolis-Hastings algorithms. One sufficient condition is that π (y) > 0 implies that

Q (x, y) > 0 (see, e.g., Mengersen and Tweedie (1996)). In the case of the Gibbs sampler,

these conditions can be significantly relaxed to the assumption that x and y communicate,

which effectively means that starting from x one can eventually reach state y. To verify ape-

riodicity, one can appeal to a theorem in Tierney (1994) which states that all π−irreducible
Metropolis algorithms are Harris recurrent. Hence, there exists a unique stationary distri-

bution to which the Markov chain generated by Metropolis-Hastings algorithms converges

and hence the chain is ergodic.

Having discussed these results, it is important to note that we are rarely purely inter-

ested in convergence of the Markov chain. In practice, we are typically interested in sample

averages of functionals along the chain. For example, to estimate the posterior mean for a

given parameter, we are interested in the convergence of 1
G

PG
g=1 f

¡
Θ(g)

¢
. There are two

subtle forms of convergence operating: first the distributional convergence of the chain, and

second the convergence of the sample average. The following result provides both:
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Proposition: (Ergodic Averaging) Suppose Θ(g) is an ergodic chain with stationary

distribution π and suppose f is a real-valued function with
R
|f | dπ <∞. Then for all Θ(g)

for any initial starting value Θ(g)

lim
G→∞

1

G

GX
g=1

f
¡
Θ(g)

¢
=

Z
f (Θ)π (Θ) dΘ

almost surely.

In many cases, we go further with an ergodic central limit theorem:

Proposition: (Central Limit Theorem) Suppose Θ(g) is an ergodic chain with station-

ary distribution π and suppose that f is real-valued and
R
|f | dπ <∞. Then there exists a

real number σ (f) such that

√
G

Ã
1

G

GX
g=1

f
¡
Θ(g)

¢
−
Z

f (Θ) dπ

!
converges in distribution to a mean zero normal distribution with variance σ2 (f) for any

starting value.

While re-assuring, these limiting theorems should be taken with a grain of salt. A

warning regarding the use asymptotics of this type is given in Aldous (1989, p. vii),

The proper business of probabilists is calculating probabilities. Often exact

calculations are tedious or impossible, so we resort to approximations. A limit

theorem is an assertion of the form: the error in a certain approximation tends

to 0 as (say) G→∞. Call such limit theorems naive if there is no explicit error
bound in terms of G and the parameters of the underlying process. Such the-

orems are so prevalent in theoretical and applied probability that people seldom

stop to ask their purpose.... It is hard to give any argument for the relevance

of a proof of a naive limit theorem, except as a vague reassurance that your

approximation is sensible, and a good heuristic argument seems equally reassur-

ing.

One measure of speed of convergence, geometric convergence, implies that there exists

a λ < 1 and a constant K such that°°P g
¡
·,Θ(0)

¢
− π (·)

°° ≤ Kλ−G
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where kk could denote any number of norms. Roberts and Polson (1994) prove that all
Gibbs samplers are geometrically convergent under a minorization condition. For the

Metropolis-Hastings algorithm, there are a number of results on the geometric convergence

and the results rely on the tail behavior of the target and proposal density. Mengersen and

Tweedie (1996) show that a sufficient condition for the geometric ergodicity of indepen-

dence Metropolis-Hastings algorithms is that the tails of the proposal density dominate the

tails of the target, which requires that the proposal density q is such that q/π is bounded

over the entire support. Mengersen and Tweedie (1996) show that random walk algorithms

converge at a geometric rate if the target density has geometric tails.

While geometric convergence is a major improvement on the central limit theorem,

it can still give a false sense of security. A popular example of this is the witch’s hat

distribution, see Polson (1992) and Geyer (1992). This distribution looks like a witch’s

hat: a broad flat brim with a sharp peak in the center. In this case, the Gibbs sampler

is geometrically convergent, however, λ is so close to 1, that practically speaking, the

algorithm never converges. The chance of moving from brim to peak is exponentially small

and therefore in finite computing, one may never visit this region of the space. Another

example of this sort of potentially degenerate behavior is given by an example from Elekes

(1986).5

A stronger notion of convergence, polynomial convergence, is faster than geometric and

guarantees convergence in finite or computing time. Diaconis and Stroock (1991), Frieze,

Kannan and Polson (1994), Polson (1996) and Rosenthal (1995a, 1995b) provide polyno-

mial convergence in a number of different cases. For example, Frieze, Kannan and Polson

(1994) show that MCMC algorithms that draw from log-concave distributions generate

polynomial convergent algorithms. While this assumption may seem restrictive, Polson

(1996) shows that data augmentation can be used to convert a non-log-concave sampling

problem into a log-concave problem. An example is representing a t−distribution as a scale
mixture of normals with a latent variable indexing the scaling parameters. Thus careful

data augmentation can significantly improve the convergence of the MCMC algorithm.

Second, in addition to the formal convergence theory, there is a large literature that stud-

5Suppose that the state space is the unit ball in k-dimensions and consider any G points in this space.
These G-points are the draws from the MCMC algorithm. The volume of the convex hull of these points
is bounded by G/2k. For example, suppose that k = 50 and one runs the MCMC algorithm for one billion
draws, G = 109. The convex hull is 109/250, which implies that any run of the Gibbs sampler will cover
only an exponentially small portion of the state space.
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ies the information content of sequence
©
Θ(g)

ªG
g=1
. Unlike importance sampling, MCMC

algorithms generate dependent Monte Carlo simulation methodology and because of this,

it is important to understand the nature of this dependency. On the one hand, while theory

is clear that the chains converge, it is impossible to formally diagnose convergence from

the realized output of the chain.6 On the other hand, the output of the chain clearly has

some informational content. Popular observed-chain based diagnostics include calculating

parameter trace plots. The trace plots, plots of Θ(g)
i versus g, show the history of the chain

and are useful for diagnosing chains that get stuck in a region of the state space. It is

also common to analyze the correlation structure of draws by computing the autocorre-

lation function (ACF). Again, one needs to take care when interpreting these ACF’s, as

algorithms that have low autocorrelation may never converge (the witch’s hat distribution

mentioned above). It is also easy to calculate Monte Carlo estimates for the standard

errors of 1
G

PG
g=1 f(Θ

(g)). The informational content of the chain regarding estimation of

Eπ (f (Θ)) is clearly summarized σ2 (f) . Geyer (1992), among others, show how to estimate

the information using realizations of a provable convergent chain. This, in turn, allows the

researcher to apply the Central Limit Theorem to assess the Monte Carlo errors inherent

in MCMC estimation.

The following implementation procedure is typically used. Starting from a point Θ(0),

possibly at random, the general methodology is to discard a burn-in period of h initial

iterations in order to reduce the influence of the choice of starting point. After the burn-in

period the researcher makes an additional estimation period of G simulations, which results

in one long chain of length G. When forming Monte Carlo averages every simulated point

in the chain after the burn-in period should be used. The estimation period G is chosen so

as to make the Monte Carlo sampling error as small as desired. Standard errors are also

easily computed. See Aldous (1987), Tierney (1994) and Polson (1996) for a theoretical

discussion of the choice of (h,G) and the relationship between the estimation period G and

Monte Carlo standard errors.
6Peter Clifford had the following comments on detecting convergence of a chain purely from a simulated

run of the chain in his discussion to Roberts and Smith (1993): “Can we really tell when a complicated

Markov chain has reached equilibrium? Frankly, I doubt it” (p. 53).
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3.5 MCMC Algorithms: Issues and Practical Recommendations

This section provides a number of practical recommendations for building, testing and

applying MCMC algorithms.

Building MCMC algorithms Due to the modular nature of MCMC algorithms, we

recommend building the algorithms in a “bottom-up” fashion. That is, first program a

simple version of the model and, after verifying that it works, add additional factors.

For example, when estimating a stochastic volatility model with jumps, first implement a

pure stochastic volatility model and a pure jump model, and then after both are working,

combine them.

Moreover, there are always multiple ways of implementing a given model. For example,

Robert and Casella (1999) provide examples where a Metropolis step may be preferred

to Gibbs even when the conditional can directly be sampled. Therefore, we recommend

trying multiple algorithms, assessing their accuracy and computational efficiency and then

carefully choosing an algorithm along these two dimensions. Algorithms that appear to be

“fast” in terms of computational properties may be very slow in terms of their theoretical

convergence rates.

Polson (1996) shows that the introduction of additional latent state variables, known as

data augmentation, can dramatically increase the rate of convergence. One must be careful,

however, as the introduction of state variables can also degrade the provable convergence

rate of algorithms.

Blocking When building algorithms, parameters or state variables that are correlated

should, if possible, be drawn in blocks. As shown by Kong, Liu, and Wong (1994), drawing

correlated parameters in blocks can improve the speed of convergence. Blocking plays a

central role in models with latent states. States can be updated individually, commonly

referred to as single-state updating, or in blocks. In many models, state variables are

persistent which implies that the correlation between neighbor states is typically high and

the gains from drawing these states together in a block can be significant.

For example, in conditionally Gaussian models, the Kalman filtering recursions allow a

block update of all states in one step, a highly efficient approach for updating states. As

discussed in Carter and Kohn (1994) and Kim and Shephard (1994), models that involve

discrete mixture of normal distributions have a structure that is amenable to updating
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the states in blocks. Unfortunately, it is difficult to generate generic algorithms for block-

updating, as blocking schemes must use the specific stochastic structure of the model

specification. We provide examples of these algorithms below.

Simulation studies Simulation studies, whereby artificial data sets are simulated and

the efficiency and convergence of the algorithm can be checked, are always recommended.

These studies provide a number of useful diagnostics. First, among other things, they pro-

vide insurance against programming errors, incorrect conditionals, poorly mixing Markov

chains and improper priors. Second, they can also be used to compare MCMC against

alternative estimation methodologies. For example, Andersen, Chung and Sorenson (1998)

show that in a simple stochastic volatility, MCMC outperforms GMM, EMM, QMLE and

simulated maximum likelihood in terms of root mean squared error.

Third, they characterize the impact of discretization error on the parameter estimates.

Eraker, Johannes and Polson (2003) show that estimation based on an Euler scheme sam-

pled daily does not induce any biases in the parameter estimates. Fourth, the simulation

studies provide a guide for how long to run algorithms.

Provable Convergence Provable convergence rates are always important. Algorithms

that are provably geometric convergent are preferred to those that are not. For example,

care must be taken in using normal proposal densities when the target has fat tails, as the

results in Mengersen and Tweedie (1996) imply that this algorithm will be “slow.” When

using independence or random-walk Metropolis, one should use fat tailed distributions such

as a t−distribution.

Choosing proposal densities and tuning Metropolis algorithms In both indepen-

dence and random-walk Metropolis algorithms, the is quite a bit of latitude that is available

when choosing the proposal density. In the case of independence Metropolis, the functional

form of the proposal density can be specified and in random walk and Langevin Metropolis,

the standard deviation of the shock distribution, also known as the scaling or tuning para-

meter, needs to be specified by the researcher. Theory only provides broad guidelines for

how to specify these algorithms. For both independence and random-walk Metropolis, the-

ory requires that the support of the distributions coincide and that, for “fast” convergence,

the tails of the proposal density should dominate the tails of the target density.
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Figure 1 provides three common pitfalls encountered when using Metropolis-Hastings

algorithms. In each panel, the target density is shown in solid lines and the proposal density

is shown as a dashed line. In each case, the proposal density is not properly chosen, scaled

or tuned and the impact on the algorithm can be different depending on the case.

In the first case, the target density is N (5, 1) and the proposal density is N (−5, 1). In
this case, it is clear that the algorithm, while converging nicely in theory as the normal

distributions have the same tail behavior, will converge very slowly in computing time.

Suppose that the current state is near the mode of the target. If a draw near the mode

of the proposal is proposed, the algorithm will rarely accept this draw and the algorithm

will not move. On the other hand, if the current state ever approaches, for example, the

mode of the proposal density, it will continue to propose moves nearby which rarely will

increase the acceptance probability. The case in the second panel is similar, except now the

target has a much higher variance. In this case, the proposal will very often be accepted,

however, the target distribution will not be efficiently explored because all of the proposals

will be in a small range centered around zero. The third case is maybe most insidious. In

this case, the two distributions have same mean and variance, but the target distribution

is t (1) and has extremely fat tails while the proposal is normal. This algorithm will likely

have a high acceptance probability but the algorithm will never explore the tails of the

target distribution. The algorithm appears to move around nicely, but theory indicates

that convergence, in a formal sense, will be slow. Thus the researcher will receive a false

sense of security as the algorithm appears to be behaving well.

How then should Metropolis proposals be chosen and tuned? We have a number of

recommendations. First, as mentioned above, the researcher should be careful to insure that

the Metropolis step is properly centered, scaled and has sufficiently fat tails. In most cases,

a conditional posterior can be analytically or graphically explored and one should insure

that the proposal has good properties. Two, we recommend simulation studies to insure

that the algorithm is properly estimating parameters and states. This typically uncovers

large errors when, for example, certain parameters easily get stuck either at the true value

or far away from the true value. Third, there are some asymptotic results for scaling

random-walk and Langevin-diffusion Metropolis algorithms which provide the “optimal”

asymptotic acceptance probability of randomwalk algorithms. Of course, optimal is relative

to a specific criterion, but the results indicate that the acceptance probabilities should be

in the range of 0.2-0.5. In our experience, these guidelines are reasonable in most cases.
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Figure 1: Examples of poorly chosen proposal densities. In each panel, the target density

is shown as a solid line and the proposal as a dotted line.

Non-Informative priors One must be careful when using non-informative priors. With-

out care, conditional or joint posteriors can be improper, a violation of the Clifford-

Hammersley Theorem. Hobert and Casella (1996) provide a number of general examples.

For example, in a log-stochastic volatility, a “non-informative” prior on σv of p (σv) ∝ σ−1v
results in a proper conditional posterior for σv but an improper joint posterior which leads

to a degenerate MCMC algorithm. In some cases, the propriety of the joint posterior

cannot be checked analytically, and in this case, simulation studies can be reassuring. We

recommend that proper priors, typically diffuse, always be used unless there is a very strong

justification for doing otherwise.
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Convergence Diagnostics and Starting Values We recommend carefully examining

the parameter and state variable draws for a wide-range of starting values. For a given

set of starting values, trace plots of a given parameter or state as a function of G provide

important information. Trace plots are very useful for detecting poorly specified Markov

Chains: chains that have difficultly moving from the initial condition, chains that get

trapped in certain region of the state space, or chains that move slowly. We provide

examples of trace plots below. Whenever the convergence of the MCMC algorithm is in

question, careful simulation studies can provide reassurance that the MCMC algorithm is

providing reliable inference.

Rao-Blackwellization In many cases, naive Monte Carlo estimates of the integrals can

be improved using a technique known as Rao-Blackwellization. If there is an analytical

form for the conditional density p
¡
Θi|Θ(−i), X, Y

¢
, then we can take advantage of the

conditioning information to estimate the marginal posterior mean as

E (Θi|Y ) = E
£
E
£
Θi|Θ(−i), X, Y

¤
|Y
¤
≈ 1

G

GX
g=1

E
h
Θi|Θ(g)

(−i),X
(g), Y

i
.

Gelfand and Smith (1992) show that this estimator has a lower variance than the simple

Monte Carlo estimate.

4 Bayesian Inference and Asset Pricing Models

The key to Bayesian inference is the posterior distribution which consists of three compo-

nents, the likelihood function, p (Y |X,Θ), the state variable specification, p (X|Θ), and the
prior distribution p (Θ) . In this section, we discuss the connections between these compo-

nents and the asset pricing models. Section 4.1 discusses the continuous-time specification

for the state variables, or factors, and then how the asset pricing model generates the

likelihood function. These distributions are abstractly given via the solution of stochastic

differential equations, and we use time-discretization methods which we discuss in Section

4.2 to characterize the likelihood and state dynamics. Finally, section 4.3 discusses the

important role of the parameter distribution, commonly called the prior.
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4.1 States Variables and Prices

Classical continuous-time asset pricing models such as the Cox, Ingersoll, and Ross (1985)

model, begin with an exogenous specification of the underlying factors of the economy.

In all of our examples, we assume that the underlying factors, labeled as Ft, arise as the

exogenous solution to parameterized stochastic differential equations with jumps:

dFt = µf
¡
Ft,Θ

P¢ dt+ σf
¡
Ft,Θ

P¢ dW f
t (P) + d

Nf
t (P)X
j=1

Zf
j (P)

 . (16)

Here, W f
t (P) is a vector of Brownian motions, N

f
t (P) is a counting process with stochastic

intensity λf
¡
Ft−,ΘP¢, ∆Fτj = Fτj − Fτj− = Zf

j (P), Z
f
j (P) ∼ Πf

¡
Fτj−,Θ

P¢ , and we
assume the drift and diffusion are known parametric functions. For clarity, we are careful

to denote the parameters that drive the objective dynamics of Ft by ΘP. Throughout, we

assume that characteristics have sufficient regularity for a well-defined solution to exist.

While the factors are labeled Ft, we define the states as the variables that are latent from

the perspective of the econometrician. Thus the “states” include jump times and jump

sizes, in addition to Ft.

Common factors, or state variables, include stochastic volatility or a time-varying equity

premium. This specification nests diffusions, jump-diffusions, finite-activity jump processes

and regime-switching diffusions, where the drift and diffusion coefficients are functions of

a continuous-time Markov chain. For many applications, the state variable specification

is chosen for analytic tractability. For example, in many pure-diffusion models, the con-

ditional density p
¡
Ft|Ft−1,ΘP¢ can be computed in closed form or easily by numerical

methods. Examples include Gaussian processes (µf
¡
f,ΘP

¢
= αf + βff , σf

¡
f,ΘP¢ = σf),

the Feller “square-root” processes (µf
¡
f,ΘP¢ = αPf + βPff , σf

¡
f,ΘP

¢
= σPf

√
f), and more

general affine processes (see, Duffie, Pan, and Singleton (2001) or Duffie, Filipovic, and

Schachermayer (2003)). In these cases, the conditional density is either known in closed

form or can be computed numerically using simple integration routines. Generally, the

transition densities are not known in closed form and our MCMC approach relies on a

time-discretization and data augmentation.

Given the state variables, arbitrage and equilibrium arguments provide the prices of

other assets. We assume there are two types of prices. The first, denoted by a vector St
are the prices whose dynamics we model. Common examples include equity prices, equity

31



index values or exchange rates. The second case are derivatives such as option or bond

prices, which can be viewed as derivatives on the short rate.

In the first case, we assume that St solves a parameterized SDE

dSt = µs
¡
St, Ft,Θ

P¢ dt+ σs
¡
St, Ft,Θ

P¢ dW s
t (P) + d

Ns
t (P)X
j=1

Zs
j
(P)

 , (17)

where the objective measure dynamics are driven by the state variables, a vector of Brown-

ian motion, W s
t (P), a point process Ns

t (P) with stochastic intensity λs
¡
Ft−,ΘP¢, and

Sτj − Sτj− = Zs
j is a jump with Ft− distribution Πs

¡
Ft−,ΘP¢.

In the second case, the derivative prices, Dt are a function of the state variables and

parameters, Dt = D (St, Ft,Θ) where Θ =
¡
ΘP,ΘQ¢ contains risk premium parameters,

ΘQ. To price the derivatives, we assert the existence of an equivalent martingale measure,

Q,

dSt = µs (St, Ft,Θ) dt+ σs
¡
St, Ft,Θ

P¢ dW s
t (Q) + d

Ns
t (Q)X
j=1

Zs
j
(Q)

 (18)

dFt = µf (Ft,Θ) dt+ σf
¡
Ft,Θ

P¢ dW f
t (Q) + d

Nf
t (Q)X
j=1

Zf
j (Q)

 . (19)

where, it important to note that the drift now depends potentially on both ΘP and ΘQ

(we assume for simplicity that the functional form of the drift does not change under Q),
W s

t (Q) and W f
t (Q) are Brownian motions under Q, N

f
t (Q) and Ns

t (Q) are point process
with stochastic intensities

©
λi
¡
Ft−, St−,ΘQ¢ª

i=s,f
and

³
Zf
j , Z

s
j

´
have joint distribution

Π
¡
Ft−, St−,ΘQ

¢
. Due to the absolute continuity of the changes in measure, the diffusion

coefficients depend only on ΘP. The likelihood ratio generating the change of measure for

jump-diffusions is given in Aase (1988) or the review paper by Runggaldier (2003).

We only assume that this pricing function, D (s, x,Θ), can be computed numerically

and do not require it to be analytically known. This implies that our methodology covers

the important cases of multi-factor term structure and option pricing models. In multi-

factor term structure models, the short rate process, rt, is assumed to be a function of a

set of state variables, rt = r (Ft), and bond prices are given by

Dt = D (Ft,Θ) = EQ
t

h
e−

R T
t r(Fs)ds

i
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where Q is an equivalent martingale measure f can be computed either analytically or as
the solution to ordinary or partial differential equation. In models of option prices, the

mapping is given via

Dt = f (St, Ft,Θ) = EQ
t

h
e−

R T
t r(Fs)ds (ST −K)+

i
and Ft could be, for example, stochastic volatility.

Derivative prices raise an important issue: the observation equation is technically a

degenerate distribution as the prices are known conditional on state variables and para-

meters. In this case, if the parameters are known, certain state variables can often be

inverted from observed prices, if the parameters were known. An common example of this

is Black-Scholes implied volatility. In practice there are typically more prices observed than

parameters which introduces a stochastic singularity: the model is incapable of simultane-

ously fitting all of the prices. This over-identification provides a rich source of information

for testing. To circumvent the stochastic singularities, researchers commonly assume there

exists a pricing error, εt. In the case of an additive pricing error,7

Dt = D (St, Ft,Θ) + εt

where εt ∼ N (0,Σε). This implies that prices are not fully revealing of state variables or

parameters.

There are a number of motivations for introducing pricing errors. First, there is often a

genuine concern with noisy price observations generated by bid-ask spreads. For example,

consider an at-the-money equity index option. For the S&P 100 or 500 the contract typically

has a bid-ask spread of around 5-10% of the value of the option. In fixed income, zero yields

are often measured with error as they are obtained by interpolation par bond yields. The

pricing error breaks the stochastic singularity that arises when there are more observed asset

prices than state variables. Second, even if the econometrician does not believe the prices

are observed with error, the addition of an extremely small pricing error can be viewed as

a tool to simplify econometric analysis. Third, our models are clearly abstractions from

reality and will never hold perfectly. Pricing errors accommodate this misspecification in a

tractable manner. These pricing errors provide a useful model diagnostic, and MCMC are

useful for investigating the small sample behavior of the pricing errors.

7It some cases, it might be more appropriate to use a multiplicative pricing error Yt = f (Xt,Θ) e
εt ,

which can, for example, guarantee positive prices.
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4.2 Time-discretization: computing p (Y |X,Θ) and p (X|Θ)
In this subsection, we describe how the time-discretization of the stochastic differential

equations can be used to compute the likelihood function and state dynamics. The re-

searcher typically observed a panel of prices, Y , where Y = (S,D) and S = (S1, ..., ST ) and

D = (D1, ..., DT ). We assume the prices are observed at equally spaced, discrete intervals.

For simplicity, we normalize the observation interval to unity. This generates the following

continuous-time state space model for the derivative prices,

Dt = D (St, Ft,Θ) + εt, (20)

and the prices and factors

St+1 = St +

t+1Z
t

µs
¡
Su, Fu,Θ

P¢ du+ t+1Z
t

σs
¡
Su, Fu,Θ

P¢ dW s
u (P) +

Ns
t+1(P)X

j=Ns
t (P)+1

Zs
j
(P)(21)

Ft+1 = Ft +

t+1Z
t

µf
¡
Fu,Θ

P¢ du+ t+1Z
t

σf
¡
Fu,Θ

P¢ dW f
u (P) +

Nf
t+1(P)X

j=Nf
t (P)+1

Zf
j (P) . (22)

Equations (20) and (21) are the observation equations and (22) are the evolution equation.

In continuous-time, these models take the form of a very complicated state space model.

Even if εt is normally distributed, D (St, Xt,Θ) is often non-analytic which generates

Gaussian, but non-linear and non-analytic observation equation. Similarly, in (21) the

error distribution is generated by

t+1Z
t

σs
¡
Su, Fu,Θ

P¢ dW s
u (P) +

Ns
t+1(P)X

j=Ns
t (P)+1

Zs
j
(P) .

Together, the model is clearly a non-linear, non-Gaussian state space model.

At this stage, it is important to recognize the objects of interest. From the perspective

of the econometrician, the jump times, jump sizes and Ft are latent, although it is typically

assumed that the agents in the economy pricing the assets observe these variables. While

the variables Ft solve the stochastic differential equation, and thus, would commonly be

referred to as the states, we include in our state vector the jump times, jump sizes, and

spot factors, Ft, as these are all objects of interest in asset pricing models. Pricing models

commonly integrate out of the the jump times and sizes, and condition solely on Ft and

other prices.
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At this level, it is clearly not possible to compute either the likelihood, p (Y |X,Θ),

or the latent state distribution, p (X|Θ). To compute these quantities, we time-discretize
the stochastic differential equations which then allows us to compute the likelihood and

state variable evolution. To start, assume that the time-discretization interval matches the

observed frequency. This generates the following time-discretized state space model:

Dt+1 = D (St+1, Ft+1,Θ) + εt+1 (23)

St+1 = St + µs
¡
St, Ft,Θ

P¢+ σs
¡
St, Ft,Θ

P¢ εst+1 + Zs
t+1J

s
t+1 (24)

Ft+1 = Ft + µf
¡
Ft,Θ

P¢+ σf
¡
Ft,Θ

P¢ εft+1 + Zf
t+1J

f
t+1, (25)

where εt ∼ N (0, σ2D), ε
f
t+1, ε

s
t+1 ∼ N (0, I), Zf

t+1 ∼ Πf
¡
Ft,Θ

P¢, Zs
t+1 ∼ Πs

¡
Ft,Θ

P¢, Jf
t+1 ∼

Ber
£
λf
¡
Xt,Θ

P¢¤, and Jf
t+1 ∼ Ber

£
λs
¡
Ft,Θ

P¢¤.
Since the shocks in the model, the Brownian increments, jump times and jump sizes, are

conditionally independent, once the model is discretized, it is easy to characterize the likeli-

hood and the state dynamics. We define the latent state vector asXt =
³
Ft−1, Zs

t , Z
f
t , J

s
t , J

f
t

´
,

which implies that

p (Y |X,Θ) =
QT

t=1 p
¡
St|St−1,Xt,Θ

P¢ p (Dt|St, Ft,Θ)

where p
¡
St|St−1, Xt,Θ

P¢ and p (Dt|St, Ft,Θ) are multivariate normal distribution. This

shows the simple structural form of the model given the time-discretization. It is important

to note that ΘQ will only appear in the second term, p (Dt|St,Xt,Θ). For example, in the

option pricing or term structure examples, the parameters determining the risk neutral

behavior of stock prices, stochastic volatility or interest rates, only appear in the option

price or bond yields. The price and state evolutions, as they are observed under P, provide
no information regarding the risk-neutral behavior.

The state dynamics are given by p (X|Θ) which is given by: similarly straightforward.

p (X|Θ) =
TY
t=1

p
¡
Xt|Xt−1,ΘP¢

where

p
¡
Xt+1|Xt,Θ

P¢ = p
³
Ft|Ft−1, Z

f
t , J

f
t

´
p
³
Zf
t+1|Ft

´
p
³
Jf
t+1|Ft

´
p
¡
Zs
t+1|Ft

¢
p
¡
Js
t+1|Ft

¢
.

The time-discretization plays an integral part: it provides a methods to analytically com-

pute the likelihood and the state variable evolution.
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The previous approximation normalized the discretization interval to unity, but the

accuracy of this approximation depends on the length of the interval between observations

and the characteristics of the process. In the diffusion case, if the drift and diffusion are

constant, the time-discretization is exact. If the time interval between observations is small

(e.g., daily) and the drift and diffusion coefficients are smooth functions of the states, the

approximation error via the time-discretization is also likely small. For example, in a

term structure model, Stanton (1997) finds that approximation errors in the conditional

moments of the process of certain diffusions in negligible for time intervals up to a month,

while Eraker, Johannes and Polson (2003) find that time-discretizations of equity prices

models with jumps do not introduce any biases in the parameter estimates. As noted by

Pritsker (1997, 1998) and Johannes (2004), the sampling variation (due to finite samples)

typically dwarfs any discretization bias when data is sampled at reasonably high frequencies

such as daily.

In other cases, the simple time-discretization may not be accurate. This can occur when

the sampling interval is long (weeks or months) or the drift and diffusion coefficients are

highly variable functions of the states. In this case, the solution to the difference equation

in the time-discretization (??) and (25) is substantively different than the true solution to
SDE in (22). When this occurs, it is straightforward to use the Euler scheme to obtain a

more accurate characterization of the solution. The idea is to simulate additional states

between times t and t+ 1 at intervals 1/M for M > 1:

Stj+1 = Stj + µs
¡
Stj , Ftj ,Θ

P¢ /M + σs
¡
Stj , Ftj ,Θ

P¢ εs
tj+1

+ Zs
tj+1

Js
tj+1

(26)

Ftj+1 = Ftj + µf
¡
Ftj ,Θ

P¢ /M + σf
¡
Ftj ,Θ

P¢ εf
tj+1

+ Zf
tj+1J

f
tj+1 (27)

where tj = t + j
M
, εf

tj+1
, εs

tj+1
∼ N (0,M−1), Zf

tj+1
∼ Πf

¡
ftj ,Θ

P¢, Zs
tj+1
∼ Πs

¡
Ftj ,Θ

P¢,
Jf
tj+1
∼ Ber

£
λs
¡
Ftj ,Θ

P¢M−1¤, and Jf
tj+1
∼ Ber

£
λf
¡
Ftj ,Θ

P¢M−1¤.
With the additional simulations, we can augment the original state vector with the

intermediate jump times, jump sizes and ftj ’s to obtain a conditionally normal distrib-

ution. Jones (1998), Eraker (2001), Elerian, Shephard and Chib (2001), and Chib, Pitt

and Shephard (2003) examine various approaches for using time discretizations to estimate

continuous-time models using MCMC methods. We refer the interested reader to these

papers for further details and examples.
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4.3 Parameter Distribution

The final component of the joint posterior distribution is the prior distribution of the

parameters, p (Θ). This represent non-sample information regarding the parameters and

one typically chooses a parameterized distribution. This implies that the researcher must

choose both a distribution for the prior and the so-called hyperparameters that index the

distribution. Through both the choice of distribution and hyperparameters, the researcher

can introduce non-sample information or, alternatively, choose to impose little information.

In the latter case, an “uninformative” or diffuse prior is one that provides little or no

information regarding the location of the parameters.

When possible we recommend using standard conjugate prior distributions, see, for ex-

ample Raiffa and Schlaifer (1961) or DeGroot (1970). They provide a convenient way of

finding closed-form, easy to simulate, conditional posteriors. A conjugate prior is a distrib-

ution for which the conditional posterior is the same distribution with different parameters.

For example, suppose and random variable Y is normally distributed, Yt|µ, σ2 ∼ N (µ, σ2).

Assuming a normal prior on µ, µ ∼ N (a,A), the conditional posterior distribution for the

mean, p (µ|σ2, Y ) , is also normally distributed, N (a∗, A∗), where the starred parameters
depend on the data, sample size and the hyperparameters a and A. In this case, the pos-

terior mean is a weighted combination of the prior mean and the sample information with

the weights determined by the relative variances. Choosing A to be very large generates

what is commonly referred to as an uninformative prior. Of course, depending on the pa-

rameter of interest, no prior can be truly uninformative, Poincare (1901). For the variance

parameter, the inverted gamma distribution is also conjugate. Bernardo and Smith (1995)

provide a detailed discussion and list of conjugate priors.

In some cases, researchers may specify a flat prior, which is completely uninformative.

For example, in a geometric Brownian motion model of returns, Yt ∼ N (µ, σ2), it is

common to assume a flat prior distribution for the mean by setting p (µ, σ2) ∝ σ−1. While
a flat prior distribution may represent lack of knowledge, it may also also lead to serious

computational problems as a flat prior does not integrate to one. To see this, note that the

parameter posterior is given by

p (Θ|Y ) ∝ p (Y |Θ) p (Θ) .

For inference, this distribution must be proper, that is
R
Θ
p (Θ|Y ) dΘ = 1. In many cases,

flat priors can lead to an improper posterior. This is more problematic in state space
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models where the marginal likelihood, p (Y |Θ), is unavailable in closed form and where

one cannot always check that the propriety of the posterior. Additionally, joint posterior

propriety is a necessary condition for MCMC algorithms to converge as we discuss later.

This implies that another motivation for using diffuse proper priors is as a computational

tool for implementation via MCMC.

There are often statistical and economic motivations for using informative priors. For

example, in many mixture models, priors must at least partially informative to overcome

degeneracies in the likelihood. Take, for example, Merton’s (1976) jump diffusion model

for log-returns Yt = log (St+∆/St). In this case, returns are given by

Yt = µ+ σ (Wt+∆ −Wt) +

Nt+∆X
j=Nt

Zj

and the jump sizes are normally distributed with mean µJ and variance σ
2
J . As shown by

Lindgren (1978), Kiefer (1978) and Honore (1997), the maximum likelihood estimator is

not defined as the likelihood takes infinite values from some parameters. This problem

does not arise when using an informative prior, as the prior will typically preclude these

degeneracies.

Informative priors can also be used to impose stationarity on the state variables. Mod-

els of interest rates and stochastic volatility often indicate near-unit-root behavior. In the

stochastic volatility model discussed earlier, a very small κv introduces near-unit root be-

havior. For practical applications such as option pricing or portfolio formation, one often

wants to impose mean-reversion to guarantee stationarity. This enters via the prior on the

speed of mean reversion that imposes that κv are positive and are bounded away from zero.

For regime-switching models, the prior distribution p (Θ) can be used to solve a number

of identification problems. First, the labeling problem of identifying the states. The most

common way of avoiding this problem is to impose a prior that orders the mean and variance

parameters. One practical advantage of MCMC methods are that they can easily handle

truncated and ordered parameter spaces, and hence provide a natural approach for regime

switching models.

It is increasingly common in many applications to impose economically motivated priors.

For example, Pastor and Stambaugh (2000) use the prior to represent an investor’s degree of

belief over a multi-factor model of equity returns. In other cases, an economically motivated

prior might impose that risk premium are positive, for example.
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In practice, researchers often perform sensitivity analysis to gauge the impact of certain

prior parameters on the parameter posterior. Occasionally, the posterior for certain may

depend critically on the choice. As the posterior is just the product of the likelihood and the

prior, this only indicates that the likelihood does not provide any information regarding the

location of these parameters. One extreme occurs when the parameters are not identified

by the likelihood and the posterior is equal to the prior.

5 Asset Pricing Applications

In this section, we describe a number of asset pricing models and the associated MCMC

algorithms for estimating the parameters and latent states. We first consider equity models

where we assume that equity returns and option prices are observed. We consider the

Black-Scholes-Merton model, time-varying equity premium models, stochastic volatility

models and multi-variate models with jumps. Next, we consider models of interest rates,

and consider Gaussian, square-root and multi-factor models. Finally, we discuss general

estimation of regime-switching models.

5.1 Equity Asset Pricing Models

5.1.1 Geometric Brownian Motion

The simplest possible asset pricing model is the geometric Brownian specification for an

asset price. Here, the price, St, solves the familiar SDE

dSt =

µ
µ+

1

2
σ2
¶
Stdt+ σStdWt (P)

where µ is the continuously-compounded expected return and σ is the volatility. Prices are

always recorded at discrete-spaced time intervals, and, for simplicity, we assume they are

equally space. This model has a closed-form solution for continuously-compounded returns:

Yt = log (St/St−1) = µ+ σεt,

where εt ∼ N (0, 1). The model generates a conditional likelihood likelihood for the vector
of continuously-compounded returns of

p
¡
Y |µ, σ2

¢
=

µ
1√
2πσ2

¶T

exp

Ã
− 1

2σ2

TX
t=1

(Yt − µ)2
!
,
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where Y = (S0, ..., ST ). There are no latent variables in this model which implies that

the posterior is p (Θ|Y ) = p (µ, σ2|Y ). Under standard prior assumptions, the posterior
distribution, p (Θ|Y ) = p (µ, σ2|Y ), is known in closed form. However, to develop intuition,
we describe an MCMC approach for sampling from p (µ, σ2|Y ).
The first step is an application of Clifford-Hammersley theorem which implies that

p (µ|σ2, Y ) and p (σ2|µ, Y ) are the complete conditionals. Assuming independent priors on
µ and σ2,8 Bayes rule implies that

p
¡
µ|σ2, Y

¢
∝ p

¡
Y |µ, σ2

¢
p (µ)

p
¡
σ2|µ, Y

¢
∝ p

¡
Y |µ, σ2

¢
p
¡
σ2
¢

where p (µ) and p (σ2) are the priors. Assuming a normal prior for µ, p (µ) ∼ N , and an
inverted gamma prior for σ2, p (σ2) ∼ IG,9 the posteriors are conjugate, which means that
p (µ|σ2, Y ) is also normal and p (σ2|µ, Y ) is also inverse Gamma. The MCMC algorithm
consists of the following steps: given µ(g) and (σ2)(g)

µ(g+1) ∼ p
³
µ|
¡
σ2
¢(g)

, Y
´
∼ N¡

σ2
¢(g+1) ∼ p

¡
σ2|µ(g+1), Y

¢
∼ IG

where the arguments of the normal and inverted Gamma distributions are easy to derive and

are omitted for notational simplicity. Both of these distributions can be directly sampled,

thus the MCMC algorithm is a Gibbs sampler. Iterating, this algorithm produces a samplen
µ(g), (σ2)

(g)
oG
g=1

from the posterior p (µ, σ2|Y ).
This simple example previews the general approach to MCMC estimation:

Step 1 : Write out the price dynamics and state evolution in state space form;

Step 2 : characterize the joint distribution by its complete conditionals

Step 3 : use standard random sampling methods to generate

draws from joint posterior
8Alternatively, one could use dependent conditional conjugate priors such as p

¡
µ, σ2

¢
= p

¡
µ|σ2

¢
p
¡
σ2
¢
.

In this model, the p
¡
µ|σ2

¢
is normal and p

¡
σ2
¢
is inverted Gamma. Later, we discuss the multivariate

version of this, the normal-inverted Wishart prior which leads to a joint posterior for µ and σ2 which can
be directly sampled.

9The inverted Gamma distribution is a common prior for a variance parameter. The inverted Gamma
distribution, IG (α, β), has support on the positive real line and the density is given by f (x|α, β) =
βαxα+1e−β/x/Γ (α).
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5.1.2 Black-Scholes

In many cases, option prices are also observed. If the underlying follows a geometric

Brownian motion, the Black-Scholes (1973) formula implies that the price of a call option

struck at K is given by

Ct = BS (σ, St) = StN (d1)− er(T−t)KN
³
d1 − σ

√
T − t

´
where

d1 =
log (St/K) + (r + σ2/2) (T − t)

σ
√
T − t

,

and we assume the continuously-compounded interest rate is known. The addition of option

prices generates only minor alterations to the MCMC algorithm of the previous section.

Our analysis follows and is a special case of Polson and Stroud (2002) and Eraker (2004)

who allow for stochastic volatility, jumps in returns and jumps in volatility. Jacquier and

Jarrow (2000) also provide a similar analysis.

The first thing to notice about the model is the stochastic singularity: if a single option

price is observed without error, volatility can be inverted from the price. To break this

singularity, we assume that option prices are observed with a normally distributed error.

This implies the following state space model is

log (St/St−1) = µ+ σεt

Ct = BS (σ, St) + εct

where εt ∼ N (0, 1) and εct ∼ N (0, σ2c). This state space model is conditionally normal,
but nonlinear in the parameters as BS (σ, St) is not known analytically.

The joint likelihood function is the product of the equity return likelihood, p (S|µ, σ2),
and the option likelihood, p (C|, S, µ, σ2, σ2c) :

p
¡
S,C|µ, σ2, σ2c

¢
=

TY
t=1

p
¡
Ct|St, σ2, σ2c

¢
p
¡
log (St/St−1) |µ, σ2

¢
.

Here S = (S1, ..., ST ) , and C = (C1, ..., CT ) are the vector with the underlying and option

prices. The equity return portion of the likelihood is the same as in previous section. The

option price component of the likelihood is given by

p
¡
Ct|St, σ2, σ2c

¢
∝ exp

µ
− 1

2σ2c
(Ct −BS (σ, St))

2

¶
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Notice that the distribution of the option prices conditional on St, σ2 and σ2c is independent

of µ and the distribution of the stock returns is independent of σc.

The MCMC algorithm samples from the joint posterior, p (µ, σ2, σ2c |S,C). The complete
conditionals are p (µ|σ2, S), p (σ2|µ, σ2c , S, C) and p (σ2c |σ2, S, C). Assuming the independent
priors, p (µ) ∼ N , p (σ2) ∼ IG and p (σ2c) ∼ IG, the conditional posteriors for µ and σ2c are
conjugate. Due to the option pricing formula, p (σ2|µ, σ2c , S, C) is not a known distribution
and the Metropolis-Hastings algorithm will be used to update σ2. The MCMC algorithm

cycles through the conditionals:

µ(g+1) ∼ p
³
µ|
¡
σ2
¢(g)

, S
´
∼ N¡

σ2c
¢(g+1) ∼ p

³
σ2c |
¡
σ2
¢(g)

, S, C
´
∼ IG¡

σ2
¢(g+1) ∼ p

³
σ2|µ(g+1),

¡
σ2c
¢(g+1)

, S, C
´
:Metropolis

There are a number of alternatives for the Metropolis step. By Bayes rule, the condi-

tional posterior for σ is

π
¡
σ2
¢
, p

¡
σ2|µ,C, S

¢
∝ p

¡
C|σ2, S

¢
p
¡
S|µ, σ2

¢
p
¡
σ2
¢

which clearly shows how both the returns and the option prices contain information about

σ2. Since BS (σ, St) is given as an integral, it is not possible to sample directly from

p (σ2|µ, σ2c , S, Y ) as

p
¡
Ct|St, σ2, σ2c

¢
∝ exp

µ
− 1

2σ2c
(Ct −BS (σ, St))

2

¶
is not known in closed form as a function of σ. One approach is to use independence

Metropolis. In this case, the algorithm proposes using the data from the returns, p (σ2|S, µ),
and then accepts/rejects based on the information contained in the option prices. Specifi-

cally, consider a proposal of the form

q
¡
σ2
¢
= p

¡
σ2|µ, S

¢
∝ p

¡
S|µ, σ2

¢
p
¡
σ2
¢
∼ IG.

The Metropolis algorithm is

Step 1 : Draw
¡
σ2
¢(g+1)

from q
¡
σ2
¢
∼ IG (28)

Step 2 : Accept
¡
σ2
¢(g+1)

with probability α
³¡
σ2
¢(g+1)

,
¡
σ2
¢(g)´

(29)
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where

α
³¡
σ2
¢(g)

,
¡
σ2
¢(g+1)´

= min

p
³
C| (σ2)(g+1) , S

´
p
³
C| (σ2)(g) , S

´ , 1

 .
As the Black-Scholes price is always bounded by the underlying price, BS (σ, St) ≤ St, so

the tail behavior of π (σ2) is determined by the likelihood component and the algorithm is

geometrically convergent.

In practice, this Metropolis algorithm is susceptible to two common problems mentioned

earlier. First, option prices often embed volatility or jump risk premiums which implies that

Black-Scholes implied volatility is generally higher than historical volatility. In fact, for the

period from 1997-2002, Black-Scholes implied volatility as measured by the VIX index has

averaged about 30%, while the underlying volatility is about 18%. In this case, the target

may be located to the right of the proposal, as historical volatility is lower than implied

volatility. This would result in very low acceptance probabilities. Of course, this is not a

problem with MCMC per se, but is due to a misspecified model. Second, option prices are

likely to be more informative about volatility than historical returns. This implies that the

target will have lower variance than the proposal. The proposal will generate large moves

which will often be rejected by the Metropolis algorithm, again, potentially generating a

slowly moving chain. An alternative to the independence algorithm is to use a random-walk

Metropolis algorithm with a fat-tailed innovation such as a t−distribution. The variance
can be tuned to insure that the acceptance rates are sufficiently high. In many cases this

is an attractive alternative. As mentioned in Section 2.5, it is important to implement

multiple algorithms and choose one appropriate for the problem at hand.

5.1.3 A Multivariate Version of Merton’s Model

Consider an extension of the geometric model: a multivariate version of Merton’s (1976)

jump-diffusion model. Here a K−vector of asset prices solves

dSt = µStdt+ σStdWt (P) + d

µXNt(P)

j=1
Sτj−(e

Zj(P) − 1)
¶

where Wt (P) is a vector standard Brownian motion, σσ0 = Σ ∈ RK × RK is the diffusion

matrix, Nt (P) is a Poisson process with constant intensity λ and the jump sizes, Zj ∈ RK

are multivariate normal with mean µJ and variance-covariance matrix ΣJ . This model
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assumes the prices have common jumps with correlated sizes, although it is easy to add an

additional jump process to characterize idiosyncratic jumps.

Solving this stochastic differential equation, continuously compounded equity returns

over a daily interval (∆ = 1) are

log (St/St−1) = µ+ σ (Wt+1 (P)−Wt (P)) +
Nt+1(P)X

j=Nt+1(P)

Zj (P)

where, again, we have redefined the drift vector to account for the variance correction. We

time discretize the jump component assuming that at most a single jump can occur over

each time interval:

Yt ≡ log (St/St−1) = µ+ σεt + JtZt

where P [Jt = 1] = λ ∈ (0, 1) and the jump sizes retain their structure. Johannes, Kumar
and Polson (1999) document that, in the univariate case, the effect of time-discretization

in the Poisson arrivals is minimal, as jumps are rare events. To see why, suppose the jump

intensity (scaled to daily units) is λ = 0.05. Since

Prob [Nt+1 (P)−Nt (P) = j] =
e−λ (λ)j

j!

the probability of two or more jumps occurring over a daily interval is approximately 0.0012

or 1/10th of one percent, which is why the discretization bias is likely to be negligible.

The MCMC algorithm samples from p (Θ, X|Y ) , where Θ = (µ,Σ, λ, µJ ,ΣJ) and X =

(J,Z), where J , Z, and Y are vectors of jump times, jump sizes and observed prices.

Returns are independent through time, which implies that the full-information likelihood

is a product of multivariate normals,

p (Y |Θ, J, Z) =
YT

t=1
p (Yt|Θ, Jt, Zt)

where

p (Yt|Jt, Zt,Θ) ∝ |Σ|−
1
2 exp

½
−1
2
(Yt − µ− ZtJt)

0Σ−1 (Yt − µ− ZtJt)

¾
.

In contrast, the the observed likelihood, p (Yt|Θ), integrates out Zt and Jt and is mixture

of multivariate normal distributions. Discrete mixture distributions introduce a number of

problems. For example, in the univariate case, it is well known that the observed likelihood
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has degeneracies as certain parameter values lead an infinite likelihood. Multi-variate

mixtures are even more complicated and direct maximum likelihood is rarely attempted.

For the parameters, Clifford-Hammersley implies that p (µ,Σ|J,Z, Y ), p (µJ ,ΣJ |J,Z),
and p (λ|J) characterize p (Θ|X,Y ). For the states, p (Zt|Θ, Jt, Yt) and p (Jt|Θ, Zt, Yt) for

t = 1, ..., T characterize p (J,Z|Θ, Y ). Assuming standard conjugate prior distributions
for the parameters, µ ∼ N ,Σ ∼ IW, µJ ∼ N ,ΣJ ∼ IW, and λ ∼ B, where IW is an

inverted Wishart (multivariate inverted gamma) and B is the beta distribution,10 all of
the conditional parameter posteriors are conjugate. We make one adjustment allowing for

certain parameters to have conditional priors. We assume that Σ and ΣJ have IW priors,

but that µ|Σ ∼ N (a, bΣ) and µJ |ΣJ ∼ N (aJ , bJΣJ). This allows us to draw (µ,Σ) and

(µJ ,ΣJ) in blocks. Since these parameters are likely to be correlated, this will improve the

efficiency of the MCMC algorithm. We now derive the conditional posteriors for λ, Jt, and

Zt.

The posterior for λ is conjugate and is given by Bayes rule as

p (λ|J) ∝ p (J |λ) p (λ) ∝
·
λ
PT

t=1
Jt (1− λ)T−

PT
t=1 Jt

¸
λα−1 (1− λ)β−1 ∝ B (α∗, β∗)

where p (λ) = B (α, β), α∗ =
PT

t=1 Jt + α and β∗ = T −
PT

t=1 Jt + β. The conditional

posterior for Zt is normal:

p (Zt|Yt, Jt,Θ) ∝ exp

µ
−1
2

£
r0tΣ

−1rt + (Zt − µZ)
0Σ−1J (Zt − µZ)

¤¶
∝ exp

µ
−1
2
(Zt −mt)

0 V −1t (Zt −mt)

¶
where rt = Yt − µ− ZtJt and

Vt =
¡
JtΣ

−1 + Σ−1J
¢−1

mt = Σ−1J
¡
JtΣ

−1 (Yt − µ) + Σ−1J µZ
¢
.

10An n × n matrix Σ has an inverse Wishart distribution, denoted W−1 (a,A), with scaler parameter
a > 0 and matrix parameter A positive definite, its density is given by:

p (Σ|a, b) = |A|
(a−n−1)

2 |Σ|−
a
2 exp

µ
−1
2
tr
¡
Σ−1B

¢¶
.

The beta distribution, B (α, β) for α, β > 0, has support over the unit interval and its density is given by

p (x|α, β) = Γ (α+ β)βα

Γ (α)Γ (β)
xα−1 (1− x)

β−1 .
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For the jump times, the conditional posterior is Bernoulli since Jt can only take two values.

The Bernoulli probability is

p (Jt = 1|Θ, Zt, Yt) ∝ p (Yt|Jt = 1,Θ, Zt) p (Jt = 1|Θ)

∝ λ exp

µ
−1
2

£
(Yt − µ− Zt)

0Σ−1 (Yt − µ− Zt)
¤¶
.

Computing p (Jt = 0|Θ, Zt, Yt) then provides the Bernoulli probability. This completes the

specification of our MCMC algorithm. The arguments in Rosenthal (1995a, b) show that

the algorithm is in fact polynomial time convergent, and thus, converges quickly.

As all of the conditional posteriors can be directly sampled, the MCMC algorithm is a

Gibbs sampler iteratively drawing from

p (µ,Σ|J,Z, Y ) ∼ N/IW
p (µJ ,ΣJ |J,Z) ∼ N/IW

p (λ|J) ∝ B
p (Zt|Θ, Jt, Yt) ∼ N
p (Jt|Θ, Zt, Yt) ∼ Binomial

where N/IW is the normal-inverted Wishart joint distribution. Sampling from this distri-

bution requires two steps, but is standard (see, for example, Bernardo and Smith (1995)).

To illustrate the methodology, consider a bivariate jump-diffusion model for S&P 500

and Nasdaq 100 equity index returns from 1986-2000. The model is a lower-dimensional

version of the those considered in Duffie and Pan (1997) and is given byÃ
Y 1
t

Y 2
t

!
=

Ã
µ1
µ2

!
+

Ã
σ1 σ12

σ12 σ22

!1/2Ã
ε1t
ε2t

!
+ Jt

Ã
Z1t
Z2t

!

where σσ0 = Σ, Zt = [Z1t , Z
2
t ]
0 ∼ N (µJ ,ΣJ) and the jump arrivals, common to both

returns, have constant intensity λ.

We run the Gibbs sampler for 1250 iterations and discard the first 250 as a burn-in

period, using the last 1000 draws to summarize the posterior distribution. Table 1 provides

the prior mean and standard deviation and the posterior mean, standard deviation and

a (5, 95)% credible set. The prior on λ is informative, in the sense that it specifies that

jumps are rare events. Our prior represents our belief that the variance of jump sizes is

larger than the daily diffusive variance. For all parameters, the data is very informative
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Table 1: Parameter estimates for the bi-variate jump-diffusion model for daily S&P 500

and Nasdaq 100 returns from 1986-2000.

Prior Posterior

Mean Std Mean Std (5,95)% Credible Set

µ1 0
√
1000 0.1417 0.0229 0.1065, 0.1797

µ2 0
√
1000 0.0839 0.0148 0.0589, 0.1082

σ1 1.7770 0.9155 1.2073 0.0191 1.1778, 1.2396

σ2 1.7770 0.9155 0.7236 0.0369 0.6903, 0.7599

ρ 0 0.1713 0.6509 0.0115 0.6317, 0.6690

λ 0.0476 0.0147 0.0799 0.0081 0.0663, 0.0933

µ1,J 0
√
1000 -0.5747 0.2131 -0.9320, -0.2351

µ2,J 0
√
1000 -0.3460 0.1765 -0.6537, -0.0648

σ1,J 2.1113 1.1715 2.9666 0.1647 2.7073, 3.2435

σ2,J 2.1113 1.1715 2.5873 0.1458 2.3540, 2.8233

ρJ 0 0.1519 0.5190 0.0490 0.4360, 0.5986

as the posterior standard deviation is much smaller than the prior indicating that that the

parameters are easily learned from the data. This should not be a surprise as returns in

the model are i.i.d.. Figure 2 provides parameter trace plots and shows how, after burn-in,

the Gibbs sampler moves around the posterior distribution.

Figure 3 provides Monte Carlo estimates of the jump sizes in returns (ZtJt). Since the

model has constant volatility, there are periods when jumps are clustered which is clearly

capturing time-variation in volatility that the model does not have built in. We address

this issue later by introducing time-varying and stochastic volatility.

5.1.4 Time-Varying Equity Premium

The Black-Scholes model assumes that µ and σ are constant. Extensions of the Black-

Scholes model allow these parameters to vary over time. In the case of the expected return,

a straightforward extension posits that the equity premium, µt, is time-varying:

dSt
St

=

·
rt + µt +

1

2
σ2
¸
dt+ σdW s

t (P)
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Figure 2: Parameter trace plots for the jump parameters. Each panel shows
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Θ(g)
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g=1

for

the individual parameters.
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Figure 3: Estimated jump sizes in returns for the Nasdaq and S&P 500 and actual returns

over the same period.

49



where rt is the spot rate, the equity premium solves

dµt = κµ (θµ − µt) dt+ σµdW
µ
t (P)

and the Brownian motions could be correlated. The mean-reverting specification for ex-

pected returns is popular in the portfolio choice literature and was introduced by Merton

(1971) and recently used by Kim and Omberg (1996), Liu (1999), and Wachter (2000).

Brandt and Kang (2000) and Johannes, Polson and Stroud (2001) provide empirical analy-

ses of this model.

Solving the SDE, the increments of µt are

µt = µt−1e
−κµ + θµ

¡
1− e−κµ

¢
+ σµ

Z t

t−1
e−κµ(t−s)dW µ

s (P)

and the model is a discrete-time AR(1):

µt = αµ + βµµt−1 + σµε
µ
t

where αµ = θµ (1− e−κµ), βµ = e−κµ and we have redefined σµ. The state space form is

Yt = µt + σεst

µt = αµ + βµµt−1 + σµε
µ
t .

where Yt = log
³

St
St−1

´
−
R t
t−1 rsds are excess returns. The parameters areΘ =

©
αµ, βµ, σµ, σ

ª
,

the state variables are X = µ = {µt}Tt=1 , and the posterior distribution is p (Θ, µ|Y ).
Clifford-Hammersley implies that p

¡
αµ, βµ, σ

2
µ, σ

2|µ, Y
¢
and p

¡
µ|αµ, βµ, σ

2
µ, σ

2, Y
¢
are com-

plete conditionals. Assuming normal-inverted Wishart priors conditional priors for the

parameters, the parameters can be updated as a single block.

Drawing from p (µ|Y, α, β, σ2v), a T−dimensional distribution, might appear to be diffi-
cult. However, it is possible to use the Kalman filter to obtain this density via the forward-

filtering backward sampling (FFBS) algorithm described in Carter and Kohn (1994). This

generates the following Gibbs sampler:

p
¡
αµ, βµ, σ

2
µ, σ

2|µ, Y
¢
∼ N/IG

p
¡
µ|αµ, βµ, σ

2
µ, σ

2, Y
¢

: FFBS.

The mechanics of the FFBS algorithm are quite simple. Consider the following decom-

position of the joint expected returns posterior:

p (µ|Y,Θ) ∝ p (µT |Y,Θ)
T−1Y
t=0

p
¡
µt|µt+1, Y t,Θ

¢
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where Y t = [Y1, ..., Yt]. To simulate from p (µ|Y,Θ), consider the following procedure:

Step 1. Run the Kalman filter for t = 1, ..., T to get the moments of p
¡
µt|Y t,Θ

¢
Step 2. Sample the last state from bµT ∼ p

¡
µT |Y T ,Θ

¢
Step 3. Sample backward through time: bµt ∼ p

¡
µt|bµt+1, Y t,Θ

¢
The first step is the usual Kalman filtering algorithm (forward filtering) and then the last

two steps move backward to unwind the conditioning information (backward sampling).

Carter and Kohn (1994) show that the samples (bµ1, ..., bµT ) are a direct block draw from
p (µ|Y,Θ). It is important to recognize that the Kalman filter is just one part of the MCMC
algorithm, and the other step (parameter updating) indicates that the algorithm accounts

for parameter uncertainty.

To get a sense of some empirical results, we estimate the model above using S&P 500

returns and Nasdaq 100 returns from 1973 to 2000 and 1987 to 2000, respectively, and

report summary statistics of p (µt|Y ) over the common period 1987 to 2000. Figure 3
provides posterior estimates of µt, E [µt|Y ] , and 95 percent confidence bounds. Note that
the MCMC algorithm provides the entire distribution of the states taking into account

estimation risk. Not surprisingly, the risk present in estimating µt is quite large. In fact,

for many periods of time, the confidence band includes zero, which shows that there is often

not a statistically significant equity premium, although the point estimate of the equity

premium E [µt|Y ] is positive.

Time-varying parameter models The algorithm above, applies, in a slightly modified

form to more general time-varying parameter models. Consider the more general setting

of Xia (2001):
dSt
St

=

·
αt + β0tXt +

1

2
σ2
¸
dt+ σdW s

t (P)

where the equity premium is µt = αt + β0tXt, Xt is a vector of predictor variables, and βt
is a vector of time-varying coefficients. Xia (2001) assumes they jointly solve

dβt = κβ (θβ − βt) dt+ σβdW
β
t (P)

dXt = κx (θx −Xt) dt+ σxdW
x
t (P)

where all Brownian motions can be correlated. In discrete-time, this model takes the form

of a linear, Gaussian state-space model. The conditional posteriors for the parameters are

51



1988 1990 1992 1994 1996 1998 2000

-20

0

20

40

60

Nasdaq Expected Returns

1988 1990 1992 1994 1996 1998 2000

-20

0

20

40

60

S&P Expected Returns

Figure 4: Smoothed expected return paths (with confidence bands) for the S&P 500 and

Nasdaq 100 from 1987-2001.
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all standard, while the conditional posterior for the latent variable, βt, can be obtained via

the FFBS algorithm mentioned above.

Merton’s Model of Defaultable Debt The methods in the previous section can be

easily adapted to handle Merton’s (1974) model of defaultable debt. In this model, a firm

has assets with a market value of At and has outstanding bond obligations equal to a zero

coupon bond expiring at time T with par value B. Equity holders, as residual claimants,

receive any excess value over that which is given to the bond holders, that is, at time T the

equity holders receive (AT −B)+. In this case, standard arguments imply that the value

of equity, St, is given by St = EQ £e−r(T−t) (AT −B)+ |At

¤
.

Given this, the state space representation for structural models of default implies that

St = EQ
t

£
e−r(T−t) (AT −B)+ |At

¤
dAt = µAtdt+ σAtdWt.

In the case of geometric Brownian motion for the firm value, the equity price is given by the

Black-Scholes formula. It is also important to remember that, from the econometrician’s

perspective, the firm value, At, is an unobserved state variable and estimating it is one of

the primary objectives. A time-discretization of this model leads to a combination of the

Black-Scholes option pricing model and a time-varying parameter model.

5.1.5 Log-Stochastic Volatility Models

Stochastic volatility models are one of the most successful applications of MCMC methods.

A wide range of stochastic volatility models appear in the literature, and they all present

difficulties for estimation as they are non-Gaussian and nonlinear state space models. We

consider a number of different stochastic volatility models: the log-stochastic volatility

model, a model incorporating the leverage effect, Heston’s (1993) square-root stochastic

volatility model, and the double-jump model of Duffie, Pan, and Singleton (2000).

Log-volatility The log-stochastic volatility is arguably the most popular specification

for modeling stochastic volatility. In this model, volatility solves a continuous-time AR(1)

in logs:

d log (St) = µtdt+
p
VtdW

s
t

d log (Vt+1) = κv (θv − log (Vt)) dt+ σvdW
v
t .
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where, for simplicity, we assume that the Brownian motions are independent, although this

assumption was relaxed in Jacquier, Polson and Rossi (2004). To abstract from conditional

mean dynamics, set µt = 0. An Euler time discretization implies that

Yt =
p
Vt−1εst

log(Vt) = αv + βv log(Vt−1) + σvε
v
t ,

where Yt are the continuously compounded returns, αv = κvθv and βv = 1 − κv. This

reparameterization allows us to use standard conjugate updating theory for the parameters.

Define the parameter and state vectors as Θ = {αv, βv, σ
2
v} and X = V = {Vt}Tt=1.

Jacquier, Polson and Rossi (1994) were the first to use MCMC methods to analyze this

model, and since then, there have a been a number of important alternative MCMC algo-

rithms proposed. The Clifford-Hammersley theorem implies that p (Θ, V |Y ) is completely
characterized by p (αv, βv|σv, V, Y ), p (σ2v|αv, βv, V, Y ) and p (V |αv, βv, σ

2
v, Y ). JPR (1994)

assume conjugate priors for the parameters, αv, βv ∼ N and σ2v ∼ IG, which implies that

p (αv, βv|σv, V, Y ) ∝
TY
t=1

p (Vt|Vt−1, αv, βv, σv) p (αv, βv) ∝ N

and for σv, we have that

p
¡
σ2v|αv, βv, V, Y

¢
∝

TY
t=1

p (Vt|Vt−1, αv, βv, σv) p
¡
σ2v
¢
∝ IG.

The only difficult step arises in updating the volatility states. The full joint posterior

for volatility is

p (V |Θ, Y ) ∝ p (Y |Θ, V ) p (V |Θ) ∝
TY
t=1

p (Vt|Vt−1, Vt+1,Θ, Y )

where

p (Vt|Vt−1, Vt+1,Θ, Y ) = p (Yt|Vt,Θ) p (Vt|Vt−1,Θ) p (Vt+1|Vt,Θ)

As a function of Vt, the conditional variance posterior is quite complicated:

p (Vt|Vt−1, Vt+1,Θ, Y ) ∝ V
− 1
2

t exp

µ
− Y 2

t

2Vt

¶
exp

µ
− e2t
2σ2v

¶
V −1t exp

µ
−e

2
t+1

2σ2v

¶
,

where et = log (Vt)−αv−βv log (Vt−1). Note that Vt enters in four different places. As this
distribution is not recognizable, Metropolis-Hastings is required to sample from it.
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We first consider a “single state” Metropolis updating scheme as the joint volatility

posterior, p (V |Θ, Y ), cannot directly drawn from without approximations. The MCMC

algorithm therefore consists of the following steps:

p (αv, βv|σv, V, Y ) ∼ N
p
¡
σ2v|αv, βv, V, Y

¢
∼ IG

p (Vt|Vt−1, Vt+1,Θ, Y ) : Metropolis

Jacquier, Polson, and Rossi (1994) use an independence Metropolis-Hastings algorithm

to update the states. This is preferable to a random-walk algorithm because we can closely

approximate conditional distribution, p (Vt|Vt−1, Vt+1,Θ, Y ), especially in the tails. The
proposal density is a Gamma proposal density motivated by the observation that the first

term in the posterior is an inverse Gamma and the second log-normal term can be approx-

imated (particularly in the tails) by a suitable chosen inverse Gamma. If we refer to the

proposal density as q (Vt) and the true conditional density as π(Vt) , p (Vt|Vt−1, Vt+1,Θ, Y ),
this implies the Metropolis-Hastings step is given by:

Step 1. Draw V
(g+1)
t from q (Vt)

Step 2. Accept V (g+1)
t with probability α

³
V
(g+1)
t , V

(g)
t

´
where

α
³
V
(g)
t , V

(g+1)
t

´
= min

π
³
V
(g+1)
t

´
q
³
V
(g)
t

´
π
³
V
(g)
t

´
q
³
V
(g+1)
t

´
 .

As shown by Jacquier, Polson, and Rossi (1994) using simulations, this algorithm pro-

vides accurate inference. Given that the gamma distribution bounds the tails of the true

conditional density, the algorithm is geometrically convergent.

Figure 2 provides posterior means, E (Vt|Y ), of the latent volatility states with (5,95)%
credible sets for the S&P 500 and Nasdaq 100. These are smoothed volatility estimates, as

opposed to filtered volatility estimates, and account for estimation risk as they integrate

out parameter uncertainty.

Correlated Shocks: The Leverage Effect One common extension of the model pre-

sented above relax the assumption that the shocks in volatility and prices are independent

and instead assume that corr (W v
t ,W

s
t ) = ρ. This “leverage” effect of Black (1976) has
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been shown to be an important component of returns. For equity returns, this parame-

ters is negative which indicates that negative returns signal increases in volatility. For

MCMC estimation, the leverage effect adds two complications. First, updating volatility is

slightly more complicated as equity returns now are directionally correlated with changes

in volatility. Second, there is an additional parameter that is present.

Jacquier, Polson and Rossi (2004) consider the log-volatility model and show how to

incorporate the leverage effects into the model. In discrete-time, they write the model as:

Yt =
p
Vt−1εst

log(Vt) = αv + βv log(Vt−1) + σv
h
ρεst +

p
1− ρ2εvt

i
where εst and εvt are uncorrelated. Jacquier, Polson and Rossi (2004) reparameterize the

model by defining φv = σvρ and ωv = σ2v (1− ρ2). They assume αv, βv ∼ N , φv ∼ N and

ωv ∼ IG. This generates the following MCMC algorithm:

p (αv, βv|σv, V, Y ) ∼ N
p (φv, ωv|αv, βv, V, Y ) ∼ N -IG
p (Vt|Vt−1, Vt+1,Θ, Y ) : Metropolis.

We refer the reader to JPR (2004) for the details of each of these steps and for extensions

to multivariate stochastic volatility models.

Blocking Volatility States Since the volatility states are correlated, one would ideally

like to update them in a block. Unfortunately, direct block updating is extremely difficult

and therefore a number of authors have considered an approximation to the model which

can then be used to update volatility in a block. One alternative is to approximate the

model, in hopes that the approximating model will be negligibly different and will allow

black updating. Kim, Shephard and Chib (1998) first square returns and add a small

constant, to avoid taking the logarithm of zero. In log-form, the state space model is

log
¡¡
Y 2
t+1 + c

¢¢
= log (Vt) + log

³¡
εst+1

¢2´
log(Vt+1) = αv + βv log(Vt) + σvε

v
t+1.
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If we re-label the log-volatilities as eVt = log (Vt), we see the model now takes the form of a
non-normal, but linear state space model:

log
¡¡
Y 2
t+1 + c

¢¢
= eVt + log³¡εst+1¢2´eVt+1 = αv + βv eVt + σvε

v
t+1.

This simplifies the model along one line by removing the non-linearity, but introduces

non-normalities.

Kim, Shephard and Chib (1998) argue that xt+1 = log
³¡
εst+1

¢2´
can be easily approx-

imated by a 7-component mixture of normals:

p [xt] ≈
7P

j=1

qjφ
¡
xt|µj, σ2j

¢
where φ (x|µ, σ2) is a normal distribution with mean µ and variance σ2. The constants

qj, µj and σj are chosen to approximate the distribution of log
³¡
εst+1

¢2´
. Formally, this

requires the addition of a latent state variable, st, such that

xt|st = j ∼ N
¡
µj, σ

2
j

¢
Prob [st = j] = qj.

In this transformed model, the posterior is p
³
αv, βv, σ

2
v, eV , s|Y ´. The MCMC algorithm

is now

p
³
αv, βv|σv, s, eV , Y ´ ∼ N

p
³
σ2v|αv, βv, s, eV , Y ´ ∼ IG

p
³eV |αv, βv, σv, s, Y

´
: FFBS

p
³
st|αv, βv, σv, Y, eV ´ ∼ Multinomial.

The key advantage is that, conditional on the indicators, the model is a linear, normal state

space model and the Kalman recursions deliver p
³eV |αv, βv, σv, s, Y

´
. Further details of

the algorithm and the exact conditional posteriors are given in Kim, Shephard and Chib

(1998).

The algorithm generates a Markov Chain with very low autocorrelations. Due to the low

autocorrelations, the algorithm is often referred to as a rapidly converging algorithm. This
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is certainly true of the approximated model, if the shocks to the volatility equation have

the postulated mixture representation. If data is simulated from the true distribution,

the algorithm could provide inaccurate inference as the state evolution is misspecified.

However, this affect appears to be quite small for many financial time series. There are other

potential problems with this algorithm. It suffers from the inlier problem when εst+1 ≈ 0,
and it cannot handle models with a leverage effect (corr(εst+1, ε

v
t+1) 6= 0). Moreover, it

drastically increases the state space by introducing indicator variables. Rosenthal (1995a)

discusses potential convergence problems with Markov Chains over discrete state spaces.

The algorithm is difficult to extend to other interesting cases, such as the square-root

stochastic volatility model, although this is an area of research that certainly deserves

further attention.

5.1.6 Alternative Stochastic Volatility Models

Although the log-volatility model is common for many applications, it has a number of

potential shortcomings. First, the model falls outside the affine class which implies it is

numerically costly to compute option prices or portfolio weights in applications as partial

differential equation must be solved. Second, the volatility of volatility is constant, a

potentially counterfactual implication. To address these concerns, a number of alternative

models have been introduced into the literature.

Heston’s Square-Root Volatility Model In the option pricing and portfolio allocation

literature, it is common to use an “affine” model specification for volatility. Heston (1993)

introduced the square-root stochastic volatility model

dSt = St

µ
rt + ηvVt +

1

2
Vt

¶
dt+ St

p
VtdW

s
t (P) (30)

dVt = κv (θv − Vt) dt+ σv
p
VtdW

v
t (P) (31)

where the Brownian motions have constant correlation ρ. Discretizing the SDE, we have

that

Yt = ηvVt−1 +
p
Vt−1εst

Vt = αv + βvVt−1 + σv
p
Vt−1εvt

where Yt are excess returns, and we have re-defined the parameters in the drift process of

the volatility process.
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Figure 5: Smoothed volatility paths (with posterior confidence bands) for the S&P 500 and

Nasdaq 100 from 1987-2001.
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Before continuing with the algorithm, it is important to note that there is a clear prob-

lem with the time-discretization of the square-root model. Provided the Feller condition

holds, the SDE has a positive solution, that is, starting from an initially positive volatil-

ity, the solution remains positive for all t. The time-discretized model does not share this

property as the shocks to Vt are normally distributed, which implies that a simulated Vt

could be negative. There are three ways to deal with this. First, the original SDE could

be transformed by Ito’s lemma into logarithms, and the solution simulated in logs.11 This

makes parameter updating more difficult as the volatility appears in both the drift and

diffusion. Second, one can ignore the problem and hope that it does not affect the results.

For certain time series, such as U.S. equity indices, volatility tends to be rather high and

the problem is likely very small as p (Vt|Vt−1) has very little support below zero, especially
when the discretization interval is daily.12 For other time series, such as exchange rates

where volatility is very low, ignoring the problem may not as innocuous. Third, one could

fill in missing data points to reduce the impact of discretization.

We assume normal independent priors for ηv and (αv, βv) , an inverted Gamma prior

for σ2v, and a uniform prior for ρ. Eraker, Johannes, and Polson (2003) examine this

model using MCMC methods, as well as extensions that include jumps in returns and

jump in volatility. The Clifford-Hammersley theorem implies that p (αv, βv|σv, ρ, V, Y ),
p (σ2v|αv, βv, ρ, V, Y ) , p (ρ|αv, βv, σ

2
v, V, Y ) and p (V |αv, βv, σ

2
v, Y ) are the complete condi-

tionals. The MCMC algorithm is given by:

p (ηv|αv, βv, σv, ρ, V, Y ) ∼ N
p (αv, βv|σv, ρ, V, Y ) ∼ N
p
¡
σ2v|αv, βv, ρ, V, Y

¢
∼ IG

p
¡
ρ|αv, βv, σ

2
v, V, Y

¢
: Metropolis

p (Vt|Vt−1, Vt+1,Θ, Y ) : Metropolis.

11By Ito’s lemma, we for log (Vt) = ht, dht = eht
£
kv
¡
θv − eht

¢
− 1

2σ
2
v

¤
dt + eht/2dW v

t . Simulating this
process in discrete-time in logarithms guarantees that Vt = exp (ht) > 0.
12For example, using the estimates in Eraker, Johannes, and Polson (2003), we have that

Vt+1|Vt ∼ N
¡
Vt + κv (θv − Vt) , σ

2Vt
¢

∼ N
³
Vt + 0.02 (0.9− Vt) , (0.14)

2 Vt

´
.

If daily volatility is 1%, Vt = 1 (roughly 15 percent annualized) it requires a 50 standard deviation move
to make volatility go negative.
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The parameter posteriors are similar to those in the previous sections and are omitted.

Eraker, Johannes, and Polson (2003) use a random walk Metropolis-Hastings algorithm

for both the correlation parameter and the volatility states. The functional form of

p (ρ|αv, βv, σ
2
v, V, Y ) and p (Vt|Vt−1, Vt+1,Θ, Y ) are particularly complicated. In both cases,

the state dependence in the variance of Vt creates complications and it is difficult to find a

good proposal for independence Metropolis. Eraker, Johannes, and Polson (2003) provide

a simulation study to to show the efficacy of their algorithm to estimate the parameters of

the underlying continuous-time process. It would be particularly useful if a block-updating

scheme were available for updating the volatilities.

Stochastic volatility with jumps in returns and volatility As an example, consider

the popular double-jump model of Duffie, Pan, and Singleton (2000) which assumes the

equity price, St, and its stochastic variance, Vt, jointly solve

dSt = St (rt + ηvVt) dt+ St
p
VtdW

s
t (P) + d

Nt(P)X
j=1

Sτj−
³
eZ

s
j (P) − 1

´ (32)

dVt = κv (θv − Vt) dt+ σv
p
VtdW

v
t (P) + d

Nt(P)X
j=1

Zv
j (P)

 (33)

where W s
t (P) and W v

t (P) are correlated (ρ) Brownian motions, Nt (P) ∼ Poisson (λ), τ j
are the jump times, Zs

j (P) |Zv
j ∼ N

¡
µs + ρsZ

v
j , σ

2
s

¢
are the return jumps, Zv

j (P) ∼ exp (µv)
are the variance jumps, and rt is the spot interest rate. This model plays a prominent role

given its importance for practical applications such as option pricing and portfolio analysis.

Heston (1993) introduced the square-root stochastic volatility specification and Bates (1996,

2001), Pan (2001) and Duffie, Pan, and Singleton (2000) introduced generalizations with

jumps in returns and volatility. Eraker, Johannes and Polson (2003) estimate stochastic

volatility models with jumps in returns and volatility using MCMCmethods. Eraker (2004)

extends Eraker, Johannes, and Polson (2003) to incorporate option prices. Liu, Longstaff

and Pan (2001) analyze the portfolio implications of models with jumps in stock prices and

in volatility.

A time discretization of this model

Yt = µ+ ηvVt−1 +
p
Vt−1εst + JtZ

s
t

Vt = αv + βvVt−1 + σv
p
Vt−1εvt + JtZ

v
t .
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Given the time discretization, Clifford-Hammersley implies we can factor the parameters

and states into the following groups, [(µ, ηv) , (αv, βv) , σ
2
v, ρ, λ, µv, (µs, ρs) , σ

2
s, J, Z

s, Zv, V ].

We assume normal independent priors for (µ, ηv), (αv, βv) , and (µs, ρs), inverted Gamma

priors for σ2v and σ
2
s, a Beta prior for λ, an Gamma prior for µv, and a uniform prior for ρ.

Although the model has a number of parameters, deriving the conditional posteriors

for many of them is straightforward given the results in the previous section. This is due

to the modular nature of MCMC algorithms. For example, the conditional posteriors for

the “diffusive” parameters are the same as in the previous section, with an adjusted return

and volatility series. Conditional on jump times and sizes, we can define the jump-adjusted

returns and volatilities to get

ert = Yt − JtZ
s
t = µ+ ηvVt−1 +

p
Vt−1εsteVt = Vt − JtZ

v
t = αv + βvVt−1 + σv

p
Vt−1εvt

which implies the functional forms conditional posteriors for (µ, ηv) , (αv, βv) , σ
2
v, and ρ

are the same as in the previous section. Drawing λ is the same as in previous section.

Conditional on the jump sizes, the parameters of the jump distributions are conjugate.

The MCMC algorithm draws from the conditional parameter posteriors

p (µ, ηv|..., J, Z, V, Y ) ∼ N
p (αv, βv|..., J, Z, V, Y ) ∼ N

p
¡
σ2v|..., J, Z, V, Y

¢
∼ IG

p (λ|J) ∼ B
p (µs, ρs|..., J, Zs, Zv) ∼ N

p
¡
σ2s|..., J, Zs, Zv

¢
∼ IG

p (µv|..., J, Z, V, Y ) ∼ G
p
¡
ρ|αv, βv, σ

2
v, V, Y

¢
: Metropolis

and the conditional state variable posteriors

p (Zv
t |..., Zs

t , Jt, Vt, Vt−1) ∼ T N
p (Zs

t |..., Zv
t , Jt, Yt, Vt, Vt−1) ∼ N

p (Jt = 1|..., Zs
t , Z

v
t , Yt, Vt, Vt−1) ∼ Bernoulli

p (Vt|Vt−1, Vt+1,Θ, Y ) : Metropolis.
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For both ρ and the volatilities, Eraker, Johannes, and Polson (2003) use a random walk

Metropolis algorithm, properly tuned to deliver acceptance rates in the 30-60% range. Er-

aker, Johannes, and Polson (2003) provide simulation evidence to document the algorithm’s

ability to estimate the parameters of interest.

5.2 Term Structure Models

One of the great successes of continuous-time asset pricing are term structure models.

These models start with a specification for the instantaneous spot rate, rt, under both

the risk-neutral and objective measures, from which bond prices are computed. These

models can be justified both on equilibrium, see e.g., Cox, Ingersoll, and Ross (1985), and

arbitrage grounds and provide an excellent framework for understanding the cross-section

and dynamics of bond prices.

Term structure models pose a number of difficult problems for estimation. In gen-

eral, the parameters enter the state space model in a highly nonlinear fashion, often non-

analytically. For example, in general affine models, the parameters appear in ODE’s that

can only be solved numerically. Second, most models specify a low-dimensional state vector

that drives all bond prices. When the number of observed yields or bond prices is greater

than the number of state variables, there is a stochastic singularity as the observed yields

never conform exactly to the specified model.

We discuss a number of common models, although our discussion is by no means com-

plete. We refer the reader to papers by Lamoureaux and Witte (2002), Polson and Stroud

(2003), and Bester (2003) for multifactor implementations using MCMC methods.

5.2.1 Vasicek’s Model

The first term structure model we consider is the univariate, Gaussian model of Vasicek

(1977) which assumes that rt solves a continuous-time AR(1) on (Ω,F ,P):

drt =
¡
aPr − bPrrt

¢
dt+ σrdW

r
t (P) ,

where W r
t (P) is a standard Brownian motion.13 Assuming a general, “essentially affine”

risk premium specification, (see the review paper of Dai and Singleton (2003) for details),

13We note that MCMC easily can accomodate a model of the form in Duarte (2002) which has a nonlinear
drift under P but a linear drift under Q.
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the spot rate evolves under the equivalent martingale measure Q via

drt =
¡
aQr − bQr rt

¢
dt+ σrdW

r
t (Q)

where W r
t (Q) is a standard Brownian motion on (Ω,F ,P). We label ΘQ =

¡
aQr , b

Q
r

¢
and ΘP =

¡
aPr , b

P
r , σr

¢
. To avoid any confusion, we explicitly label P and Q measure

parameters. Given the risk premium specifications, the price of a zero coupon, default-free

bond maturing at time τ is

P (rt, τ) = EQ
t

h
e−

R t+τ
t rsds

i
= exp

¡
β
¡
aQr , b

Q
r , σr, τ

¢
+ βr

¡
bQr , σr, τ

¢
rt
¢

where the loading functions are known in closed form:

βr
¡
bQr , σr, τ

¢
=

1

bQr

³
e−b

Q
r τ − 1

´
β
¡
aQr , b

Q
r , σr, τ

¢
=

1

2

"
σ2r¡
bQr
¢2 +−aQrbQr

# ¡
τ − βr

¡
bQr , σr, τ

¢¢
− σ2r
4bQr

βr
¡
bQr , σr, τ

¢2
.

We assume that a there exist a panel of zero coupon, continuously-compounded yields

Yt = [Yt,τ1 , ..., Yt,τk ] where Yt,τ = − log (P (Θ, rt, τ)) and the maturities are τ = τ 1, ..., τn.14

In this model, if the parameters are known, the spot rate is observable from a single yield.

If four yields are observed, the yields can be inverted to compute aQr , b
Q
r , σr and rt without

error, in much the same way volatility is often “implied” from option prices in the Black-

Scholes model.

To break this stochastic singularity, it is common to add an additive pricing error:15

Yt = β
¡
aQr , b

Q
r , σr, τ

¢
+ βr

¡
bQr , σr, τ

¢
rt + εt

rt+1 = rt + aPr + bPrrt + σrε
r
t+1

where, for notational simplicity, we relabel Yt,τ as the log-bond prices, εrt ∼ N (0, 1) is
standard normal, and εt ∼ N (0,Σε) is the vector of pricing errors. Since the spot rate

evolution is Gaussian, an alternative is to use the exact transitions for the spot rate:

rt+1 = rte
−bPr +

³
1− e−b

P
r∆
´ aPr
bPr
+

Z t+1

t

e−b
P
r(t−s)σrdW r

t (P) .

14If discretely compounded bond yields are observed, they can be converted from the discount basis to
continuously compounded rates. If par rates or swap rates are observed, it is common to bootstrap these
rates using interpolation, if necessary, to obtain zero coupon bond prices.
15An alternative justification, which is also plausible, is that the model is misspecified and the pricing

error captures some of this misspecification.
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For parameters typically estimated from data and for common time-intervals such as daily

or weekly, the discretization bias is negligible.

Before we discuss MCMC estimation, we provide a brief and informal discussion of

parameter identification. Given our risk premium assumptions, it is clear that aQr and bQr
are identified solely from the cross-section of bond prices, aPr and b

P
r are identified solely by

the dynamics of the short rate, and σr is identified jointly from the cross-section of bond

prices and the dynamics of the short rate. The average slope and curvature of the yield

curve determine the risk premium parameters, as they are assumed to be constant over

time. The parameter a
Q

r enters linearly into β
¡
aQr , b

Q
r , σr, τ

¢
, and thus it plays the role of

a constant regression parameter. It controls the average long run level of the yield curve.

Since
¡
aPr , b

P
r

¢
do not appear in the bond yield expressions, they enter only as regression

parameters in the state evolution. While easy to estimate in principle, interest rates are

very persistent which implies that long time series will be required to accurately estimate

the drift.

Finally, σr enters both in the yields and the dynamics. In principle, either the dynamics

of the short rate or the cross-section should identify this parameter as it enters linearly

in the bond yields or as a variance parameter in the regression. However, recent research

indicates that yield-based information regarding volatility is not necessarily consistent with

information based on the dynamics of the spot rate, a time-invariant version of the so-

called unspanned volatility puzzle (see, Collin-Dufresne and Goldstein (2002) or Collin-

Dufresne, Goldstein and Jones (2003)). This implies that it may be difficult to reconcile

the information regarding spot rate volatility from yields and the dynamics of spot rates.

Again, as in the case of Black-Scholes implied volatility, this is not a problem with the

model or an estimation scheme per se, rather it is indicative of a sort of misspecification

encountered when applying these models to real data.

For the objective measure parameters, we choose standard conjugate priors,
¡
aPr , b

P
r

¢
∼

N and σr ∼ IG. One might also want to impose stationarity, that is, bPr > 0, which

could be imposed by using a truncated prior or just by removing any draws in the MCMC

algorithm for which bPr < 0. We assume that Σε ∼ IW and that
¡
aQr , b

Q
r

¢
∼ N . The

posterior distribution is p (Θ, r|Y ) where Θ =
¡
aPr , b

P
r , a

Q
r , b

Q
r ,σr,Σε

¢
, r = (r1, ..., rT ), and
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Y = (Y1,..., YT ). The MCMC algorithm consists of the following steps:

p
¡
aPr , b

P
r |σr, r

¢
∼ N

p
¡
aQr |σr,Σε, r, Y

¢
∼ N

p
¡
Σε|aQr , bQr , σr, r, Y

¢
∼ IW

p
¡
bQr |aQr , σr,Σε, r, Y

¢
: RW Metropolis

p
¡
σ2r|aPr , bPr , aQr , bQr ,Σε, r, Y

¢
: Metropolis

p
¡
r|aPr , bPr , aQr , bQr , σr,Σε, Y

¢
: FFBS.

The updates for aPr , b
P
r , a

Q
r , and Σε are conjugate and the spot rates can be updated in a

single block using the FFBS algorithm developed earlier in Section 5.1.4. It is not possible

to directly draw interest rate volatility and the risk-neutral speed of mean reversion as

the conditional posterior distributions are not standard due to the complicated manner in

which these parameters enter into the loading functions. Since bQr only appears in the yield

equation, it can be difficult to generate a reasonable proposal for independence Metropolis,

and thus we recommend a fat-tailed random walk Metropolis step for bQr . The Griddy

Gibbs sampler would be also be appropriate. For σr, the conditional posterior is given as

p
¡
σ2r|aPr , bPr , aQr , bQr ,Σε, r, Y

¢
∝ p

¡
r|aPr , bPr , σr

¢
p
¡
Y |aQr , bQr , σr,Σε, r

¢
p
¡
σ2r
¢

which is not a recognizable distribution. The Griddy Gibbs sampler, randomwalk Metropo-

lis or independence Metropolis are all possible for updating σPr . For independence Metropo-

lis since, as a function of σr, p
¡
Y |aQr , bQr , σr,Σε, r

¢
is also not a recognizable, one could

propose from p
¡
r|aPr , bPr , σPr

¢
p
¡
σPr
¢
∼ IG and accept/reject based on the yields. If the in-

formation regarding volatility is consistent between the spot rate evolution and yields, this

approach will work well. As in all cases when Metropolis is applied, we recommend trying

multiple algorithms and choosing the one that has both good theoretical and empirical

convergence properties.

5.2.2 Vasicek with Jumps

A number of authors argue that interest rates contain a jump component, in addition to the

usual diffusion components. These jumps are often generated by news about the macro-

economy and the jumps arrive at either deterministic or random times. For simplicity, we

focus on the latter case, although Piazzesi (2004) addresses the former case. Jumps occur-

ring at predictable times are in fact easier to deal with as there is no timing uncertainty,
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and in discrete-time, the jump component consists of a random size multiplied by a dummy

variable indicating the announcement date.

Consider an extension of Vasicek’s (1977) model to incorporate jumps in the short rate:

drt =
¡
aPr − bPrrt

¢
dt+ σrdW

r
t (P) + d

 NP
tX

j=1

ZP
j


where NP

t is a Poisson process with intensity λPr and ZPj ∼ N
³
µPJ ,

¡
σPJ
¢2´
. Assuming

essentially affine risk premiums for the diffusive risks and constant risk premiums for the

risks associated with the timing and sizes of the jumps, the risk neutral evolution of rt is

drt =
¡
aQr − bQr rt

¢
dt+ σrdW

r
t (Q) + d

 NQ
tX

j=1

ZQ
j


whereW r

t (Q) is a standard Brownianmotion,N
Q
t has intensity λ

Q, and ZQj ∼ N
³
µQJ ,

¡
σQJ
¢2´
,

all of which are defined on Q.16 Jumps affect all of the risk-neutral moments and provide
three additional parameters for matching term structure shapes.

This model delivers exponential affine bond prices

P (rt, τ) = EQ
t

h
e−

t+τ
t rsds|rt

i
= exp

¡
β
¡
ΘQ, σr, τ

¢
+ βr

¡
bQr , τ

¢
rt
¢

where ΘQ =
¡
aQr , b

Q
r , λ

Q, µQJ , σ
Q
J

¢
and the loading functions solve the system of ODEs:

βr
¡
bQr , τ

¢
dτ

= 1 + βr
¡
bQr , τ

¢
bQr

dβ
¡
ΘQ, σr, τ

¢
dτ

= βraQr +
1

2
(σrβ

r)2 + λQ
·
exp

µ
βrµQJ +

1

2

¡
βrσQJ

¢2¶− 1¸
subject to βr(bQr , 0) = β

¡
ΘQ, σr, 0

¢
= 0. We have suppressed the dependence of βr

¡
bQr , τ

¢
on bQr and τ for notational simplicity on the right hand-side of the second ODE. It is not

possible to analytically solve these ordinary differential equations, although it is straight-

forward to solve them numerically.

16These are, of course, very restrictive assumptions on the market prices of risk, especially for the jump

components. Provided we allow for affine dynamics under Q, we could specify any dynamics under P. This
could include nonlinear drifts, state dependent jump intensities or state dependent jump distributions.
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Time-discretizing the model gives:

Yt,τ = β
¡
ΘQ, σr, τ

¢
+ βr

¡
bQr , τ

¢
rt + εt

rt+1 = rt + aPr − bPrrt + σrε
r
t+1 + ZPt+1J

P
t+1

εrt ∼ N (0, 1), εt ∼ N (0,Σε) is the vector of pricing errors, ZPt ∼ N
³
µPJ ,

¡
σPJ
¢2´
, and

Jt = 1 with P−probability λP. With jumps, it is important to explicitly address the

issue of potential biases arising from the time-discretization. Empirical estimates indicate

that jumps in interest rates occur more often than jumps in equity returns (Johannes

(2003)). This implies that a simple Bernoulli approximation to the Poisson process could be

inaccurate and stresses the importance of using high-frequency data. For the U.S. Treasury

market, daily data is available for the past twenty years and reliable daily LIBOR/swap

data is available since 1990.

The posterior distribution is defined over the objective measure jump parameters, ΘPJ =¡
λPr , µ

P
J , σ

P
J

¢
, objective measure diffusive parameters, ΘP

D =
¡
aPr , b

P
r , σr

¢
, the risk-neutral

parameters, ΘQ, and the latent state variables, (r, Z, J) where r, Z, and J are vectors

containing the spot rates, jump sizes and jump times. For ΘP we assume conjugate priors:

aPr , b
P
r , and µ

P
J are normal, σ

P
J and σr are inverted Gamma and λ

P
r is Beta. For simplicity, we

assume the same functional forms for the corresponding risk-neutral parameters. Clifford-

Hammersley implies that

p
¡
Σε,Θ

P
D|ΘPJ ,ΘQ, r, Z, J, Y

¢
p
¡
ΘPJ |ΘPD,ΘQ, r, Z, J, Y

¢
p
¡
ΘQ|ΘP

D,Θ
P
J , r, Z, J, Y

¢
p
¡
r|ΘP

D,Θ
P
J ,Θ

Q, Z, J, Y
¢

p
¡
Z|ΘP

D,Θ
P
J ,Θ

Q, r, J, Y
¢

p
¡
J |ΘP

D,Θ
P
J ,Θ

Q, r, Z, Y
¢

are complete conditionals. We discuss each of these in turn.

The first portion of the MCMC algorithm updates Σε,Θ
P
D and ΘP

J . We factor these

distributions further via Clifford-Hammersley and sequentially draw
¡
aPr , b

P
r

¢
, σr, Σε, λ

P
r ,

and
¡
µPJ , σ

P
J

¢
. Since aPr , b

P
r , and Θ

P
J do not appear in the ODE’s, their conditional posteriors

simplify since, conditional on r, the parameter posteriors are independent of Y . To update
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ΘPD and ΘPJ , we sequentially draw

p
¡
aPr , b

P
r |σr, r, Z, J

¢
∼ N

p
¡
λPr |J

¢
∼ B

p
¡
Σε|σr,ΘQ, r, Z, J, Y

¢
∼ IW

p
¡
µPJ , σ

P
J |ΘP

D, Z, J
¢
∼ N − IW

p
¡
σr|aPr , bPr ,ΘQ,Σε, r, Z, J, Y

¢
∼ Metropolis.

The updates for aPr , b
P
r are standard as, conditional on the jump times and sizes, they enter

as regression parameters:

rt+1 − rt − ZPt+1J
P
t+1 = aPr − bPrrt + σrε

r
t+1.

The conditional posteriors for the jump intensity and parameters of the jump size distri-

bution are similar to those in Section 5.1.3. The conditional posterior for σr is the same

as in the previous section, as this parameter appears in the bond prices and the structural

evolution of spot rates.

Next, we update the risk premium parameters. aQr and λQ enter linearly and, at least

for, aQr , a normal prior generates a normal conditional posterior. For λ
Q, we need to impose

positivity, and thus we assume a Beta prior. This has the flexibility to impose that jumps

are rare under Q. For λQ and the other risk premium these parameters, we use a random

walk Metropolis algorithm. This implies the following steps:

p
¡
aQr |σr, bQr , λQ, µQJ , σ

Q
J ,Σε, r, Y

¢
∼ N

p
¡
bQr , λ

Q, µQJ , σ
Q
J |aQr , σr,Σε, r, Y

¢
: RW Metropolis.

The final stage updates the state variables. In this model, we are able to draw each

vector of state variables in blocks

p
¡
r|ΘP

D,Θ
P
J ,Θ

Q,Σε, Z, J, Y
¢

: FFBS

p
¡
Z|ΘP

D,Θ
P
J , r, J

¢
∼ N

p
¡
J |ΘPD,ΘP

J , r, Z,
¢
∼ Bernoulli.

The FFBS update for spot rates follows directly from the fact that, conditional parameters,

jump times and jump sizes, the model is a linear, Gaussian state space model. The updates

from J and Z are, conditional on r, the same as in Section 5.1.3.
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The jump-diffusion model can be easily generalized to multiple dimensions. Assume

that rt = α+ α0xXt where the N−vector of state variables, Xt, solves

dXt =
¡
APx −BP

xXt

¢
dt+ σxdW

r
t (P) + d

 NP
tX

j=1

ZPj

 ,

where APx ∈ RN , σx, BP
x ∈ RN×N , ΣPx = σ0xσx, W

r
t (P) is a N−dimensional standard

Brownian motion, and ZPj ∈ RN ∼ N
¡
µPJ ,Σ

P
J

¢
, and for simplicity we assume that the jump

arrivals are coincident across the state variables. In the case of no jumps, this models takes

the form of a multi-factor Gaussian model.

It is common to assume there are three states, which are typically identified as the short

rate, the slope of the curve, and the curvature. This would allow for correlated jumps and

generates some potentially interesting issues. For example, while most would agree that

the short rate jumps (as it is related to monetary policy), but if one finds that the slope

factor also jumps, does this imply that the FED influences the long end of the yield curve?

These and other issues can be addressed in a multivariate jump model.

5.2.3 The CIR model

Gaussian models have three potentially problematic assumptions: (1) interest rate volatility

is constant, (2) interest rate increments are normally distributed, and (3) the spot rate can

be negative. As rt is typically assumed to be a nominal rate, this is an unattractive feature.

The classic square-root model of Cox, Ingersoll and Ross (1985) corrects these shortcomings.

CIR assume the spot rate follows a Feller (1951) square root process

drt =
¡
aPr − bPrrt

¢
dt+ σr

√
rtdW

r
t (P)

where W r
t is a Brownian motion under the objective measure, P. As rt falls to zero,

√
rt

falls to zero, effectively turning off the randomness in the model. If bPr > 0 and together

the parameters satisfy the Feller condition, the drift will pull rt up from low rates. Under

regularity, this model generates a form of time-varying volatility, (slightly) non-normal

increments and positive interest rates.

Assuming essentially affine risk premiums, the evolution under Q is

drt =
¡
aQr − bQr rt

¢
dt+ σr

√
rtdW

r
t (Q)
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and the price of a zero coupon bond maturing at time τ i is

P (rt, τ) = exp
¡
β
¡
aQr , b

Q
r , σr, τ

¢
+ βr

¡
bQr , σr, τ

¢
rt
¢
,

where again we label ΘQ =
¡
aQr , b

Q
r

¢
and ΘP =

¡
aPr , b

P
r , σr

¢
. The loading functions are given

by:

βr
¡
bQr , σr, τ

¢
=

2 (1− exp (γτ))¡
γ + bQr

¢
(exp (γτ)− 1) + 2γ

β
¡
aQr , b

Q
r , σr, τ

¢
=

aQr
σ2r

"
2 ln

Ã
2γ¡

bQr + γ
¢
(exp (γτ)− 1) + 2γ

!
+
¡
bQr + γ

¢
τ

#

where γ =
h¡
bQr
¢2
+ 2σ2r

i1/2
.

Given the usual observed panel of yields, and assuming a time-discretization17 of the

interest rate increments, the state space is given by:

Yt,τ = β
¡
aQr , b

Q
r , σr, τ

¢
+ βr

¡
bQr , σr, τ

¢
rt + εt

rt+1 = rt + aPr + bPrrt + σr
√
rtε

r
t+1.

The state space is still linear and conditionally Gaussian in the states, but the spot rate

evolution has conditional heteroskedasticity.

The posterior distribution is given by p
¡
ΘP,ΘQ, r|Y

¢
and the parameter component of

the MCMC algorithm we consider is similar to the one in the previous section. For priors,

we can choose, for example,
¡
aPr , b

P
r

¢
∼ N , σr ∼ IG, Σε ∼ IW,

¡
aQr , b

Q
r

¢
∼ N . The MCMC

algorithm consists of the following steps:

p
¡
aPr , b

P
r |σr, r

¢
∼ N

p
¡
Σε|aQr , bQr , σr, r, Y

¢
∼ IW

p
¡
aQr , b

Q
r |σr,Σε, r, Y

¢
: RW Metropolis

p
¡
σ2r|aPr , bPr , aQr , bQr ,Σε, r, Y

¢
: Metropolis

p
¡
r|aPr , bPr , aQr , bQr , σr,Σε, Y

¢
: Metropolis.

17As in the Vasicek model, the exact transitions of the of the interest rate are known and are given by

p (rt+1|rt) ∝ e−u−v
³u
v

´ q
2

Iq

³
2 (uv)1/2

´
where u = crte

−br , v = crt+1 and c = 2br
σ2r(1−e−br ) . Lamoureux and Witte (2001) discretize the state space

and implement a “Griddy” Gibbs sampler. An attractive alternative to this would be to use a Metropolis
algorithm to update the states.
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All of these are familiar from the previous sections, with the exception of r. Since the

spot rates appear in the conditional variance of the spot rate evolution, the Kalman filter

and thus the FFBS algorithm does not apply. To update the spot rates, independence or

random walk is required.

It is straightforward to extend this algorithm to multi-factor square-root models. Lam-

oureaux and Whitte (2002) consider a two-factor square-root model and use an alternative

approach based on the Griddy-Gibbs sampler for all of the parameters and the state vari-

ables. This avoids discretization bias, but is extremely computationally demanding. Polson,

Stroud, and Muller (2002) analyze a square-root stochastic volatility model using Treasury

rates. Bester (2003) analyzes multi-factor affine and string models using MCMC.

5.3 Regime Switching Models

We first considered the Black-Scholes model, a model with a constant expected return and

volatility. In the sections that followed, we considered models that relaxed this constant

parameter specification, allowing the expected return and volatility to vary over time. In

those models, expected returns or volatility were modeled as diffusions or jump-diffusions,

where the jump component was i.i.d. In this section, we consider an alternative: the drift

and diffusion are driven by a continuous-time, discrete state Markov Chain. The models are

commonly called regime-switching models, Markov switching models or Markov modulated

diffusions.

The general form of the model is

dSt = µ (Θ,Xt, St) dt+ σ (Θ, Xt, St) dWt

where Xt takes values in a discrete space Xt = x1, ..., xk with transition matrix Pij (t).

Θ = (Θ1, ...,ΘJ) . Intuitively, if the process is in state i, the process solves

dSt = µ (Θ, i, St) dt+ σ (Θ, i, St) dWt.

Common specifications assume the drift and diffusion coefficients are parametric functions

and the parameters switch over time. In this case, it is common to write the model as

dSt = µ (ΘXt, St) dt+ σ (ΘXt, St) dWt.

Term structure models with regime-switches are analyzed in Lee and Naik (1994), Landen

(2000), Dai and Singleton (2002), Ang and Bekaert (2000), and Gray (1996). For example,
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an regime-switching extension of the Vasicek model assumes that the long run mean and

the volatility can switch over time:

drt = κr (θXt − rt) dt+ σXtdBt

There has been an enormous amount of theoretical and practical work on regime-

switching models using MCMC methods. For example, see the monograph by Kim and

Nelson (2002) and the earlier papers by Carlin and Polson (1992) and Chib (1996, 1998).

We provide a general algorithm, based on Scott (2002) who adapts the FFBS algorithm to

the case of regime-switching models. Time discretized, we consider the following model:

St = µ (ΘXt, St−1) + σ (ΘXt, St−1) εt.

Note that we use the standard notation from discrete-time models where the time index

on the Markov state is equal to the current observation. The discrete-time transition

probabilities are

Pij = P (Xt = i|Xt−1 = j)

and we assume, apriori, that the transition functions are time and state invariant. The

joint likelihood is given by

p (S|X,Θ) =
TQ
t=1

p (St|St−1, Xt−1,Θ)

where p (St|St−1, Xt−1,Θ) = N
¡
µ
¡
ΘXt−1 , St−1

¢
, σ2

¡
ΘXt−1, St−1

¢¢
.

Clifford-Hammersley implies that the complete conditionals are given by p (Θ|X,S, P ),

p (P |X,S,Θ), and p (X|P, S,Θ). We do not directly address the first step. Conditional
on the states and the transition probabilities, updating the parameters is straightforward.

Conditional on the states, the transition matrix has a Dirchlet distribution, and updating

this is also straightforward. To update the states, define the following quantities

πt (Xt = i|Θ) = p (Xt = i|Θ, S1:t)eπt (Xt = i|Θ) = p (Xt = i|Θ, S1:T ) .

The first distribution is the filtering distribution of the states and the second the smoothing

distribution of the states. The updating algorithm is a discrete probability modification of

the FFBS algorithm. We first forward filter the states, given the forward filtering distribu-

tion, we backward sample. The forward matrices are given by: P 1, ..., P T , where P t =
¡
P t
ij

¢
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is P t
ij = p (Xt−1 = i,Xt = j|Θ, S1:t). To compute the forward matrix, note the recursive

structure of the filtering density:

P t
ij ∝ p (St, Xt−1 = i,Xt = j|Θ, S1:t−1)
∝ p (St|Xt = j,Θ) p (Xt = j|Xt−1 = i,Θ)πt−1 (Xt−1 = i|Θ) .

This provides a recursive solution for the forward matrices, P t
ij for t = 1, ..., T . This is

similar to the Kalman filter in Gaussian state space models. Next, we iterate backward in

time by finding eP t
ij = p (Xt−1 = i,Xt = j|Θ, S1:T ) .

The formula for the backward matrices is:

eP t
ij ∝ P t

ij

eπt (Xt = j|Θ)
πt (Xt = j|Θ)

which again is computed backward in time for t = T, .., 1.

An important component of regime switching models is the prior distribution. Regime

switching models (and most mixture models) are not formally identified. For example, in all

regime switching models, there is a labeling problem: there is no unique way to identify the

states. A common approach to overcome this identification issue is to order the parameters.

6 Sequential Inference: Filtering

We now turn to the issue of filtering: estimating latent state based on contemporaneously

available data. Throughout, we assume the parameters are known and we discuss various

approaches to relaxing this assumption. Of primary interest are the filtering distributions,

p (Xt|Y t), as a function of t, and the forecasting distribution, p (Xt+1|Y t). These are closely

related to the likelihood p (Yt|Xt) and the state transition, p (Xt+1|Xt).

We assume that prices are observed at a fixed observation frequency, for simplicity

normalized to unit length. Thus the researcher observes S1:t = (S1, ..., St). From this data,

the goal is to estimate the latent variables, which we denote Xt. To understand the issues

involved in the filtering problem, we write the state space model in its integrated form:

St+1 = St +

Z t+1

t

µs (Ss, Fs) ds+

Z t+1

t

σs (Ss−, Fs−) dW p
s +

X
t<τn≤t+1

Zs
n (34)

Ft+1 = Ft +

Z t+1

t

µf (Fs) ds+

Z t+1

t

σf (Fs−) dW x
s +

X
t<τn≤t+1

Zf
n . (35)
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Our goal is to solve the filtering problem, the computation of the sequence of conditional

densities, p (Xt|S1:t), for t = 1, ...T . Again, Xt contains the factor states, jump times and

jump sizes. This density can be represented via Bayes rule as:

p (Xt+1|S1:t+1) =
p (St+1|Xt+1, St) p (Xt+1|S1:t)

p (St+1|S1:t)
(36)

where we label p (St+1|Xt+1, St) as the likelihood (the distribution of observed prices con-

ditional on latent states and past prices), p (Xt+1|S1:t) , the predictive distribution of latent
states, and p (St+1|S1:t) , the predictive distribution of prices. If all of these densities could
be computed, then the filtering problem could be solved. Unfortunately, computing these

densities is difficult as none are known analytically, and they are difficult to compute with

brute force. For example,

p (Xt+1|S1:t) =
Z

p (Xt+1|Xt) p (Xt|S1:t) dXt

is a high dimension integration problem that cannot be solved analytically.

The problem of filtering continuous-time models with discrete-time observations must

address two separate issues. First, suppose that we could directly evaluate the likelihood

p (St+1|Xt+1, St) and the state evolution p (Xt+1|Xt). In this case, the filtering problem

becomes an issue of how to update from one period’s filtering density, p (Xt|S1:t) , to the next
period’s, p (Xt+1|S1:t+1). This problem is essentially a problem of estimating the integral,R
p (Xt+1|Xt) p (Xt|S1:t) dXt and is solved by a discretization of the filtering density or by

directly using Monte Carlo methods. Second, it is not possible to numerically evaluate

the likelihood, p (St+1|Xt+1, St), and how to simulate the state evolution p (Xt+1|Xt) when

the prices and latent variables arise from continuous-time models. To solve this step, one

typically time-discretizes the model and simulates the state variables. Both of these steps

can be computationally intensive, so it is important to develop methods that are both

accurate and computationally efficient.

We now describe two Monte Carlo approaches for filtering and sequential parameter

estimation: the particle filter and the practical filter.

6.1 The Particle Filter

A state space model is built from the likelihood function, p (St+1|Xt+1, St), and the state

evolution, p (Xt+1|Xt). The particle filter requires only two assumptions:
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(A1) That the state evolution can be exactly simulated, that is, one can obtain a random

draw from the distribution p (Xt+1|Xt),

(A2) That the likelihood can be exactly evaluated as a function of Xt and St. That is,

given (Xt+1, St), one can functionally evaluate (Xt+1, St) 7→ p (St+1|Xt+1, St).

Under these assumptions, the particle filter delivers an estimate of the true filtering density,

p (Xt|S1:t), which converges (as the number of particles increases) to the true filtering
density. We now describe the mechanics of the particle filtering algorithm. The particle

filter was developed in Gordon, Salmond, and Smith (1993) or Kitagawa (1994, 1996).

For an overview of particle filtering methods, see edited volume by Doucet, deFreitas and

Gordon (2001). Pitt and Shephard (2000) also provide a short overview, describe some

common problems when applying the particle filter, and offer an extension that is important

for practical applications.

The particle filter approximates the filtering density by a discrete probability distrib-

ution. The distribution p (Xt|S1:t) is approximated by a set of particles,
n
X
(i)
t

oN
i=1

with

probability weights
n
π
(i)
t

oN
i=1
, namely

pN
¡
Xt|St

¢
=

NX
i=1

δ
X
(i)
t
πit.

Here pN refers to an estimated density with N particles and δ is the Dirac function. Once

the distribution is discretized, integrals become sums and estimates of the filtering and

predictive densities are

pN
¡
Xt+1|St

¢
=

NX
i=1

p
³
Xt+1|X(i)

t

´
πit ≈

Z
p (Xt+1|Xt) p

¡
Xt|St

¢
dXt.

When combined with the conditional likelihood, the filtering density at time t+1 is defined

via the recursion:

pN
¡
Xt+1|St+1

¢
∝ p (St+1|Xt+1, St)

NX
i=1

p
³
Xt+1|X(i)

t

´
πit.

This recursion is just Bayes rule and show how to mechanically translate a particle rep-

resentation of pN (Xt|S1:t) into pN (Xt+1|St+1). However, the key to the particle filtering
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algorithm is a mechanism to generate samples from pN (Xt+1|S1:t+1) in an efficient and
accurate manner. That is, the algorithm requires a method to propagate the old particles

and probabilities
n
X
(i)
t , π

(i)
t

oN
i=1
into new particles and probabilities

n
X
(i)
t , π

(i)
t

oN
i=1
. Naive

methods of generating samples often lead to degeneracies: the algorithm places all the

probabilities on a few particles and gets stuck.

There are a number of different approaches that can be used to update or propagate

the particles: the weighted bootstrap (also known as the sampling/importance sampling

(SIR) algorithm), rejection sampling and MCMC. Sampling resampling takes X i
t and sim-

ulates the state forward using the transition kernel, p (Xt+1|Xi
t), to get X

i
t+1, and the

reweights these samples according to p
¡
Yt+1|X i

t+1

¢
. Rejection sampling takes a draw fromPN

i=1 π
i
tp (Xt+1|Xi

t) and then accepts it with probability proportional to p
¡
Yt+1|X i

t+1

¢
. This

requires that p (Yt+1|Xt+1) is bounded as a function of Xt+1. Finally, one can also use the

independence Metropolis algorithm. In this case, one proposes from
PN

i=1 π
i
tp (Xt+1|X i

t)

and then accepts/rejects based on p (Yt+1|Xt+1). Doucet, deFreitas and Gordon (2001)

provide detailed descriptions of these approaches and examples of how the different ap-

proaches perform in different settings. We describe the weighted bootstrap/SIR algorithm

(Smith and Gelfand (1992), Gordon, Salmond and Smith (1993)) for its generality and

simplicity. A variant known as the auxiliary particle filter, see Pitt and Shephard (1999),

often provides large efficiency gains and is popular for applications.

To understand the mechanics of the weighted bootstrap, we can view pN (Xt+1|S1:t) as
the prior and p (St+1|Xt+1, St) as the likelihood, and by Bayes rule the updated distribution

is given by

pN
¡
Xt+1|St+1

¢
∝ p (St+1|Xt+1, St)| {z }

Likelihood

XN

i=1
p
³
Xt+1|X(i)

t

´
πit| {z }

Prior

.

Generating the next state is straightforward as we assumed the state transition can be ex-

actly sampled. The first step is to simulate X(i)
t+1 from the latent state evolution by drawing

from the distribution p
³
Xt+1|X(i)

t

´
. Given the updated states,

n
X
(i)
t+1

oN
i=1
, the weighted

bootstrap then re-samples these states
n
X
(i)
t+1

oN
i=1

with weights πit+1 ∝ p
³
St+1|X(i)

t+1, St
´
.

For clarity, we state the algorithm in steps:

1. Given
n
X
(i)
t , π

(i)
t

oN
i=1

, simulate the latent state vector forward using the transition

equation. That is, draw X
(i)
t+1 ∼ p

³
Xt+1|X(i)

t

´
.
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2. Evaluate the likelihood function at the new state, p
³
St+1|X(i)

t+1

´
, and set

π
(i)
t+1 =

p
³
St+1|X(i)

t+1

´
XN

i=1
p
³
St+1|X(i)

t+1

´ .
3. Finally, resample N particles with replacement from the multinomial distribution ofn

X
(i)
t+1

oN
i=1
with probabilities

n
π
(i)
t+1

oN
i=1
.

Gordon, Salmond, and Smith (1993), using an argument from Smith and Gelfand (1992),

show that these resampled draws,
n
X
(i)
t+1

oN
i=1
with probabilities

n
π
(i)
t+1

oN
i=1
provide a sample

from the approximated filtering density, pN (Xt+1|S1:t+1). An advantage of the weighted
bootstrap is that by sampling with replacement according to the probabilities π(i)t+1, the

procedure selectively and over time eliminates states with very low probability by dispro-

portionately resampling states with higher probability. Thus the algorithm propagates high

likelihood states forward while discarding low likelihood states.

The particle filter has other advantages which include its computational efficiency, ease

of implementation and modular nature. Moreover, there are a number of approaches which

exist to improve on the performance of the naive particle filter. One approach, the auxiliary

particle filter, is a straightforward extension of the particle filter and is described in Pitt

and Shephard (1999). The auxiliary particle filter “peaks” forward via an initial resampling

step and then propagates these higher likelihood samples forward with the particle filter.

We use this approach to improve the algorithm’s performance.

There are a number of applications of particle filtering using discrete and continuous-

time finance models. Johannes, Polson and Stroud (2002) provide a general particle filter-

ing approach for multivariate jump−diffusion models. The problem with continuous-time

models is that p (Xt+1|Xt) can rarely be directly sampled. Due to this, Johannes, Polson

and Stroud (2002) follow Pedersen (1995), Elerian, Shephard and Chib (2001) and Eraker

(2001), and simulates a number of additional time steps in between the observed data

points. They show that particle filtering can handle combinations of factors like jumps in

returns, stochastic volatility and jumps in volatility. Particle filtering has also been ap-

plied in a number of discrete-time models (Chib, Nardari and Shephard (2001) and Kim

and Shephard (1998)) and also in diffusion models to construct the likelihood function

(Durham and Gallant (2001), Pitt (2002)). Particle filtering can also, in certain cases, be
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extended to deal with the issue of sequential parameter learning, see, for example, Storvik

(2002). However, particle filters in the presence of parameter uncertainty often degenerate.

6.1.1 Adapting the particle filter to continuous-time models

The previous section shows that the particle filter effectively imposes only two requirements

on the state space model: (1) simulate the latent state variables forward and (2) evaluate the

likelihood function as a function of the latent states and observables In continuous-time

models, both of these are generally impossible to do without approximation. Johannes,

Polson and Stroud (2003) describe how to do this in jump-diffusion models. We outline

the basics of the algorithm here.

To implement the particle filter, we need to simulate the state variables forward and

evaluate the likelihood function. To do this, we use time-discretized solutions to the sto-

chastic differential equations. Assuming that prices are observed at times t and t + 1,

we simulate an additional M − 1 points in between those observations via the Euler-type
discretization

St+ j+1
M
= St+ j

M
+ µs

³
St+ j

M
, Ft+ j

M

´
M−1 + σs

³
St+ j

M
, Ft+ j

M

´
εs
t+ j+1

M

+ Zs
t+ j+1

M

Js
t+ j+1

M

F
(i)

t+ j
M

= F
(i)

t+ j−1
M

+ µf
³
Ft+ j

M

´
M−1 + σf

³
Ft+ j

M

´
εf
t+ j+1

M

+ Zf

t+ j+1
M

Jf

t+ j+1
M

.

where j = 1, ...,M − 1, εst and εxt are mean zero, jointly normally distributed (poten-

tially correlated) with common variance M−1, Js
t
and Jf

t are Bernoulli random variables

with respective intensities λs
³
St−M−1 , Ftt−M−1

´
M−1 and λf (Ft−M−1)M−1. The jump size

distribution remains unchanged.

While we use an Euler-type discretization for the jump-diffusion, there are other dis-

cretization schemes for the diffusion and jump components. For the diffusion components,

higher-order discretization schemes are given in Kloeden and Platen (2003) and can all be

used in our particle filtering approach. Typically these schemes require additional differ-

entiability assumptions which commonly hold in applications. For the jump times, we use

a Bernoulli discretization. If the jumps are Poisson, the inter-arrival times can be exactly

simulated which implies there is no discretization bias in the jump component. When

the jump intensity is state dependent, the Bernoulli approximation is straightforward, but

there are other algorithms available (see, e.g., Glasserman and Merener (2003)).

Given the time discretization, we define the following quantities: FM
t+1 =

³
Ft, ..., Ft+M−1

M

´
,
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SM
t+1 =

³
St+ 1

M
, ..., St+M−1

M

´
, Zk,M

t+1 =
³
Zk
t+ 1

M

, ..., Zk
t+1

´
, and Jk,M

t+1 =
³
Jk
t+ 1

M

, ..., Jk
t+1

´
where

k = s, f . The entire matrix of latent variables is

XM
t+1 =

³
FM
t+1, S

M
t+1, Z

s,M
t+1 , Z

f,M
t+1 , J

s,M
t+1 , J

f,M
t+1

´
.

Not that the latent variables include augmented prices between observations in SM
t and

that the states are simulated up to one-discretization interval before the next observation.

It is on this quantity that we define the particle filter.

Given the time-discretization, we can now modify the particle filter to handle the case

of jump diffusions. Conditional on
n¡

XM
t

¢(i)oN
i=1
, the first stage involves simulating the

state variables forward. To do this, first generate jump times, jump sizes and discretized

Brownian increments. All of these draws are straightforward as they are i.i.d. draws. Feed

the jump times, jump sizes and Brownian increments through the Euler scheme to generate¡
FM
t+1

¢(i)
and

¡
SM
t+1

¢(i)
. This provides the propagated state vector,

n¡
XM

t+1

¢(i)oN
i=1
. Finally,

these updated states are resampled with the appropriate probabilities.

We now provide the details of the algorithm. For simplicity, we first describe it in

the case of no derivative prices and then discuss how to adapt the procedure to deal with

derivatives.

1. Given
n¡

XM
t+1

¢(i)
, π

(i)
t+1

oN
i=1

, simulate the latent state vector and latent prices forward.

This requires the following steps. For j = 1, ...,M − 1, conditional on S(i)t+(j−1)M−1and

F
(i)
t+(j−1)M−1 :

(a) sample Brownian incrementsµ¡
εst+jM−1

¢(i)
,
³
εft+jM−1

´(i)¶
∼ N

Ã
0,M−1

Ã
1 ρ

ρ 1

!!

(b) sample jump sizes from their conditional distributions³
Zs

t+jM−1

´(i)
∼ Πs

µ
S
(i)

t+
(j−1)
M

, X
(i)

t+
(j−1)
M

¶
³
Zf

t+jM−1

´(i)
∼ Πf

µ
F
(i)

t+ (j−1)
M

¶
;
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sample jump times

Js,(i)

t+
j
M

∼ Ber

µ
λs
µ
S
(i)

t+ (j−1)
M

,X
(i)

t+ (j−1)
M

¶
M−1

¶
Jf,(i)

t+
j
M

∼ Ber

µ
λf
µ
F
(i)

t+
(j−1)
M

¶
M−1

¶
;

(c) simulate states and prices forward:

S
(i)

t+ j
M

= S
(i)

t+ j−1
M

+ µs(S
(i)

t+ j−1
M

,X
(i)

t+ j−1
M

)M−1 + σs(S
(i)

t+ j−1
M

,X
(i)

t+ j−1
M

)ε
s,(i)

t+ j
M

+ Zs,(i)

t+
j
M

Js,(i)

t+
j
M

F
(i)

t+ j
M

= F
(i)

t+ j−1
M

+ µx
³
F
(i)

t+ j−1
M

´
M−1 + σx

³
F
(i)

t+ j−1
M

´
εf,(i)
t+

j
M

+ Zf,(i)

t+
j
M

Jf,(i)

t+
j
M

.

2. Collect the new simulated prices and states into

¡
XM

t+1

¢(i)
=

µ¡
FM
t+1

¢(i)
,
¡
SM
t+1

¢(i)
,
³
Zs,M
t+1

´(i)
,
³
Zf,M
t+1

´(i)
,
³
Js,M
t+1

´(i)
,
³
Jf,M
t+1

´(i)¶
.

3. Evaluate the likelihood function at the new state, p
³
St+1|

¡
XM

t+1

¢(i)´
, and set

π
(i)
t+1 =

p
³
St+1|

¡
XM

t+1

¢(i)´XN

i=1
p
³
St+1|

¡
XM

t+1

¢(i)´ .
4. Finally, resample N particles with replacement from the multinomial distribution ofn¡

XM
t+1

¢(i)oN
i=1

with probabilities
n
π
(i)
t+1

oN
i=1
.

Johannes, Polson and Stroud (2003) provide further details into these algorithms. They

provide simulation evidence on the efficacy of the algorithm and provide examples using

both returns and option price data.

6.2 Practical Filtering

In principle, MCMC could be directly applied to the problem of filtering and sequential

parameter estimation. MCMC generates samples from p (Θ,Xt|Y t). Integrating out the

other variables provides estimates of the filtering density, p (Xt|Y t) , and the parameters
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p (Θ|Y t). Repeated application of an MCMC algorithm would provide sequential estimates

of the parameters and states. Unfortunately, this brute force approach is computationally

intractable.

Much like in the case of particle filtering, we can use the structure of the problem to

develop an MCMC-based approximation to the sequential estimation problem. Johannes,

Polson and Stroud (2002) and Polson, Stroud and Mueller (2002) develop an alternative

to particle filtering known as practical filtering. The practical filter relies on the idea of

fixed-lag filtering, for example, as described in Andersen and Moore (1978). The fixed-

lag filter relies on the observation that, when estimating the current filtering distribution,

today’s observations provide little information about states in the distant past, beyond the

information embedded in past returns. Mathematically, this implies that p (Xt−k|Y t+1) ≈
p (Xt−k|Y t), which is likely a reasonable approximation, especially for large k.

The advantage of this method is that it applies in the presence of unknown parameters

and also avoids degeneracies associated with particle filters. The key to the fixed-lag filter

is based on the following identity:

p
¡
Θ,Xt+1|Y t+1

¢
=

Z
p
¡
Θ, Xt+1

t−k+1|Xt−k, Y t+1
¢
p
¡
Xt−k|Y t+1

¢
dXt

t−k

where Xk
j = [Xj , ..., Xk]. In the filtering recursion, there are samples from p (Xt−k|Y t) and

then, for large enough k, p (Xt−k|Y t+1) ≈ p (Xt−k|Y t) as an additional observation at time

t+ 1 has little impact on Xt−k. With these samples, we use MCMC methods to generate
samples from p

¡
Θ, Xt+1

t−k+1|Xt−k, Y t+1
¢
which provides samples from the p (Θ,Xt+1|Y t+1).

If one can efficiently sample from p
¡
Θ,Xt+1

t−k+1|Xt−k, Y t+1
¢
the fixed-lag filter provides a

computational attractive method for sequential parameter learning and state filtering.

In the filtering recursion, assume that we already have samples
n
X
(g)
1:t−k, θ

(g)
o
from

the joint filtering and parameter distribution p(Θ, X1:t−k|Y t). Notice that by the Markov

property we need only store the samples of X(g)
t−k in order to simulate from the next filtering

distribution, using MCMC, namely p(Xt+1
t−k+1|Xt−k, Y t+1). Moreover, if we assume that the

addition of the next data data Yt+1 has little influence on the marginal of the lagged-

filtering distribution p(Xt−k|Y t+1) we can use the samples X(g)
t−k ∼ p(Xt−k|Y t from the

previous iteration as approximate draws fro the next step and generate our next set of

states (Xt+1
t−k+1)

(g) from p(Xt+1
t−k+1|X

(g)
t−k, Y

t+1).

For the sequential parameter updates we notice that many models can exploit a suffi-

cient statistics structure and we only have to keep track of a set of sufficient statistics t(X1:t).
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Hence we generate the next parameter draw θ(g)|Xt−k+1,t+1, Y t+1 ∼ p(Θ|X(g)
1:t−k, Xt−k+1,t+1, Y t+1)

in an iterative fashion with the new state draw (Xt+1
t−k+1)

(g). In the case where there exists

a set of sufficient statistics with reduces to a draw of p(Θ|t(X(g)
1:t−k,Xt−k+1,t+1), Y t+1) and

an update of t(X1:t+1). Storvik (2002) shows how to use sufficient statistics in particle

filtering. Johannes, Polson and Stroud (2003) provide a comparison of the performance of

the particle and practical filter in a stochastic volatility model with jumps.

7 Conclusions and Future Directions

This chapter provides an overview of MCMC methods. We discussed the theoretical un-

derpinnings of the algorithms and provided a tutorial on MCMC methods for a number of

continuous-time asset pricing models. While MCMC methods have been used for a number

of practical problems, we feel there are numerous additional applications in which MCMC

methods will be useful. We now briefly outline a number of future directions.

In many problems, economic theory places constraints on parameter values. For ex-

ample, pricing kernels must be non-negative to exclude arbitrage or equilibrium excess

expected returns must be positive. Bayesian and MCMC methods are ideally suited to

handling these difficult problems, which can be intractable using classical methods. For

example, the paper by Wang and Zhang (2003) shows how to use MCMC to character-

ize the Hansen-Jagannathan distance which imposes positivity on the pricing kernel. As

the authors show, these constrains can have major implications regarding our ability to

discriminate across models.

While a number of authors have analyzed term structure models with Gaussian or

square-root factors using MCMC, there are a number of other areas that need to be an-

alyzed. There is very little work of jump-diffusion term structure models, and MCMC

methods are ideally suited to answering a number of interesting questions. Do multiple

factors jump, or is it only the short rate? Does the market price diffusive and jump risks

differently in the term structure? How do predictable jumps affect the term structure?

On a mechanical level, there are a number of issues that have not been resolved. First,

in many stochastic volatility models (e.g., square-root models), MCMC algorithms update

volatility in a single-state manner. While accurate, it would be preferable to have algo-

rithms to update the volatilities in blocks. If efficient blocking routines were developed,

MCMC algorithms would be less computationally intensive and allow a far wider range

83



of models to be analyzed sequentially. Second, in term structure models, the observable

yields are often take the form of par rates. These models are nonlinear in the states, but it

should be possible to tailor MCMC algorithms to handle this specific form of nonlinearity.

Third, there is little work on sequential inference. The filtering distribution of parameters

and states is far more relevant than the smoothing distribution for financial applications,

it is important to develop and test sequential algorithms.
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