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1 Introduction

Financial assets exhibit wide variation in their historical average returns. For example, during the

period from 1926 to 1999 large stocks earned an annualized average return of 13.0%, whereas long-

term bonds earned only 5.6%. Small stocks earned 18.9% - substantially higher than large stocks.

These differences are statistically and economically significant (Jagannathan and McGrattan (1996),

Ferson and Jagannathan (1996)). Furthermore, such significant differences in average returns are

also observed among other classes of stocks. If investors were rational, they would have anticipated

such differences. Nevertheless, they still preferred to hold financial assets with such widely different

expected returns. A natural question that arises is why this is the case. A variety of asset pricing

models have been proposed in the literature for understanding why different assets earn different

expected rates of return. According to these models difference assets earn different expected returns

only because they differ in their systematic risk. The models differ based on the stand they take

regarding what constitutes systematic risk. Among them, the linear beta pricing models form an

important class.

According to linear beta pricing models, a few economy-wide pervasive factors are sufficient to

represent systematic risk, and the expected return on an asset is a linear function of its factor betas

(Ross (1976), Connor (1984)). Some beta pricing models specify what the risk factor should be

based on theoretical arguments. According to the standard Capital Asset Pricing Model (CAPM)

of Sharpe (1964) and Lintner (1965), the return on the market portfolio of all assets that are in

positive net supply in the economy is the relevant risk factor. Other models specify factors based

on economic intuition and introspection. For example, Chen, Roll and Ross (1986) specify unan-

ticipated changes in the term premium, default premium, the growth rate of industrial production

and inflation as the factors, whereas Fama and French (1993) construct factors that capture the

size and book-to-market effects documented in the literature and examine if these are sufficient to

capture all economy-wide pervasive sources of risk. Campbell (1996) and Jagannathan and Wang

(1996) use innovations to labor income as an aggregate risk factor. Another approach is to identify

the pervasive risk factors based on systematic statistical analysis of historical return data as in

Connor and Korajczyk (1988) and Lehmann and Modest (1988).

In this chapter we discuss econometric methods that have been used to evaluate linear beta

pricing models using historical return data on a large cross section of stocks. Three approaches

have been suggested in the literature for examining linear beta pricing models: (a) Cross sectional

regressions method; (b) Maximum Likelihood (ML) methods; and (c) Generalized method of mo-

ments (GMM). Shanken (1992) and MacKinlay and Richardson (1991) show that the cross-sectional

method is asymptotically equivalent to ML and GMM when returns are conditionally homoscedas-

tic. In view of this, we focus our attention primarily on the cross-sectional regression method since
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it is more robust and easier to implement in large cross sections, and provide only a brief overview

of the use of ML and GMM.

Fama and MacBeth (1973) developed the two pass cross sectional regression method to examine

whether the relation between expected return and factor betas are linear. Betas are estimated using

time series regression in the first pass and the relation between returns and betas are estimated

using a second pass cross sectional regression. The use of estimated betas in the second pass

introduces the classical errors-in-variables problem. The standard method for handling errors in

variables problem is to group stocks into portfolios following Black, Jensen and Scholes (1972).

Since each portfolio has a large number of individual stocks, portfolio betas are estimated with

sufficient precision and this fact allows one to ignore the errors-in-variables problem as being of

second order in importance. One, however, has to be careful to ensure that the portfolio formation

method does not highlight or mask characteristics in the data that have valuable information about

the validity of the asset pricing model under examination. Put in other words, one has to avoid

data snooping biases discussed in Lo and MacKinlay (1990).

Shanken (1992) provided the first comprehensive analysis of the statistical properties of the

classical two-pass estimator under the assumption that returns and factors exhibit conditional ho-

moscedasticity. He demonstrated ed how to take into account the sampling errors in the betas

estimated in the first pass and generalized-least-squares in the second stage cross-sectional regres-

sions. Given these adjustments, Shanken (1992) conjectured that it may not be necessary to group

securities into portfolios in order to address the errors in variables problem. Brennan, Chordia and

Subrahmanyam (1998) make the interesting observation that the errors in variables problem can

be avoided without grouping securities into portfolios by using risk-adjusted returns as dependent

variables in tests of linear beta pricing models, provided all the factors are excess returns on traded

assets. However, the relative merits of this approach as compared to portfolio grouping procedures

has not been examined in the literature.

Jagannathan and Wang (1998) extended Shanken’s analysis to allow for conditional heteroscedas-

ticity and consider the case where the model is misspecified. This may happen even when the model

holds in the population, if the econometrician uses the wrong factors or misses factors in computing

factor betas. When the linear factor pricing model is correctly specified, firm characteristics such

as firm size should not be able to explain expected return variations in the cross section of stocks.

In the case of misspecified factor models, Jagannathan and Wang (1998) showed that the t-values

associated with firm characteristics will typically be large. Hence, model misspecification can be

detected using firm characteristics in cross-sectional regression. Such a test does not require that

the number of assets be small relative to the length of the time series of observations on asset

returns, as is the case with standard multivariate tests of linearity.
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Gibbons (1982) showed that the classical maximum likelihood method can be used to estimate

and test linear beta pricing models when stock returns are i.i.d and jointly normal. Kandel (1984)

developed a straight forward computational procedure for implementing the maximum likelihood

method. Shanken (1992) extended it further and showed that the cross sectional regression approach

can be made asymptotically as efficient as the maximum likelihood method. Kim (1985) developed

a maximum likelihood procedure that allows for the use of betas estimated using past data. Jobson

and Korkie (1982) and MacKinlay (1987) developed exact multivariate tests for the CAPM and

Gibbons, Ross and Shanken (1989) exact multivariate tests for linear beta pricing models when

there is a risk free asset.

MacKinlay and Richardson (1991) show how to estimate the parameters of the CAPM by

applying the GMM to its beta representation. They illustrate the bias in the tests based on

standard maximum likelihood methods when stock returns exhibit contemporaneous conditional

heteroscedasticity and show that the GMM estimator and the maximum likelihood method are

equivalent under conditional homoscedasticity. An advantage of using the GMM is that it allows

estimation of model parameters in a single pass thereby avoiding the error-in-variables problem.

Linear factor pricing models can also be estimated by applying the GMM to their stochastic discount

factor (SDF) representation. Jagannathan and Wang (2001) show that parameters estimated by

applying the GMM to the SDF representation and the beta representation of linear beta pricing

models are asymptotically equivalent.

The rest of the chapter is organized as follows. In Section 2 we set up the necessary notation and

describe the general linear beta pricing model. We discuss in detail the two pass cross sectional

regression method in Section 3 and provide an overview of the maximum likelihood methods in

Section 4 and the GMM in Section 5. We summarize in Section 6.

2 Linear Beta Pricing Models, Factors and Characteristics

In this section we first describe the linear beta pricing model and then provide a brief history of

its development. We need the following notation. Consider an economy with a large collection of

assets. The econometrician has observations on the returns on N of the assets in the economy.

Denote by Rt = [R1
t R2

t · · · RN
t ]′ the vector of gross returns on the N securities at time t,

by ΣR = E [(Rt − E[Rt])(Rt − E[Rt])
′] the covariance matrix of the return vector and by ft =

[f1
t f2

t · · · fK
t ]′ the vector of time-t values taken by the K factors.
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2.1 Linear beta pricing models

Suppose the intertemporal marginal rate of substitution of the marginal investor is a time invariant

function of only K economy-wide factors. Further assume that the returns on the N securities are

generated according to the following linear factor model with the same K factors:

Ri
t = αi + f ′tβi + uit E[uit|ft] = 0, i = 1, . . . , N (1)

where βi is the vector of betas for security i given by

βi = Σ−1
F E[(Ri

t − E[Ri
t])(ft − E[ft])], (2)

and ΣF is the variance matrix of ft given by

ΣF = E
[
(ft − E[ft]) (ft − E[ft])

′] . (3)

Under these assumptions, following Connor (1984), it can be shown that the expected return on

any asset i, i = 1, 2, . . . , N , is given by the linear beta pricing model as follows

E[Ri
t] = a0 + λ′βi, i = 1, . . . , N (4)

where λ is the K × 1 vector of constants. The jth element of λ, λj , corresponds to the jth factor

risk premium - it is the expected return on a portfolio, p, of the N assets which has the property

βp,k = 1 when k = j and βp,k = 0 when k 6= j.

Sharpe (1964), Lintner (1965) and Mossin (1966) developed the first linear beta pricing model,

the standard capital asset pricing model (CAPM). Merton (1973) derived the first linear multi

beta pricing model by examining the intertemporal portfolio choice problem of a representative

investor in continuous time. Long (1974) proposed a related multibeta pricing model in discrete

time. Ross (1976) showed that an approximate version of the linear multi beta pricing model based

on the assumptions that returns had a factor structure, the economy was large and there were no

arbitrage opportunities. Chamberlain and Rothschild (1983) extended Ross’s result to the case

where returns had only an approximate factor structure, i.e., the covariance matrix of asset returns

had only K unbounded eigenvalues. Dybvig (1985) and Grinblatt and Titman (1985) provided

theoretical arguments supporting the view that deviations from exact linear beta pricing may not

be economically important.

2.2 Factor selection

Three approaches have been followed in the literature for choosing the right factors. The first

approach makes use of theory and economic intuition to identify the factors. For example, according
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to the standard CAPM there is only one factor and it is the return on the market portfolio of all

assets in positive net supply. The Intertemporal Capital Asset Pricing Model (ICAPM) of Merton

(1973) identifies one of the factors as the return on the market portfolio of all assets in positive net

supply as in the CAPM. The other factors are those that help predict future changes in investment

opportunities. As Campbell (1993) and Jagannathan and Wang (1996) point out, factors that help

predict future return on the market portfolio would be particularly suitable as additional factors

in an ICAPM setting. The common practice is to use the return on a large portfolio of stocks

as a proxy for the return on the market portfolio, and innovations to macroeconomic variables as

proxies for the other factors, as in Chen, Roll and Ross (1986).

The second approach uses statistical analysis of return data for extracting the factors. Factor

analysis is one of the statistical approaches used. For expositional purposes it is convenient to

rewrite the linear factor model in matrix notation as follows.

Rt = α + Bft + ut (5)

where Rt is the N × 1 vector of date t returns on the N assets, α is the N vector of α′
is, B is the

N × K dimensional matrix of factor betas of the N assets, ft is the K × 1 vector of date t factor

realizations, and ut is the date t linear factor model innovations to the N returns. Let ΣU denote

the diagonal covariance matrix of ut, and ΣF denote the covariance matrix of the factors. The

covariance matrix of asset returns Rt, ΣR, can be decomposed as follows:

ΣR = BΣFB′ + ΣU. (6)

Note that the matrix of factor betas, B, is identified only up to a linear transformation. For

example consider transforming the factors to get P−1ft as a new set of factors and transforming β

to get BP. Then

ΣR = BP(P−1)ΣF(P−1)′P′B′ + ΣU = BΣFB′ + ΣU. (7)

The indeterminacy is eliminated by specifying that the factors are orthogonal along with other

restrictions. For a discussion the reader is referred to Anderson (1984). The parameters B and

ΣU are typically estimated using the maximum likelihood method under the assumption that stock

returns are jointly normal and i.i.d over time. The estimates of B obtained in this way are then

used in econometric evaluation of the linear beta pricing model given in equation (4) by applying

the cross-sectional regression method described in the next section. When returns on the assets in

excess the risk free rate are used, the multivariate test proposed by Gibbons, Ross and Shanken

(1989) is more convenient after grouping securities into portfolios to reduce the cross sectional

dimension. For many interesting applications, such as portfolio performance evaluation and risk
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management, is necessary to have estimates of the factors in addition to the factor betas. There

are several approaches to get estimates of the realized value of the factors. The most common is

the Fama-MacBeth style GLS cross-sectional regression where the returns are regressed on factor

betas obtained through factor analysis. The estimated factors correspond to returns on specific

portfolios of the primitive assets used to estimate the factor betas in the first stage using factor

analysis. For a detailed discussion of factor selection using factor analysis the reader is referred to

Lehmann and Modest (1985).

Chamberlain and Rothschild (1983) showed that, when the covariance matrix of asset returns

has an approximate factor structure with K factors, the eigenvectors corresponding to the K

exploding eigenvalues converge to the factor loadings. Let R denote the N ×T matrix of T returns

on the N assets, Σ̂RT denote the sample analogue of ΣR, yj denote the jth largest eigenvalue of the

N ×N matrix Σ̂RT , j = 1, 2, . . . , K, tj denote the corresponding eigenvector, F = [f1 · · · fT ] denote

the K×T matrix of T observations on the K factors, and B denote the N ×K matrix of the factor

betas of the N assets. Consider the matrix, B̃ with y
1/2
j tj as its jth column, j = 1, 2, . . . , K. Then

it can be shown that B̃B̃′ converges to BB′ almost surely under suitable regularity conditions.

Hence principal component analysis can be used to identify the factor structure. As in the case

of factor analysis discussed earlier, the factors can then be estimated through Fama and MacBeth

(1973) style cross-sectional regression of the returns on the betas.

Connor and Korajczyk (1986) showed that, under suitable regularity conditions, the K × T

matrix that has the first K eigenvectors of the T × T matrix Σ̂RN = 1
N R′R as rows converges

almost surely to F as N → ∞. Note that a precise estimation of the factors requires the number

of securities N to be large. When the number of assets N is much larger than the length of the

time series of return observations T , which is usually the case, the Connor and Korajczyk (1986)

approach that involves computing the eigenvectors of the T × T matrix Σ̂RN is preferable to the

other approaches that are equivalent to computing the eigenvectors of the N × N matrix Σ̂RT .

Connor, Korajczyk and Uhlander (2002) showed that an iterated two-pass procedure that starts

with an arbitrary set of K factors, estimates the factor betas using these factors in the first stage,

and then computes the factors using Fama-MacBeth style cross-sectional regressions in the second

stage ultimately converges to the K realized factor values as the number of asset N becomes large

if returns have an approximate K factor structure and some additional regularity conditions are

satisfied. The basic intuition behind these methods of estimating factors is that, when returns

have an approximate K factor structure, any K distinct well diversified portfolios span the space

of realized values of the K factors as N becomes very large. When the number of assets involved

is very large, the sampling errors associated with the factor estimates, as compared to model

misspecification errors, are of secondary importance and can be ignored.
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The third approach is based on empirical anomalies. Empirical studies in the asset pricing

area have documented several well known anomalies. The size and book to price anomalies are

the more prominent ones among them. Firms that are relatively small and firms with relatively

large book value to market value ratios have historically earned a higher average return after

controlling for risk according to the standard CAPM. Banz (1981), Reinganum (1981) and Keim

(1983) document the association between size and average returns in the cross section. Stattman

(1980), Rosenberg, Reid, and Lanstein (1985) and Chan, Hamao and Lakonishok (1991) document

the relation between book to price ratios and average returns. Schwert (1983) provides a nice

discussion of the size and stock return relation and other anomalies. Berk (1995) forcefully argues

that relative size and relative book to price ratios should be correlated with future returns on

average in the cross section so long as investors have rational expectations. Suppose firms with

these characteristics earn a higher return on average to compensate for some pervasive risk factor

that is not represented by the standard CAPM. Then the return differential between two portfolios

of securities, one with a high score on a characteristic and another that has a low score on the

same characteristic, but otherwise similar in all other respects, would mimic the missing risk factor

provided the two portfolios have similar exposure to other risk factors. Fama and French (1993)

constructed two pervasive risk factors in this way that are now commonly used in empirical studies.

One is referred to as the book to market factor (HML, short for high minus low) and the other

as the size factor (SMB, short for small minus big). Daniel and Titman (1997) present evidence

suggesting that these two risk factors constructed by Fama and French may not fully account for

the ability of size and book to price ratios to predict future returns.

2.3 Characteristics

Theoretical models are abstractions from reality and the beta pricing model is no exception. Hence

it should come as no surprise that empirical studies in the asset pricing area find that most pricing

models are statistically rejected. However, statistical tests that reject model validity by themselves

do not convey much information about what is missing in a model. As a result, the common

practice in empirical studies is to identify firm specific characteristics and macroeconomic variables

that help forecast future returns and create portfolios, based on such predictability, that pose the

greatest challenge to an asset pricing model. Such portfolios, in a way, summarize what is missing

in an asset pricing model.

Two such characteristics, namely the relative firm size and the book to price ratio of a firm,

were discussed earlier. Another important characteristic that has received attention in the empirical

literature is relative strength or momentum. It is typically measured by a score that depends on

the return on an asset relative to other assets in the comparison group. Jegadeesh and Titman
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(1993) show how to construct portfolios that earn apparently superior risk-adjusted returns using

clever trading strategies that exploit momentum, i.e., the tendency of past winners to continue to

win and past losers to continue to lose. Other characteristics that have received attention include

liquidity (Brennan and Subrahmanyam (1996)), earnings to price ratio (Basu (1977)), dividend yield

(Fama and French (1988), and leverage (Bhandari (1988)). In order to estimate the factors, the

econometrician has to decide on the number of factors to be considered. Theoretical models do not

provide much of a guidance on this issue. Hence empirical studies typically examine the sensitivity

of the conclusions to the number of factors used. When factor analysis is used and multivariate

normality of the factors and the residuals is assumed, maximum likelihood methods can be used

to estimate the factor loadings and test whether an exact K-factor structure obtains using the

likelihood ratio test. The reader is referred to Andersen (1984) for further details. Connor and

Korajczyk (1993) show how to relax the exact factor structure assumption in tests for the number

of factors.

3 Cross-Sectional Regression Methods

3.1 Description of the CSR method

In this subsection, we provide a description of the cross-sectional regression estimator originally

employed by Fama and MacBeth (1973) in a slightly different form, and present the Fama-MacBeth

covariance matrix estimator. We will use succinct vector-matrix notation to ease the exposition.

Recall that the N × K matrix of betas or factor loadings is denoted by B = [β1 · · · βN ]′. Then

(2) can be rewritten compactly as

B = E
[
(Rt − E[Rt]) (ft − E[ft])

′]
Σ−1

F . (8)

Next, we define the vector of risk premia

c = [a0 λ′]′ ((K + 1) × 1 vector) (9)

and the matrix

X = [1N B] (N × (K + 1) matrix). (10)

We assume that N > K, as is typically the case in practice. The rank of matrix of X is assumed

to equal K + 1, that is, X is of full rank. The beta representation equation (4) is then concisely

expressed as

E[Rt] = a01N + Bλ = Xc (11)
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and therefore the unknown parameter c can be expressed as

c = (X′X)−1X′E[Rt]. (12)

Standard time-series regression yields

Rt = E[Rt] + B(ft − E[ft]) + ut with E[ut] = 0N and E[utf
′
t ] = 0N×K (13)

as it follows from the definition of B. Thus, using the beta representation (11) we can rewrite

equation (13) as

Rt = a01N + B(ft − E[ft] + λ) + ut. (14)

Equation (14) can be viewed as the model describing the return data generating process.

Suppose that the econometrician observes a time series of length T of security return and factor

realizations, denoted as follows

[
R′

t f ′t
]′

= (R1t, . . . , RNt, f
1
t , . . . , fK

t )′, t = 1, . . . , T. (15)

Some standard econometric assumptions about the dynamics of the preceding time series are in

order. These assumptions will be necessary for the development of the asymptotic theory that fol-

lows. We assume that the vector process [R′
t f ′t ]

′ is stationary and ergodic and that the law of large

numbers applies so that the sample moments of returns and factors converge to the corresponding

population moments.

The CSR testing method involves two steps and for this reason it is also referred to as the

two-pass procedure. In the first step we estimate ΣF and B by the standard sample analogue

estimates

Σ̂FT =
1

T

T∑

t=1

(
ft − fT

) (
ft − fT

)′
where fT =

1

T

T∑

t=1

ft (16)

and

B̂T =

[
1

T

T∑

t=1

(
Rt − RT

) (
ft − fT

)′
]
Σ̂−1

FT where RT =
1

T

T∑

t=1

Rt. (17)

Then, in the second step, for each t = 1, . . . , T we use the estimate B̂T of the beta matrix B and

simple cross-sectional regression to obtain the following ordinary least-squares (OLS) estimates of

c

ĉt = (X̂′
T X̂T )−1X̂′

TRt, t = 1, . . . , T (18)
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where

X̂T = [1N B̂T ] (19)

as suggested by equation (11). The standard Fama-MacBeth estimate of c then is the time-series

average of the T estimates

ĉT =
1

T

T∑

t=1

ĉt = (X̂′
T X̂T )−1X̂′

TRT . (20)

To conduct inference regarding the parameter of interest c, one also needs estimates of the asymp-

totic covariance of the estimator ĉT . Fama and MacBeth (1973) proposed treating the set of the

individual CSR estimates {ĉt : t = 1, . . . , T} as a random sample and therefore estimating the

covariance matrix of
√

T (ĉT − c) by

V̂T =
1

T

T∑

t=1

(ĉt − ĉT )(ĉt − ĉT )′. (21)

The Fama-MacBeth procedure has an intuitive appeal and is rather easy to implement. How-

ever, one has to use caution when using this procedure since it is subject to the well-known errors-

in-variables (EIV) problem. As first pointed out in Shanken (1992), some corrections are required

to ensure the validity of the method.

A more flexible estimate that has been suggested in the literature is the feasible GLS version of

the foregoing estimate. The following notation for the GLS weighting matrix and the corresponding

estimator will be used throughout the section 3. Let Q be a symmetric and positive definite N ×N

matrix and Q̂T be a consistent estimator of Q which is also assumed to be symmetric and positive

definite for all T . Then the feasible GLS estimator of c obtained from the cross-sectional regression

at time t is

ĉt = (X̂′
T Q̂T X̂T )−1X̂′

T Q̂TRt (22)

and therefore the Fama-MacBeth estimator of c is given by

ĉT =
1

T

T∑

t=1

(X̂′
T Q̂T X̂T )−1X̂′

T Q̂TRt = (X̂′
T Q̂T X̂T )−1X̂′

T Q̂TRT . (23)

The subsequent analysis will employ the feasible GLS version of the CSR estimator.

3.2 Consistency and asymptotic normality of the CSR estimator

In this subsection, we address the issues of consistency and asymptotic normality of the two-pass

cross-sectional regression estimator that was described in the previous section. Using the law of
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large numbers and Slutsky’s theorem, it follows from (17) and (16) that X̂T
P−→ X as T → ∞.

Applying the law of large numbers and Slutsky’s theorem once again and using (11) we obtain from

(23) that ĉT converges in probability to (X′QX)−1X′QE[Rt] = (X′QX)−1X′QXc = c. Thus we

have shown the following

Proposition 3.1 The time series average ĉT of the cross-sectional estimates

ĉt = (X̂′
T Q̂T X̂T )−1X̂′

T Q̂TRt, t = 1, . . . , T

where X̂T = [1N B̂T ] is a consistent estimator of c =
[
a0 λ′]′, that is

ĉT
P−→ c as T → ∞. (24)

Next we proceed to address the issue of precision of the estimator ĉT by deriving its asymptotic

distribution. The derivation will require some additional mild assumptions. First we need some

notation. Define

D = (X′QX)−1X′Q (25)

and

h1
t = Rt − E[Rt], h2

t =
[
(ft − E[ft])

′Σ−1
F λ

]
ut and ht = [(h1

t )
′ (h2

t )
′]′. (26)

Clearly E[h1
t ] = 0N and (13) implies E[h2

t ] = 0N . The following assumption will be essential in

the derivation of the asymptotic distribution of the CSR estimator.

Assumption A. The central limit theorem applies to the random sequence ht defined in (26), that

is 1√
T

∑T
t=1 ht converges in distribution to a multivariate normal with zero mean and covariance

matrix given by

Σh =

[
Ψ Γ

Γ′ Π

]

where

Ψ =
+∞∑

k=−∞
E
[
h1

t (h
1
t+k)

′] , Γ =
+∞∑

k=−∞
E
[
h1

t (h
2
t+k)

′] and Π =
+∞∑

k=−∞
E
[
h2

t (h
2
t+k)

′] . (27)

Assumption A is rather mild and can be obtained under standard stationarity, mixing and

moment conditions. Related results can be found, for instance, in Hall and Heyde (1980) and

Davidson (1994). Note that when the time series [R′
t f ′t ]

′ is stationary and serially independent we

have Ψ = E
[
h1

t (h
1
t )

′] = ΣR.

11



We are now in a position to state and prove the theorem that gives the asymptotic distribution

of the CSR estimator. A more general version of this theorem, dealing also with security character-

istics, appeared as Theorem 1 in Jagannathan and Wang (1998) with slightly different notation. We

will denote AT
LD

= BT when the two multivariate time series AT and BT have the same asymptotic

distribution as T → ∞.

Theorem 3.2 Let c = [a0 λ′]′ and ĉT = (X̂′
T Q̂T X̂T )−1X̂′

T Q̂TRT where X̂T = [1N B̂T ]. Under

Assumption A, as T → ∞,
√

T (ĉT −c) converges in distribution to a multivariate normal with zero

mean and covariance

Σc = DΨD′ + DΠD′ − D
(
Γ + Γ′)D′ (28)

where D = (X′QX)−1X′Q with X = [1N B] and Ψ,Γ and Π are defined in (27).

Proof. First we note that the identity Rt = X̂T c+(B− B̂T )λ+Rt −Xc holds. Using the pricing

equation (11) and the foregoing identity we obtain from (23)

ĉt = c + (X̂′
T Q̂T X̂T )−1X̂′

T Q̂T

[
(B − B̂T )λ + (Rt − E[Rt])

]

from which it follows, using Slutsky’s theorem, that

√
T (ĉT − c) = (X̂′

T Q̂T X̂T )−1X̂′
T Q̂T

[
√

T (B − B̂T )λ +
1√
T

T∑

t=1

(Rt − E[Rt])

]

LD

= D

[
√

T (B − B̂T )λ +
1√
T

T∑

t=1

(Rt − E[Rt])

]
. (29)

¿From (14) we have

Rt − RT = B(ft − fT ) + ut − uT ⇒

1

T

T∑

t=1

(Rt − RT )(ft − fT )′ =
1

T

T∑

t=1

(ut − uT )(ft − fT )′ + BΣ̂FT

and therefore (17) yields

B̂T − B =

[
1

T

T∑

t=1

ut(ft − fT )′
]
Σ̂−1

FT .

Using the last equation and Slutsky’s theorem again we obtain from (29)

√
T (ĉT − c)

LD

= D

[
− 1√

T

T∑

t=1

ut

(
ft − fT

)′
Σ−1

F λ +
1√
T

T∑

t=1

(Rt − E[Rt])

]

12



LD

= D

[
1√
T

T∑

t=1

(
h1

t − h2
t

)
]

= DH
1√
T

T∑

t=1

ht

where H = [IN − IN ]. Using Assumption A, which states that the central limit theorem applies

to the random sequence ht, yields the asymptotic distribution of ĉT

√
T (ĉT − c)

D−→ N(0,Σc)

where

Σc = DH

[
Ψ Γ

Γ′ Π

]
H′D′ = DΨD′ + DΠD′ − D

(
Γ + Γ′)D′

thus completing the proof.

Using the previous theorem, we can compute appropriate standard errors and thus test hypothe-

ses of interest, such as λ = 0K . Actual application of the theorem, though, requires knowledge of

several matrices. Since the matrices are unknown, we use the values of their consistent estimators

instead. The matrix D can be consistently estimated by (X̂′
T Q̂T X̂T )−1X̂′

T Q̂T while the spectral

density matrix Σh =
∑k=∞

k=−∞ E[hth
′
t] can be estimated by the methods proposed by Newey-West

(1987), Andrews (1991) and Andrews and Monahan (1992). In large cross sections it would be

necessary to impose a block diagonal structure on Σh to ensure that the law of large numbers

starts kicking in given the length of the time series of observations available to the econometrician.

3.3 Fama-MacBeth variance estimator

As mentioned in subsection 3.1, the Fama-MacBeth estimator of the asymptotic covariance of ĉT

is V̂T = 1
T

∑T
t=1(ĉt − ĉT )(ĉt − ĉT )′. In this subsection we examine the limiting behavior of V̂T .

Substituting ĉt from (22) into (21) we obtain

V̂T = (X̂′
T Q̂T X̂T )−1X̂′

T Q̂T

[
1

T

T∑

t=1

(
Rt − RT

) (
Rt − RT

)′
]
Q̂T X̂T (X̂′

T Q̂T X̂T )−1. (30)

Applying the law of large numbers and the fact that Q̂T
P−→ Q then yields that V̂T

P−→ DΣRD′ =

V where D is defined in (25) and ΣR is the return covariance matrix. Hence we have proved the

following

Proposition 3.3 The Fama-MacBeth covariance estimator V̂T converges in probability to the ma-

trix V = DΣRD′, that is,

V̂T
P−→ V = DΣRD′, as T → ∞ (31)

where D = (X′QX)−1X′Q with X = [1N B].

13



The preceding proposition is the mathematical statement representing the well-known errors-

in-variables problem. On comparing the expression (28) for the asymptotic covariance Σc of the

estimator ĉT with the expression for V, it follows that, in general, the Fama-MacBeth covariance

estimator V̂T is not a consistent estimator of Σc. The bias introduced is due to the fact that

estimated betas are used instead of the true betas in the cross-sectional regression. In the case of

serially uncorrelated returns we have Ψ = ΣR and thus V = DΨD′ is the first term appearing in

the expression (28) for the asymptotic covariance of the estimator ĉT . The second term in (28) is

clearly a positive semi-definite matrix. However, the presence of the last term in (28) complicates

the situation and makes unclear whether the Fama-MacBeth procedure leads to underestimation

or overestimation of the covariance of the CSR estimator, even in the case of serially uncorre-

lated returns. The situation becomes more straightforward under the simplifying assumption of

conditionally homoscedasticity as we illustrate next.

3.4 Conditionally homoscedastic residuals given the factors

In this subsection, we look at the asymptotic behavior of the CSR estimator under the assump-

tion that the time series residuals ut are conditionally homoscedastic given the factors ft. The

assumption of conditional homoscedasticity, which has been employed in the analysis by Shanken

(1992) (see Assumption 1 in his paper), holds when the returns and the factors are serially inde-

pendent, identically distributed and have a joint normal distribution. Some extra notation will

enable us to state and prove the related results. Denote by ΣF̄ the asymptotic covariance matrix

of fT = 1
T

∑T
t=1 ft, that is

ΣF̄ =
∞∑

k=−∞
E
[
(ft − E[ft]) (ft+k − E[ft+k])

′] (32)

and further define the so-called bordered version of ΣF̄ by

Σ∗
F̄ =

[
0 0′

K

0K ΣF̄

]
. (33)

Let F denote the information set generated by the entire factor sequence {ft : t = 1, 2, . . .} and let

ΣU be a constant N × N symmetric and positive definite matrix. Consider the following

Assumption B. Given the information set F , the time series regression residuals ut have zero

conditional mean, i.e. E[ut|F ] = 0N . Furthermore, given F , the residuals ut have constant

conditional covariance equal to ΣU and are conditionally serially uncorrelated, i.e. E[utu
′
t|F ] = ΣU

and E[utu
′
t+k|F ] = 0N×N for all integers k.

The main result under the conditional homoscedasticity assumption is captured in the following

theorem. A more general version of this theorem, directly imposing pricing restrictions to factors

14



that are returns to traded portfolios, appeared as Theorem 1 (iii) in Shanken (1992).

Theorem 3.4 Let c = [a0 λ′]′ and ĉT = (X̂′
T Q̂T X̂T )−1X̂′

T Q̂TRT with X̂T = [1N B̂T ]. As-

sumption B implies Ψ = BΣ
F̄
B′ + ΣU, Π =

(
λ′Σ−1

F
λ
)
ΣU and Γ = 0N×N where Ψ,Π and Γ are

defined in (27). Therefore, under Assumptions A and B, the result in Theorem 3.2 becomes

√
T (ĉT − c)

D−→ N(0K+1,Σc) as T → ∞ (34)

where

Σc = Σ∗
F̄

+
(
1 + λ′Σ−1

F
λ
)
DΣUD′ (35)

with Σ∗
F̄

being the bordered version of Σ
F̄

defined in (33) and D = (X′QX)−1X′Q with X = [1N B].

Proof. Let k be any integer. First, we obtain the expression for Ψ. Using (26), (13), the law of

iterated expectations and Assumption A we obtain

E
[
h1

t (h
1
t+k)

′] = E
[
[B(ft − E[ft]) + ut] [B(ft+k − E[ft+k]) + ut+k]

′]

= BE
[
(ft − E[ft])(ft+k − E[ft+k])

′]B′ + I[k=0]E
[
utu

′
t

]

where I denotes the indicator function. Therefore from (27) and (32) it follows that Ψ = BΣF̄B′ +

ΣU. Next, we obtain the expression for Π. From (26), the law of iterated expectations and

Assumption A, it follows that

E[h2
t (h

2
t+k)

′] = E
[[

λ′Σ−1
F (ft − E[ft])

] [
λ′Σ−1

F (ft+k − E[ft+k])
]
utu

′
t+k

]

= E
[[

λ′Σ−1
F (ft − E[ft])

] [
λ′Σ−1

F (ft+k − E[ft+k])
]
E
[
utu

′
t+k|F

]]

= I[k=0]E
[
λ′Σ−1

F (ft − E[ft])(ft − E[ft])
′Σ−1

F λ
]
ΣU

= I[k=0]

(
λ′Σ−1

F ΣFΣ−1
F λ

)
ΣU = I[k=0]

(
λ′Σ−1

F λ
)
ΣU.

The expression for Π then follows from (27). Finally, we obtain the expression for Γ. From (26)

and (13) we obtain

E
[
h1

th
2
t+k)

′] = E
[
(Rt − E[Rt])

[
ut+k(ft+k − E[ft+k])

′Σ−1
F λ

]′]

= E
[
[λ′Σ−1

F (ft+k − E[ft+k])] (B(ft − E[ft]) + ut)u
′
t+k

]
.
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Thus, by the assumptions E[ut|F ] = 0N and E[utu
′
t+k|F ] = I[k=0]ΣU and the law of iterated

expectations, it follows that E
[
h1

t (h
2
t+k)

′] = 0N×N for every integer k and therefore (27) yields

Γ = 0N×N . Using the expressions Ψ = BΣF̄B′ + ΣU, Π =
(
λ′Σ−1

F λ
)
ΣU and Γ = 0N×N and the

fact that DBΣF̄B′D′ = Σ∗
F̄
, which we prove in the following lemma, we obtain from Theorem 3.2

that the asymptotic distribution of ĉT is the one given in (34) under the assumptions A and B.

Lemma 3.5 The identity DBΣ
F̄
B′D′ = Σ∗

F̄
holds, where Σ∗

F̄
is defined in (33) and D = (X′QX)−1X′Q

with X = [1N B].

Proof. From the definition of X it follows that

X′QX =

[
1′

N

B′

]
Q
[

1N B
]

=




1′
NQ1N 1′

NQB

B′Q1N B′QB


 .

Using the formula for the inverse of a partitioned matrix (see Theorem 7.1 in Schott (1997)) we

obtain

(X′QX)−1

=




d −d1′
NQB(B′QB)−1

−d(B′QB)−1B′Q1N (B′QB)−1 + d(B′QB)−1B′Q1N1′
NQB(B′QB)−1




where d is a scalar defined by d = (1′
NQ1N − 1′

NQB(B′QB)−1B′Q1N )−1. Using the above

expression and (25) we have

DB = (X′QX)−1X′QB = (X′QX)−1




1′
NQB

B′QB


 =

[
0′

K

IK

]

from which, using the definition (33), we obtain

DBΣF̄B′D′ =

[
0′

K

IK

]
ΣF̄

[
0K IK

]
=

[
0 0′

K

0K ΣF̄

]
= Σ∗

F̄

which completes the proof.

The preceding theorem and its consequences deserve some further discussion. Consider the

commonly used case in which the factors are assumed to be serially uncorrelated, so that ΣF̄ =

ΣF. If, in addition, Assumption B is satisfied, then it follows that the returns are also serially

uncorrelated and following the lines of the preceding proof one can show that ΣR = BΣFB′ + ΣU.

In this case, the probability limit of the Fama-MacBeth covariance estimator is V = DΣRD′ =
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Σ∗
F̄

+ DΣUD′. On comparing the true asymptotic covariance matrix Σc to V, we observe that,

since the matrix
(
λ′Σ−1

F λ
)
DΣUD′ is positive definite, the standard errors obtained from the

Fama-MacBeth method always overstate the precision of the estimates, under the assumption of

conditional homoscedasticity. However, this is generally not true when a time series is conditionally

heteroscedastic.

As mentioned above, Assumption B is satisfied when the joint time series of returns and factors

is i.i.d. and normally distributed. However, there is a large body of literature presenting evidence

in favor of non-normality and heteroscedasticity. The early papers by Fama (1965) and Blattberg

and Gonedes (1974) document non-normality while the papers by Barone-Adesi and Talwar (1983),

Schwert and Sequin (1990) and Bollerslev et al. (1988) document conditional heteroscedasticity.

Employing an i.i.d. sequence of returns following a multivariate t-distribution with more than four

degrees of freedom, MacKinlay and Richardson (1991) demonstrate that returns are conditionally

heteroscedastic and the test of mean-variance efficiency will be biased under the assumption of

conditional homoscedasticity. They further demonstrate that stock returns are not homoscedas-

tic based on a bootstrapping experiment. For these reasons, MacKinlay and Richardson (1991)

advocate the GMM method developed by Hansen (1982), which does not require conditional ho-

moscedasticity.

On the other hand, Assumption A may be satisfied by many stationary time series that are

not conditionally homoscedastic. It follows from Lindeberg-Lèvy central limit theorem that any

serially i.i.d. time series of returns and factors with finite fourth moments satisfies Assumption A,

while it might not satisfy the assumption of conditional homoscedasticity unless the time series is

also normally distributed. Clearly, the i.i.d. time series of returns with t-distribution in MacKinlay

and Richardson (1991) is such an example.

3.5 Using security characteristics to test factor pricing models

The methodology developed in the two previous sections can be used to assess the validity of a

proposed linear asset pricing factor model. The distribution theory presented in Theorems 3.2 and

3.4 allows one to construct t-statistics that have an asymptotic normal distribution. A significantly

large t-value indicates that the corresponding factor is indeed priced while a small t-value suggests

that the factor is not priced and should be excluded from the model. An alternative route that has

been taken by several researchers is to use firm characteristics to detect misspecification errors. If

a linear beta pricing is correctly specified, security characteristics added to the model should not

explain the cross-sectional variation of expected returns after the factor betas prescribed by the

model have been taken into account. In this case, the t-value of a characteristic reward should be

insignificant. On the other hand, a significant t-value of a characteristic reward indicates model
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misspecification and should lead to rejection of the linear factor model. Common examples of firm

characteristics used in the literature include relative firm size, the ratio of book value to market

value and price-earnings ratio. Banz (1981) first used the firm size to examine the validity of

the CAPM. Chan, Hamao and Lakonishok (1991) and Fama and French (1992) use the book-to-

market ratio and provide evidence that this variable explains a larger fraction of the cross-sectional

variation in expected returns. This evidence led Fama and French (1993) to propose a three-factor

model for stock returns. Daniel and Titman (1997) add firm size and book-to-market ratio to the

Fama-French three-factor model and find that the t-values associated with these firm characteristics

are still significant.

Jagannathan and Wang (1998) extended the analysis of Shanken (1992) to allow for conditional

heteroscedasticity. Further, they were the first to provide a rigorous econometric analysis of the

cross-sectional regression method when firm characteristics are employed in addition to factors.

Their framework assumed that the firm characteristics are constant over time. Let Zi denote the

vector of M characteristics associated with the ith security. Then the beta pricing model equation

(4) augmented to include firm characteristics becomes

E[Ri
t] = a0 + a′Zi + λ′βi, i = 1, . . . , N (36)

where a is an M -dimensional constant vector representing the characteristics rewards. Let L =

1 + M + K and define

c = [a0 a′ λ′]′ (L × 1 vector), (37)

Z =
[
Z1 Z2 · · · ZN

]′
(N × M matrix) (38)

and

X = [1N Z B] (N × L matrix) (39)

where B is defined in (8). Then equation (36) can be compactly written as

E[Rt] = a01N + Za + Bλ = Xc. (40)

As is typically the case in applications, we assume that N ≥ L and that X is of full rank equal

to L. As in subsection 3.1, let Q be a symmetric and positive definite N × N matrix and Q̂T be

a consistent estimator of Q which is also assumed to be symmetric and positive definite for all T .

Following the development in subsection 3.1, a GLS estimator of c is obtained by a cross-sectional

regression at each time t as follows

ĉt = (X̂′
T Q̂T X̂T )−1X̂′

T Q̂TRt (41)
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where

X̂T = [1N Z B̂T ]. (42)

Here, B̂T is the sample analogue estimator of B defined in (17) and the matrix X̂T is assumed

to be of full rank equal to L. As before, the Fama-MacBeth estimator is then obtained by time

averaging the T cross-sectional estimates

ĉT =
1

T

T∑

t=1

ĉt = (X̂′
T Q̂T X̂T )−1X̂′

T Q̂TRT . (43)

3.5.1 Consistency and asymptotic normality of the CSR estimator

It turns out that the consistency and asymptotic normality properties of the Fama-MacBeth esti-

mator are maintained when we include security characteristics in the analysis. Following the steps

in the proof of Proposition 3.1 and using the relation (40), one can derive the analogous result for

the case in which characteristics are used, which we state next.

Proposition 3.6 The time series average ĉT of the cross-sectional estimates

ĉt = (X̂′
T Q̂T X̂T )−1X̂′

T Q̂TRt, t = 1, . . . , T

where X̂T = [1N Z B̂T ] is a consistent estimator of c =
[
a0 a′ λ′]′, that is

ĉT
P−→ c as T → ∞. (44)

The asymptotic behavior of the CSR estimator, when security characteristics are used in the

analysis, is captured in the next theorem. The proof of this theorem, which appeared as Theorem

1 in Jagannathan and Wang (1998) with slightly different notation, closely resembles the proof of

Theorem 3.2.

Theorem 3.7 Let c = [a0 a′ λ′]′ and ĉT = (X̂′
T Q̂T X̂T )−1X̂′

T Q̂TRT where X̂T = [1N Z B̂T ].

Under Assumption A, as T → ∞,
√

T (ĉT − c) converges in distribution to a multivariate normal

with zero mean and covariance

Σc = DΨD′ + DΠD′ − D
(
Γ + Γ′)D′ (45)

where D = (X′QX)−1X′Q with X = [1N Z B] and Ψ,Γ and Π are defined in (27).

A result, similar to Proposition 3.3, can be shown in the present context stating that the Fama-

MacBeth covariance matrix estimator is not a consistent estimator of the asymptotic covariance

matrix of the cross-sectional regression estimator.
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3.5.2 Misspecification bias and protection against spurious factors

The main assumption of the preceding analysis was that the null hypothesis model is correctly

specified. When the model is correctly specified, the CSR estimator is consistent under very

general conditions that we stated above. However, if the null hypothesis model is misspecified, the

estimator in cross-sectional regression will be asymptotically biased. Assume that f̃ is a different

vector of factors than f , that is, at least some of the factors in f̃ and f are different. Suppose the

true factor vector is f̃ and thus the true model is

E[Rt] = a01N + Za + B̃λ (46)

where

B̃ = E[(Rt − E[Rt])(f̃ − E[f̃ ])′]Σ̃−1
F and Σ̃F = E[(f̃t − E[f̃t])(f̃t − E[f̃t])

′]. (47)

A researcher who incorrectly specifies the model as

E[Rt] = a01N + Za + Bλ, (48)

where

B = E
[
(Rt − E[Rt])(ft − E[ft])

′]Σ−1
F and ΣF = E

[
(ft − E[ft]) (ft − E[ft])

′] , (49)

will estimate betas by regressing returns on the vector of misspecified factors f and then estimate the

risk premia in cross-sectional regression. The resulting bias is presented in the following theorem.

We make the standard assumption that the time-series [R′
t f ′t ]

′ is stationary and ergodic so that

the law of large numbers applies and sample moments converge to population moments.

Theorem 3.8 Assume that X = [1N Z B] has full rank equal to L. If equation (46) holds

for the time series [R′
t f̃ ′t ]

′ but betas are estimated using the time-series [R′
t f ′t ]

′, then the

cross-sectional estimator ĉT = (X̂′
T Q̂T X̂T )−1X̂′

T Q̂TRT with X̂T = [1N Z B̂T ] converges to

c + (X′QX)−1X′Q(B̃ − B)λ in probability as T → ∞.

Proof. Using equation (46) and appropriately rearranging the terms yields

RT = (RT − E[Rt]) + X̂T c − (B̂T − B)λ + (B̃ − B)λ.

On multiplying the above equation by (X̂′
T Q̂T X̂T )−1X̂′Q̂T , one obtains the following expression

for the cross-sectional regression estimator

ĉT = c + (X̂′
T Q̂T X̂T )−1X̂′

T Q̂[(Rt − E[Rt]) − (B̂T − B)λ]
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+(X̂′
T Q̂T X̂T )−1X̂′

T Q̂T (B̃ − B)λ.

Using the law of large numbers, the assumption that X has full rank and Slutsky’s theorem, it

follows from the last equation that

ĉT
P−→ c + (X′QX)−1X′Q(B̃ − B)λ.

This completes the proof.

In view of this theorem, the estimator in cross-sectional regression is asymptotically biased

if and only if X′Q(B̃ − B)λ 6= 0L. Notice that not only the estimates for the premium on the

misspecified betas can be biased, but the estimates for the premium on those correctly specified

betas can also be biased when some other factor is misspecified.

3.6 Time-varying security characteristics

Jagannathan, Skoulakis and Wang (2002) extended the analysis of Jagannathan and Wang (1998)

to allow for time-varying firm characteristics. They study the case in which no pricing restrictions

are imposed on the traded factors - if there are any such factors - and the case in which all factors

are traded and pricing restrictions are imposed on all of them. Their main result is that using the

observed time-varying characteristics in each cross-sectional regression induces a bias making the

cross-sectional regression estimator generally inconsistent. They provide an expression for the bias

and derive the asymptotic theory for the CSR estimator in both cases. They also show how one

can avoid the bias problem by using time-averages of the firm characteristics. In the next three

subsections, we state some of the more important results while we refer the interested reader to

Jagannathan, Skoulakis and Wang (2002) for the full analysis including proofs and details.

3.6.1 No pricing restrictions imposed on traded factors

In this subsection, we proceed without directly imposing any pricing restrictions on traded factors, if

any such factors are employed in the analysis. In other words, we do not distinguish between traded

and nontraded factors. On the other hand, we allow for time-varying firm-specific characteristics.

Let Zi
t be a vector of M characteristics associated with the ith asset observed at time t − 1. The

factor pricing equation (4) is expanded to include the firm characteristics as follows

E[Ri
t] = a0 + a′E[Zi

t] + λ′βi for i = 1, . . . , N (50)

where a is the M -dimensional constant vector of characteristics rewards. As in subsection 3.5, we

let L = 1 + M + K, c = [a0 a′ λ′]′ (L × 1 vector) and define the time-varying characteristics
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matrix

Zt =
[
Z1

t Z2
t · · · ZN

t

]′
(N × M matrix) (51)

and

Xt = [1N Zt B] (N × L matrix) (52)

where B is defined in (8). Then equation (50) can be written as

E[Rt] = a01N + E[Zt]a + Bλ = E[Xt]c. (53)

Again assume that N ≥ L and that Xt is of full rank equal to L for all t. Following the development

in subsection 3.1, a GLS estimate of c is obtained by a cross-sectional regression at each time t as

follows

ĉt = (X̂′
T,tQ̂T X̂T,t)

−1X̂′
T,tQ̂TRt (54)

where

X̂T,t = [1N Zt B̂T ] (55)

and B̂T is the sample analogue estimate of B defined in (17). The matrix X̂T,t is assumed to be of

full rank equal to L for all t. As before, the time average of the T cross-sectional estimates provides

the Fama-MacBeth CSR estimate

ĉT =
1

T

T∑

t=1

ĉt =
1

T

T∑

t=1

(X̂′
T,tQ̂T X̂T,t)

−1X̂′
T,tQ̂TRt. (56)

Our goal is to obtain the probability limit and the asymptotic distribution of the CSR estimator

in the case of time-varying firm characteristics. We make the standard assumption that the vector

process
[
(Re

t )
′ (f e

t )′ (vec(Zt))
′]′ is stationary and ergodic so that the law of large numbers applies.

The derivation of the results that follow requires a few mild technical assumptions, the first of

which is stated next.

Assumption C. Consider an arbitrarily small δ > 0 and assume that, for all t, the smallest

eigenvalue of the matrix X′
tQXt is greater than δ, where Xt = [1N Zt B]. In addition, assume

that all elements of the characteristics matrix Zt are bounded uniformly in t.

Under the usual assumption that, for a given t, the matrix Xt is of full rank, namely L, we have

that the L × L matrix X′
tQXt also has rank L and is positive definite since Q is positive definite.

In this case, the smallest eigenvalue of X′
tQXt will be strictly positive. Assumption C requires a
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slightly stronger condition, namely that the smallest eigenvalue of X′
tQXt is outside a fixed small

neighborhood of 0 for all t. On the other hand, it turns out that if the OLS estimator of c is used,

instead of the feasible GLS estimator, the analysis still goes through without the boundedness

assumption on Zt.

The derivation of the results stated in this subsection relies heavily on the following lemma, the

proof of which is based on Assumption C. We state the lemma in order to give the reader an idea

of how the proofs proceed in the present setting of time-varying firm characteristics.

Lemma 3.9 Under Assumption C, the matrix random sequence AT,t = (X̂′
T,tQ̂T X̂T,t)

−1X̂′
T,tQ̂T −

(X′
tQXt)

−1X′
tQ converges in probability to 0L as T → ∞ uniformly in t.

An important result about the CSR estimator in the present setting is that the use of time-

varying firm characteristics in the fashion described by equations (54) and (55) produces an esti-

mator which is not necessarily a consistent estimator of the unknown parameter c. The following

proposition describes the limiting behavior of the CSR estimator and its asymptotic bias, as T → ∞.

Proposition 3.10 Let c = [a0 a′ λ′]′. Under assumption C, the probability limit of the cross-

sectional regression estimator ĉT = 1
T

∑T
t=1(X̂

′
T,tQ̂T X̂T,t)

−1X̂′
T,tQ̂TRt is given by

ĉT
P−→ c + γ, as T → ∞

where the asymptotic bias is given by

γ = E[(X′
tQXt)

−1X′
tQ (Rt − Xtc)] (57)

assuming that the expectation that defines γ exists and is finite. Under the null hypothesis H0 :

a = 0M the bias is given by γ = E[(X′
tQXt)

−1X′
tQ (Rt − E[Rt])].

¿From Proposition 3.10 one can see that the cross-sectional estimator ĉT is an asymptotically

biased estimator of c unless γ = 0L. Since the firm characteristics will presumably be correlated

with the returns, it follows from the expression γ = E[(X′
tQXt)

−1X′
tQ (Rt − Xtc)] that, in prin-

ciple, the bias γ will not be equal to the zero vector. Therefore, ignoring this potential bias of the

CSR estimator might lead to erroneous inferences. However, when the firm characteristics Zt used

in the study are constant over time, say equal to Z, then Xt = X ≡ [1N Z B] and so (53) implies

that γ = (X′QX)−1X′QE[Rt − Xc] = 0L, which is equivalent to ĉT being a consistent estimator

of c. Thus we obtain Proposition 3.6 as a corollary to Proposition 3.10.
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Next, we study the asymptotic distribution of the CSR estimator. Two additional assumptions

will ensure the validity of the theorem that follows. To precisely state the necessary assumptions,

we need an additional piece of notation. Define

h̃1
t = (X′

tQXt)
−1X′

tQ(Rt − Xtc) − γ, h̃2
t =

[
(ft − E[ft])

′Σ−1
F λ

]
ut,

and h̃t = [(h̃1
t )

′ (h̃2
t )

′]′.
(58)

Note that E[h̃1
t ] = 0N and E[h̃2

t ] = 0N as it follows from (57) and (13) respectively. The first of

the following assumptions is the analogue of Assumption A used in Subsection 3.2, appropriately

modified in the context of time-varying characteristics.

Assumption D.1. The central limit theorem applies to the random sequence h̃t defined in (58),

that is 1√
T

∑T
t=1 h̃t converges in distribution to a multivariate normal with zero mean and covariance

matrix given by

[
Ψ̃ Γ̃

Γ̃′ Π̃

]

where

Ψ̃ =

+∞∑

k=−∞
E
[
h̃1

t (h̃
1
t+k)

′
]
, Γ̃ =

+∞∑

k=−∞
E
[
h̃1

t (h̃
2
t+k)

′
]

and Π̃ =

+∞∑

k=−∞
E
[
h̃2

t (h̃
2
t+k)

′
]
. (59)

We also make the following

Assumption D.2. The random sequence 1√
T

∑T
t=1 AT,tYt converges to 0L in probability, where

AT,t = (X̂′
T,tQ̂T X̂T,t)

−1X̂′
T,tQ̂T − (X′

tQXt)
−1X′

tQ and Yt = Rt − Xtc.

Although it might seem redundant given the rest of the assumptions we have made, Assumption

D.2 is actually essential for the proof of the next theorem. In the case of constant firm character-

istics, it follows from Lemma 3.9 that Assumption D.2 holds since then AT,t does not depend on

t and it factors out. It is also easily verified that Assumption D.2 holds in the case that Zt takes

only a finite number of values and is stochastically independent of Rt − Xtc.

The next theorem provides the asymptotic distribution of the CSR estimator.

Theorem 3.11 Let c = [a0 a′ λ′]′ and ĉT = 1
T

∑T
t=1(X̂

′
T,tQ̂T X̂T,t)

−1X̂′
T,tQ̂TRt where X̂T,t =

[1N Zt B̂T ]. Under Assumptions C, D.1 and D.2, as T → ∞,
√

T (ĉT − [c + γ]) converges in

distribution to a multivariate normal with zero mean and covariance matrix

Σ̃ = Ψ̃ + D̃Π̃D̃′ −
(
Γ̃D̃′ + D̃Γ̃′

)

where D̃ = E
[
(X′

tQXt)
−1X′

tQ
]

with Xt = [1N Zt B] and Ψ̃, Γ̃ and Π̃ are defined by (59).
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3.6.2 Traded factors with imposed pricing restrictions

In this subsection, we study the behavior of the cross-sectional regression two-pass estimator when

all factors are returns on traded portfolios and the relevant pricing restrictions are imposed on the

factors. In particular, we examine the approach that Brennan, Chordia and Subrahmanyam (1988)

proposed to handle the errors-in-variables problem without the requirement of grouping securities

into portfolios. As in subsection 3.5, we assume that there are N risky securities, K economy-wide

factors, M security-specific characteristics with the addition of a riskless asset. The expected excess

return on the jth asset can be written as

E[Rj − Rf ] = a0 + +
M∑

m=1

E[Zj
m]am +

K∑

k=1

βjkλk, j = 1, . . . , N (60)

where λk is the risk premium of factor k, βjk is the factor loading of factor k for the jth security, Z j
m

is the value of the mth characteristic specific to the jth security, and am is the reward or premium

per unit of the mth characteristic. Examples of factors that are returns on portfolios of traded

securities include the first five principal components of Connor-Korajckyk (1988) and the three

factors of Fama-French (1993). Examples of security characteristics used include relative firm size,

relative book-to-market ratio, dividend yield, relative strength and turnover. To test the validity of

the factor pricing model one needs to construct a test of the null hypothesis H0 : a0 = a1 = · · · =

aM = 0.

The notation of the previous subsections is employed except that we now denote c = [a0 a′]′

where a = (a1, . . . , aM )′ is the vector of characteristics rewards. We further use superscript e to

denote excess returns on the assets and the factors: Re
t = Rt − Rft1N and f e

t = ft − Rft1K . Then

we can define the factor loading matrix as

Be = E
[
(Re

t − E[Re
t ]) (f e

t − E[f e
t ])′
]
Σe

F
−1 (61)

where the covariance matrix of the factor excess returns is given

Σe
F = E[(f e

t − E[f e
t ])(f e

t − E[f e
t ])′]. (62)

Similarly to (13), but now using excess returns, we let ue
t = Re

t −E[Re
t ]−Be(f e

t −E[f e
t ]) to obtain

the time-series regression

Re
t = E[Re

t ] + B(f e
t − E[f e

t ]) + ue
t with E[ue

t ] = 0N and E[ue
t f

e
t
′] = 0N×K . (63)

Therefore, the model can be written in vector-matrix notation form as E[Re
t ] = a01N +E[Zt]a+Beλ

which allows to rewrite equation (63) as

Re
t = a01N + E[Zt]a + Be(f e

t − E[f e
t ] + λ) + ue

t .
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Since the factors are assumed to be returns on traded assets, it follows that the factor risk premia

equal expected excess returns, that is λ = E[f e
t ], and so the last equation becomes

Re
t = a01N + Bef e

t + Zta + et where et = −(Zt − E[Zt])a + ue
t . (64)

Following Brennan et al (1998) we define the risk-adjusted returns as

R∗
t = Re

t − Bef e
t (65)

and write the previous equation as

R∗
t = Xtc + et where Xt = [1N Zt] and c = [a0 a′]′. (66)

The estimation and testing procedure proposed in Brennan et al (1998) consists of the following

steps. First, a set of factors is selected. Two sets of factors are used, the principal component

factors of Connor-Korajczyk (1988) and the Fama-French (1993) factors. Second, the factor betas

are estimated using standard time-series regressions as follows

B̂e
T =

[
1

T

T∑

t=1

(Re
t − Re

T )(f e
t − f e

T )′
]
Σ̂e

F

−1

T where Σ̂e
FT =

1

T

T∑

t=1

(f e
t − f e

T )(f e
t − f e

T )′. (67)

Third, using the estimates of the factor betas from the second step the estimated risk-adjusted

returns are formed:

R̂∗
t = Re

t − B̂e
T f e

t . (68)

Then the risk-adjusted returns are used in the following cross-sectional regressions

R̂∗
jt = c0 +

M∑

m=1

cmZj
m,t + ẽjt, j = 1, . . . , N (69)

or in vector-matrix notation R̂∗
t = Xtc + ẽt for all t = 1, . . . , T . Thus, in the fourth step, for each

t, cross-sectional simple regression is used to obtain the following estimates ĉt of the vector c of

characteristic rewards

ĉt = (X′
tXt)

−1X′
tR̂

∗
t , t = 1, . . . , T. (70)

Finally, in the spirit of Fama and MacBeth, the time-series average of the estimates is formed to

obtain what Brennan et al (1998) term the raw estimate of c as follows

ĉT =
1

T

T∑

t=1

ĉt. (71)
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Alternatively, the use of GLS would allow us obtain more efficient estimates. Employing the

previously used notation, we can write the GLS raw estimate of c as

ĉT =
1

T

T∑

t=1

(X′
tQ̂TXt)

−1X′
tQ̂T R̂∗

t . (72)

Next, we describe the probability limit and the asymptotic distribution of the GLS version of

the estimator proposed by Brennan et al (1998). We make the standard assumption that the vector

process
[
(Re

t )
′ (f e

t )′ (vec(Zt))
′]′ is stationary and ergodic so that the law of large numbers applies.

As before, some additional assumptions will ensure the validity of the results. The first assumption,

which we state next, is the suitable modification of Assumption C that was made in subsection

3.6.1.

Assumption E. Consider an arbitrarily small δ > 0 and assume that, for all t, the smallest

eigenvalue of the matrix X′
tQXt is greater than δ, where Xt = [1N Zt]. In addition, assume that

all elements of the characteristics matrix Zt are bounded uniformly in t.

It turns out that the cross-sectional regression estimator ĉT , obtained by regressing the esti-

mated risk-adjusted returns on a constant and the time-varying firm characteristics as described by

equation(69), is not a consistent estimator of the parameter c. This is a property we encountered

in Proposition 3.10 under a different setting. The next proposition presents the asymptotic bias of

ĉT .

Proposition 3.12 Let c = [a0 a′]′. Under Assumption E, the probability limit of the cross-

sectional regression raw estimate ĉT = 1
T

∑T
t=1(X

′
tQ̂TXt)

−1X′
tQ̂T R̂∗

t is given by

ĉT
P−→ c + γ∗, as T → ∞

where the asymptotic bias is given by

γ∗ = E[(X′
tQXt)

−1X′
tQet] (73)

assuming that the expectation that defines γ∗ exists and is finite. Under the null hypothesis H0 :

c = 0 the bias is given by γ∗ = E[(X′
tQXt)

−1X′
tQut].

The description of the asymptotic distribution of the raw estimate now follows. This will require

an additional assumption. To this end, we define

g1
t = (X′

tQXt)
−1X′

tQet − γ∗,

g2
t =


 vec

(
(f e

t − f e
T )(f e

t − f e
T )′ − E [(f e

t − E[f e
t ])(f e

t − E[f e
t ])′]

)

vec
(
(Re

t − Re
T )(f e

t − f e
T )′ − E [(Re

t − E[Re
t ])(f

e
t − E[f e

t ])′]
)

 ,

and gt = [(g1
t )

′ (g2
t )

′]′.

(74)
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Note that clearly E[g2
t ] = 0K(N+K) and that (73) implies E[g1

t ] = 0M+1. The following mild

assumption is similar to Assumptions A and D.1 made earlier.

Assumption F. The central limit theorem applies to the random sequence gt, that is 1√
T

∑T
t=1 gt

converges in distribution to a multivariate normal with zero mean and covariance matrix given by

[
Ψ∗ Γ∗

Γ∗′ Π∗

]

where

Ψ∗ =
+∞∑

k=−∞
E
[
g1

t (g
1
t+k)

′] , Γ∗ =
+∞∑

k=−∞
E
[
g1

t (g
2
t+k)

′] and Π∗ =
+∞∑

k=−∞
E
[
g2

t (g
2
t+k)

′] . (75)

The following notation will also be used in the statement of the next theorem.

H∗ = E
[[

(f e
t )′(Σe

F)−1
]
⊗
[
(Z′

tQZt)
−1Z′

tQB
]]

,

K∗ = E
[[

(f e
t )′(Σe

F)−1
]
⊗
[
(Z′

tQZt)
−1Z′

tQ
]]

and D∗ = [−H∗ K∗] .

(76)

We are now able to state the result providing the asymptotic distribution.

Theorem 3.13 Let c = [a0 a′]′ and ĉT = 1
T

∑T
t=1(X

′
tQ̂TXt)

−1X′
tQ̂T R̂∗

t where Xt = [1N Zt].

Under Assumptions E and F, as T → ∞,
√

T (ĉT − [c + γ∗]) converges in distribution to a multi-

variate normal with zero mean and covariance matrix

Σ∗ = Ψ∗ + D∗Π∗D∗′ − (Γ∗D∗′ + D∗Γ∗′) (77)

where Ψ∗,Γ∗ and Π∗ are defined in (75) and D∗ is defined in (76).

Even if one ignores the asymptotic bias γ∗ of the raw estimator ĉT , the method proposed by

Brennan et al (1998) does not solve the errors-in-variables problem. That is, the Fama-MacBeth

covariance estimator V̂T = 1
T

∑T
t=1(ĉt − ĉT )(ĉt − ĉT )′ is not generally a consistent estimator of the

asymptotic covariance of the CSR raw estimate. The following proposition addresses this point.

Proposition 3.14 The probability limit of the Fama-MacBeth covariance estimator V̂T is the

following covariance matrix

V∗ = E
[(

Z′
tQZt)

−1Z′
tQet − γ∗) (Z′

tQZt)
−1Z′

tQet − γ∗)′] (78)

assuming that the expectation that defines V∗ exists and is finite and where, as in (73), γ∗ =

E
[
(Z′

tQZt)
−1Z′

tQet

]
.
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Note that, when the observations
[
(Re

t )
′ (f e

t )′ (vec(Zt))
′]′ are serially independent we have

Ψ∗ = E
[
g1

t (g
1
t )

′] = V∗, as it follows from (74) and (78). Thus, in the case of serially independent

observations the Fama-MacBeth covariance converges in probability to Ψ∗ which is the first term

in the expression (77) of the asymptotic covariance of the CSR estimate. The second term in (78) is

a positive semidefinite matrix but the last term in (78) is neither positive nor negative semidefinite

with certainty. Thus, as already noted in the subsection 3.3, it is not obvious whether the Fama-

MacBeth estimator underestimates or overestimates the asymptotic covariance of ĉT in the absence

of additional assumptions even in the case of serially independent observations.

3.6.3 Using time-average characteristics to avoid the bias

In this section we reconsider the framework of subsection 3.6.1 and demonstrate how we can over-

come the problem of the asymptotic bias by using time-average firm characteristics instead of the

spot values of characteristics in the cross-sectional regression. We adopt the notation of subsection

3.6.1, namely, we denote Xt = [1N Zt B] where Zt is the N ×M matrix of t-time characteristics

and c = [a0 a′ λ′]′. Cross-sectional regression using the time-average ZT of the firm characteristics

yields the following estimates of c

ĉt = (X̂′
T Q̂T X̂T )−1X̂′

T Q̂TRt, t = 1, . . . , T (79)

where

X̂T = [1N ZT B̂T ] (80)

which is assumed to be of full rank equal to L = 1 + M + K. The use of time-average ZT ensures

the consistency of the CSR estimator as the next proposition illustrates.

Proposition 3.15 The time-series average ĉT of the cross-sectional estimates

ĉt = (X̂′
T Q̂T X̂T )−1X̂′

T Q̂TRt, t = 1, . . . , T

where X̂T = [1N ZT B̂T ] is a consistent estimator of c =
[
a0 a′ λ′]′, that is

ĉT
P−→ c as T → ∞. (81)

Next, we describe the asymptotic distribution of the CSR estimator using the time-average

characteristics. For this we need some additional assumptions and notation. We assume that

E[Xt] = [1N E[Zt] B] is of full rank equal to L and define

D = (E[Xt]
′QE[Xt])

−1E[Xt]
′Q (82)
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and

k1
t = Rt − E[Rt] + (Zt − E[Zt])a, k2

t =
[
(ft − E[ft])

′Σ−1
F λ

]
ut and kt = [(k1

t )
′ (k2

t )
′]′. (83)

By definition, we have E[k1
t ] = 0N . Moreover, from the decomposition given in (13) it follows that

E[k2
t ] = 0N . In the present context, we consider the following assumption which is the counterpart

of Assumptions A, D.1 and F made earlier.

Assumption G. The central limit theorem applies to the random sequence kt defined in (83), that

is 1√
T

∑T
t=1 kt converges in distribution to a multivariate normal with zero mean and covariance

matrix given by

[
K Ξ

Ξ′ N

]

where

K =
+∞∑

k=−∞
E
[
k1

t (k1
t+k)

′] , Ξ =
+∞∑

k=−∞
E
[
k1

t (k
2
t+k)

′] and N =
+∞∑

k=−∞
E
[
k2

t (k
2
t+k)

′] . (84)

We are now in a position to state the theorem that gives the asymptotic distribution of the

cross-sectional regression estimator using time-average characteristics.

Theorem 3.16 Let c = [a0 a′ λ′]′ and ĉT = (X̂′
T Q̂T X̂T )−1X̂′

T Q̂TRT where X̂T = [1N ZT B̂T ].

Under Assumption G, as T → ∞,
√

T (ĉT − c) converges in distribution to a multivariate normal

with zero mean and covariance

Σc = DKD′ + DND′ − D
(
Ξ + Ξ′)D′ (85)

where D = (E[Xt]
′QE[Xt])

−1E[Xt]
′Q with Xt = [1N Zt B] and K,Ξ and N are defined in (84).

3.7 N-consistency of the CSR estimator

The preceding subsections present an extensive discussion of the asymptotic properties, as T → ∞,

of the cross-sectional regression estimator in a number of different formulations. In this subsection,

we examine the CSR estimator from perspective. We assume that the length of the available time

series T is fixed and consider limiting behavior of the estimator as the number of individual assets

N increases without bound. This perspective is of particular interest given the availability of rather

large cross sections of return data.

Consider an economy with N traded assets and a linear pricing factor model with K factors

f1, . . . , fK . Consider the following pricing equation

E[Rt] = γ01N + Bγ1 = XNΓ (86)
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where the beta matrix B is given by B = E[(Rt − E[Rt]) (ft − E[ft])
′]Σ−1

F with ΣF denoting the

factor covariance matrix E[(ft − E[ft]) (ft − E[ft])
′], XN = [1N B] (N × (1 + K) matrix) and

Γ = (γ0, γ
′
1)

′ ((1 + K) × 1 vector). The factors could be either traded or non-traded. However,

even if they are traded we do not impose any pricing restriction implied by the model.

Recall from (13) the following time series regression equation Rt = E[Rt] + B (ft − E[ft]) +

ut, t = 1, . . . , T with E[ut] = 0N and E[utf
′
t ] = 0N×K . Taking time average in the last regression

and incorporating (86) we obtain

RT = γ01N + B
(
γ1 + fT − E[ft]

)
+ uT = XNΓT + uT (87)

where ΓT = (γ0, γ
′
1T )′ and γ1T = γ1 + fT − E[ft]. In Shanken (1992) the vector ΓT is referred to

as the vector of ”ex-post prices of risk”.

Assume the time series length T is fixed and consider limiting behavior as the number of assets

N goes to ∞. Since T is fixed it is clear that we cannot estimate the vector of ”ex-ante prices of risk”

Γ. Instead we can estimate the vector of ”ex-post prices of risk” ΓT . Following Shanken (1992),

we define an estimator to be N -consistent if it converges in probability to the ex-post parameter

vector ΓT as N → ∞.

To ease the exposition let us suppose for a moment that the beta matrix B is known. Then

equation (87) suggests (X′
NXN )−1

X′
NRT as an estimator for ΓT . Indeed from (87) we have

(
X′

NXN

)−1
X′

NRT = ΓT +
(
X′

NXN

)−1
X′

NuT . (88)

Then, under appropriate assumptions which are stated below, we have that as N → ∞

1

N
X′

NXN =




1 1
N

∑N
i=1 β′

i

1
N

∑N
i=1 βi

1
N

∑N
i=1 βiβ

′
i


 P−→




1 µ′
β

µβ Σβ + µβµ′
β


 (89)

and

1

N
X′

NuT =

[
1 · · · 1
β1 · · · βN

]



u1T
...

uNT


 =




1
T

∑T
t=1

(
1
N

∑N
i=1 uit

)

1
T

∑T
t=1

(
1
N

∑N
i=1 uitβi

)




P−→ 01+K (90)

and so

(
X′

NXN

)−1
X′

NRT
P−→ ΓT .

However, in practice the beta matrix B is unknown and has to be estimated using the available

data. The two-pass procedure uses time series regressions to estimate B. The estimate B̂T is
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given in (17). Replacing B by B̂T we obtain (X̂′
NX̂N )−1X̂′

NRT as an estimator for ΓT where

X̂′
N = [1N B̂T ]. However, this estimator is subject to the well-known errors-in-variables problem

and needs to be modified in order to maintain the property of N -consistency. Before we proceed

with the illustration of the appropriate modification, we present a set of conditions which will

guarantee the validity of our claim. The first condition ensures that there is sufficiently weak

cross-sectional dependence as required in the statement of Theorem 5 in Shanken (1992). The

second condition requires that average betas and their squares converge to well-defined quantities

as N → ∞.

Assumption 3.1 The time series residuals ut satisfy the following cross-sectional properties:

(a)
1

N

N∑

i=1

uit
P−→ 0 as N → ∞ for all t = 1, 2, . . . , (91)

(b)
1

N

N∑

i=1

uitβi
P−→ 0K as N → ∞ for all t = 1, 2, . . . , (92)

(c)
1

N

N∑

i=1

uisuit
P−→ 0 as N → ∞ for all t, s = 1, 2, . . .with s 6= t. (93)

Denote by ΣU the covariance matrix of ut and by σ2
i the ith diagonal element of ΣU, i = 1, . . . , N .

Define vit = u2
it − σ2

i which implies E[vit] = 0 for all i and t. Then the following hold

(d)
1

N

N∑

i=1

vit
P−→ 0 as N → ∞ for all t = 1, 2, . . . , (94)

(e)
1

N

N∑

i=1

σ2
i → σ̄2 as N → ∞. (95)

Assumption 3.2 The sequence of betas {βi : i = 1, 2, . . .} satisfies the following two conditions:

(a)
1

N

N∑

i=1

βi → µβ as N → ∞ (96)

(b)
1

N

N∑

i=1

βiβ
′
i → Σβ + µβµ′

β as N → ∞ (97)

where µβ is a K × 1 vector and Σβ is positive-definite symmetric K × K matrix.
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Returning to our calculation we have

1

N
X̂′

NRT =

[
1 · · · 1

β̂1T · · · β̂NT

]



R1T
...

RNT


 =




1
N

∑N
i=1 RiT

1
N

∑N
i=1 RiT β̂iT


 . (98)

It follows from (87) that

1

N

N∑

i=1

RiT = γ0 +

(
1

N

N∑

i=1

βi

)′ (
γ1 + fT − E[ft]

)
+

1

T

T∑

t=1

(
1

N

N∑

i=1

uit

)

and so

1

N

N∑

i=1

RiT
P−→ γ0 + µ′

β

(
γ1 + fT − E[ft]

)
as N → ∞ (99)

as it follows from Assumptions 3.1 and 3.2. Recall that

β̂iT = Σ̂−1
FT

[
1

T

T∑

t=1

(
ft − fT

) (
Rit − RiT

)
]

and

Rit − RiT = β′
i

(
ft − fT

)
+ (uit − uiT ) (100)

which combined deliver

β̂iT = βi + ξiT (101)

where

ξiT = Σ̂−1
FT

[
1

T

T∑

t=1

uit

(
ft − fT

)
]

. (102)

Thus

1

N

N∑

i=1

RiT β̂iT =
1

N

N∑

i=1

(βi + ξiT )
[
γ0 + β′

i

(
γ1 + fT − E[ft]

)
+ uiT

]

= γ0

(
1
N

∑N
i=1 βi + 1

N

∑N
i=1 ξiT

)

+
(

1
N

∑N
i=1 βiβ

′
i + 1

N

∑N
i=1 ξiT β′

i

) (
γ1 + fT − E[ft]

)

+ 1
T

∑T
t=1

(
1
N

∑N
i=1 uitβi + 1

N

∑N
i=1 uitξiT

)
.

(103)
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We consider the limiting behavior of each term in the last equation. It follows from (102) and

assumption (91) that 1
N

∑N
i=1 ξiT

P−→ 0K as N → ∞. Similarly, from (102) and assumption (92)

we obtain 1
N

∑N
i=1 ξiT β′

i
P−→ 0K×K as N → ∞. Further we have

∑T
t=1

1
N

∑N
i=1 uitξiT = Σ̂−1

FT

[
1
T

∑T
t=1

∑T
s=1

(
1
N

∑N
i=1 uisuit

) (
fs − fT

)]

P−→ Σ̂−1
FT

[
1
T

∑T
t=1 σ̄2

(
ft − fT

)]
= 0K as N → ∞

(104)

which follows from assumptions (93), (94) and (95). Using assumptions (96), (97) and (92), we

now obtain from equation (103) that

1

N

N∑

i=1

RiT β̂iT
P−→ γ0µβ + (Σβ + µβµ′

β)(γ1 + fT − E[ft]) as N → ∞. (105)

Finally, the combination (98), (99) and (105) yields

1

N
X̂′

NRT
P−→




γ0 + µ′
β

(
γ1 + fT − E[ft]

)

γ0µβ + (Σβ + µβµ′
β)(γ1 + fT − E[ft])


 as N → ∞. (106)

Next we study the limiting behavior of 1
N X̂′

NX̂N . This will enable us to appropriately modify the

proposed estimator to achieve N -consistency. We have

1

N
X̂′

NX̂N =




1 1
N

∑N
i=1 β̂

′
i

1
N

∑N
i=1 β̂i

1
N

∑N
i=1 β̂iβ̂

′
i


 . (107)

The calculations above imply that, as N → ∞, 1
N

∑N
i=1 β̂i

P−→ µβ and 1
N

∑N
i=1 β̂iβ̂

′
i

P−→ Σβ +

µβµ′
β + p- limN→∞

1
N

∑N
i=1 ξiT ξ′iT . Using (102) and assumptions (94) and (95) we obtain

1
N

∑N
i=1 ξiT ξ′iT = Σ̂−1

FT

[
1

T 2

∑T
t=1

∑T
s=1

(
1
N

∑N
i=1 uituis

) (
ft − fT

) (
fs − fT

)′]
Σ̂−1

FT

P−→ Σ̂−1
FT

[
1

T 2

∑T
t=1 σ̄2

(
ft − fT

) (
ft − fT

)′]
Σ̂−1

FT = σ̄2 1
T Σ̂−1

FT as N → ∞.

(108)

Thus, from (107) it follows that

1

N
X̂′

NX̂N
P−→




1 µ′
β

µβ Σβ + µβµ′
β + σ̄2 1

T Σ̂−1
FT


 . (109)

Using the expression for the inverse of a partitioned matrix and a few steps of algebra, we now

obtain




1 µ′
β

µβ Σβ + µβµ′
β



−1 


γ0 + µ′
β

(
γ1 + fT − E[ft]

)

γ0µβ + (Σβ + µβµ′
β)(γ1 + fT − E[ft])



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=




1 + µ′
βΣ

−1
β µβ −µ′

βΣ
−1
β

−Σ−1
β µβ Σ−1

β






γ0 + µ′
β

(
γ1 + fT − E[ft]

)

γ0µβ + (Σβ + µβµ′
β)(γ1 + fT − E[ft])


 = ΓT .

Thus, to obtain an N -consistent estimator we need to subtract a term from X̂′
NX̂N in order to

eliminate the term σ̄2 1
T Σ̂−1

FT in the probability limit in (109). Assumption (95) states that

tr(ΣU)

N
=

∑N
i=1 σ2

i

N
→ σ̄2 as N → ∞

which, in the light of (109), suggests that we should replace X̂′
NX̂N by

X̂′
NX̂N −




0 0′
K

0K tr(Σ̂UT ) 1
T Σ̂−1

FT


 = X̂′

NX̂N − tr(Σ̂UT )

T
M′Σ̂−1

FTM

where M = [0K IK ] (K × (1 + K) matrix) and

Σ̂UT =
1

T − K − 1

T∑

t=1

ete
′
t, et = Rt − â − B̂T ft =

(
Rt − RT

)
− B̂T

(
ft − fT

)
. (110)

That is, Σ̂UT is the unbiased estimator of ΣU based on the sample of size T . It remains to show

that

tr(Σ̂UT )

N
→ σ̄2 as N → ∞. (111)

Using (110) and the decomposition in (100) we obtain

tr(Σ̂UT )

N
=

1

N
tr

(
1

T − K − 1

T∑

t=1

ete
′
t

)

=
1

N(T − K − 1)

T∑

t=1

N∑

i=1

[(
Rit − RiT

)
− β̂

′
iT

(
ft − fT

)]2

=
1

N(T − K − 1)

T∑

t=1

N∑

i=1

[(
βi − β̂iT

)′ (
ft − fT

)
+ (uit − uiT )

]2

= 1
T−K−1

∑T
t=1

(
ft − fT

)′ ( 1
N

∑N
i=1 ξiT ξ′iT

) (
ft − fT

)

− 2
T−K−1

∑T
t=1

(
ft − fT

)′ ( 1
N

∑N
i=1 uitξiT

)

+ T
T−K−1

1
N

∑N
i=1

(
1
T

∑T
t=1(uit − uiT )2

)

(112)
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Following the calculation in (104) we obtain that 1
N

∑N
i=1 uitξiT

P−→ σ̄2

T Σ̂−1
FT

(
ft − fT

)
as N → ∞.

Further, using assumptions (93), (94) and (95), we have

1

N

N∑

i=1

(
1

T

T∑

t=1

(uit − uiT )2

)
=

1

N

N∑

i=1

(
1

T

T∑

t=1

u2
it −

1

T 2

T∑

t=1

T∑

s=1

uituis

)
P−→ T − 1

T
σ̄2

Combining the above probability limits and the result in (108) we obtain from (112) that

tr(Σ̂UT )

N

P−→ T − 1

T − K − 1
σ̄2 − 1

T − K − 1
σ̄2

[
1

T

T∑

t=1

(
ft − fT

)′
Σ̂−1

FT

(
ft − fT

)
]

= σ̄2 (113)

where 1
T

∑T
t=1

(
ft − fT

)′
Σ̂−1

FT

(
ft − fT

)
= K since Σ̂FT is assumed to be positive definite. The

last equality follows from the following matrix algebraic result which is based on the properties

of the trace operator for matrices. Suppose xt, t = 1, . . . , T are K-dimensional vectors and let

X =
∑T

t=1 xtx
′
t. If X is nonsingular, then

∑T
t=1 x′

tX
−1xt = K. Thus we have completed the proof

of the following theorem.

Theorem 3.17 Let Assumptions 3.1 and 3.2 be in effect. Then

(
X̂′

NX̂N − tr(Σ̂UT )M′Σ̂−1
FTM/T

)−1
X̂′

NRT (114)

is an N -consistent estimator of the vector of the ex-post prices of risk ΓT where X̂N = [1N B̂T ],

M = [1K IK ], and B̂T , Σ̂FT , Σ̂UT are defined by (17), (16), (110) respectively.

4 Maximum Likelihood Methods

When the researcher is willing to make distributional assumptions on the joint dynamics of the

asset returns and the factors, the likelihood function is available and the maximum likelihood

(ML) method provides a natural way to estimate and test the linear beta pricing model. The

earliest application of the ML method was by Gibbons (1982). Given the computational difficulties

involved at that time, Gibbons linearized the restriction imposed by the linear beta pricing model.

He estimated the model and tested the hypothesis that the restrictions imposed by the pricing

model holds using the likelihood ratio test statistic which has a central chi-square distribution with

the number of degrees of freedom equal to the number of constraints. In what follows, we first

describe the ML method for estimating and testing the general linear beta-pricing model under the

assumption that none of the factors are traded and then relax the assumption to allow some factors

to be traded. We then consider the more special case where there is a risk-free asset.
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4.1 Nontraded factors

Consider the linear factor model given in equation (5) reproduced below for convenience

Rt = α + Bft + ut with α = µ
R
− Bµ

F
(115)

where the alternative notation µ
R

= E[Rt] and µ
F

= E[ft] is used. We are first concerned with

the case in which the factors are not returns on traded portfolios. Assume that the innovations ut

are i.i.d. multivariate normal conditional on contemporaneous and past realizations of the factors,

and denote by ΣU the covariance matrix of the innovations and by LF the marginal likelihood of

the factors.

The linear beta pricing model in equation (4) imposes the restriction that

α = a01 + B(λ − µ
F
) (116)

where λ and µ
F

denote the vector of the risk premia and the vector of expected values of the K

factors respectively. In the special case where there is only one factor and it is the return on the

market portfolio, Rmt, this gives the well known intercept restriction,

αi = a0(1 − βmi), i = 1, . . . , N.

The loglikelihood function of the unconstrained model is given by

L = −NT

2
log(2π) − T

2
log(|ΣU|) −

1

2

T∑

t=1

(Rt − α − Bft)
′Σ−1

U
(Rt − α − Bft) + log(LF).

It can be verified that the maximum likelihood estimator of the parameter vector is given by

µ̂
R

= 1
T

∑T
t=1 Rt; µ̂

F
= 1

T

∑T
t=1 ft;

Σ̂F = 1
T

∑T
t=1(ft − µ̂

F
)(ft − µ̂

F
)′; B̂ =

[
1
T

∑T
1 (Rt − µ̂

R
)(ft − µ̂

F
)′
]
Σ̂−1

F ;

α̂ = µ̂
R
− B̂µ̂

F
; Σ̂U = 1

T

∑T
t=1(Rt − α̂ − B̂ft)(Rt − α̂ − B̂ft)

′.

(117)

When the beta pricing model holds α is given by equation (116). Substituting the right side of

equation (116) for α into the linear factor model in equation (115) and rearranging the terms gives

Rt − a01 = B(a1 + ft) + ut (118)
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where a1 = λ − µ
F
. Let a = [a0 a′

1]
′. It can then be verified that the constrained maximum

likelihood estimators are given by

α̂c = µ̂
R
− B̂cµ̂

F
; âc = (B̂′

c
Σ̂−1

Uc B̂c)
−1(B̂′

c
Σ̂−1

Uc α̂c)

B̂c =
[

1
T

∑T
t=1(Rt − â0c1)(â1c + ft)

′
] [

1
T

∑T
t=1(â1c + ft)(â1c + ft)

′
]−1

Σ̂Uc = 1
T

∑T
t=1[Rt − â0c1 − B̂c(â1c + ft)][Rt − â0c1 − B̂c(â1c + ft)]

′

(119)

where the subscript c indicates that these are the constrained ML estimates.

The above equations can be solved by successive iteration. The unconstrained estimates of α

and ΣU are used to obtain an initial estimate of a. The asymptotic variance of the estimators can

be obtained using standard maximum likelihood procedures. When the linear beta pricing model

restriction holds, the likelihood ratio test statistic (minus twice the logarithm of the likelihood

ratio) given by

JLR = −T
[
log(|Σ̂U|) − log(|Σ̂Uc|)

]
(120)

has an asymptotic chi-square distribution with N − (K +1) degrees of freedom. Following Bartlett

(1938), Jobson and Korkie (1982) suggest replacing T in equation (120) with T − N
2 − K − 1 for

faster convergence to the asymptotic chi-square distribution.

4.2 Some factors are traded

When all the factors are returns on some benchmark portfolios, λ − µ
F

is the vector of expected

return on the benchmark portfolios in excess of the zero-beta return. In this case, Shanken (1985)

shows that the exact constrained maximum likelihood can be computed without iteration. It is

an extension of the method worked out in Kandel (1984) for the standard CAPM. For the gen-

eral case in which a subset of the factors are returns on portfolios of traded securities, Shanken

(1992) shows that the ML and the two-pass GLS cross sectional regression estimators are asymp-

totically equivalent under the standard regularity conditions assumed in empirical studies as the

number of observations T becomes large. Hence the two-pass cross sectional regression approach

is asymptotically efficient as T becomes large.

Shanken (1985) establishes the connection between the likelihood ratio test for the restrictions

imposed by the pricing model to the multivariate T 2 test that examines whether the vector of

model expected return errors are zero after allowing for sampling errors. Zhou (1991) derives the

exact finite sample distribution of the likelihood ratio test statistic and shows that the distribution

depends on a nuisance parameter.
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Suppose the mean-variance frontier of returns generated by a given set of N assets is spanned

by the returns on a subset of K benchmark assets only. This is a stronger assumption than the

assumption that the K factor linear beta pricing model holds. In this case, there is an additional

restriction on the parameters in the linear factor model given in equation (115). The βik’s should

sum to 1 for each asset i, that is
∑K

k=1 βik = 1 for all i = 1, . . . , N and the intercept term α

should equal the zero vector. Under the assumption that the returns are i.i.d. with a multivariate

normal distribution, Huberman and Kandel (1987) and Kan and Zhou (2001) show that the statistic

T−N−K
N

[(
|Σ̂Uc|
|Σ̂U|

) 1

2 − 1

]
has a central F distribution with (2N, 2(T − N − K)) degrees of freedom.

When a factor is a return on a traded asset, the ML estimate of the factor risk premium is its

average return in the sample minus the ML estimate of the zero-beta return. For a non traded

factor, the ML estimate of the expected value of the factor is its sample average.

4.3 Single risk-free lending and borrowing rates with portfolio returns as factors

When there is a risk-free asset and borrowing and lending is available at the same rate, it is

convenient to work with returns in excess of the risk-free return. Let us denote by Re
t the vector

of date t excess returns on the N assets and by f e
t the vector of excess returns on the K factor

portfolios. The linear factor model in this case assumes the form

Re
t = α + Bf e

t + ut. (121)

As before, we assume that the innovations ut are i.i.d. with a multivariate normal distribution

conditionally on contemporaneous and past factor excess returns, and LF denotes the marginal

likelihood of the factor excess returns. The beta pricing model implies that the vector of intercepts,

α, equals the zero vector. Let us denote by α̂, B̂ the OLS estimates of α,B, by µ̂
F

the sample mean

of the vector of excess returns on the factor portfolios, and by Σ̂U, Σ̂F the sample covariance matrices

of the linear factor model residuals and the excess returns on the factor portfolios respectively.

Under the null hypothesis the statistic

JLR =
T − N − K

N

(
α̂′Σ̂−1

U α̂

1 + µ̂′
F
Σ̂Fµ̂

F

)
(122)

has an exact F distribution with (N, T − N − K) degrees of freedom. The reader is referred to

Jobson and Korkie (1985), MacKinlay (1987) and Gibbons, Shanken and Ross (1989) for further

details, analysis of the test statistic under the alternative that α 6= 0, a geometric interpretation of

the test when K = 1 and a discussion of the power of the tests.
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5 The Generalized Method of Moments

One major shortcoming of the ML method is that the econometrician has to make strong as-

sumptions regarding the joint distribution of stock returns. The common practice is to assume

that returns are drawn from an i.i.d. multivariate normal distribution. The generalized method

of moments (GMM) has made econometric analysis of stock returns possible under more realistic

assumptions regarding the nature of the stochastic process governing the temporal evolution of

economic variables. In this section, we discuss how to use the GMM to analyze the cross section

of stock returns. After giving an overview of the GMM, we discuss the estimation and testing of

linear beta pricing models using their beta as well as the stochastic discount factor (SDF) repre-

sentation. Finally, we discuss the various issues related to the GMM tests of conditional models

with time-varying parameters.

The use of the GMM in finance started with Hansen and Hodrick (1980) and Hansen and Single-

ton (1982). Subsequent developments have made it a reliable and robust econometric methodology

for studying the implications of not only linear beta pricing models but also dynamic asset-pricing

models in general, allowing stock returns and other economic variables to be serially correlated,

leptokurtic, and conditionally heteroscedastic. The works by Newey and West (1987), Andrews

(1991), and Andrews and Monahan (1992) on estimating covariance matrices in the presence of

autocorrelation and heteroscedasticity are the most significant among these developments. We re-

fer the readers to Jagannathan, Skoulakis and Wang (2002) for a review of financial econometric

applications of the GMM .

The major disadvantage of the GMM when compared to the maximum likelihood method is

that the sampling theory has only asymptotic validity. We therefore require a long history of

observations on returns relative to the number of assets. When the number of assets is large,

it is difficult to estimate the covariance matrix of returns precisely. Two approaches have been

suggested in the literature to address this issue. The first approach is to group the primitive assets

into a small number of portfolios and then evaluate the pricing models using return data on the

portfolios. However, even when the econometrician is working with only 10 or 20 portfolios, the

length of the time series of observations available may not be sufficient for appealing to the law

of large numbers. Therefore Monte Carlo simulation is often used to check if GMM estimators

and test statistics that rely on asymptotic theory have any biases. Using Monte Carlo simulations,

Ferson and Foerster (1994) found that the GMM tends to overreject models when the number of

observations, T , corresponds to values typically used in empirical studies. The second approach is

to make additional assumptions so that the covariance matrix of the residuals in the linear factor

generating model for the vector of asset returns takes a diagonal or block diagonal form. Some even

suggest assuming it to be a scaled identity matrix. These assumptions usually reduce the GMM
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estimator to an OLS estimator in linear regressions.

5.1 An overview of the GMM

Let xt be a vector of m variables observed in the tth period. Let g(xt, θ) be a vector of n functions,

where θ is a vector of k unknown parameters. Suppose when θ = θ0 the following moment

restriction holds

E[g(xt, θ0)] = 0n (123)

where 0n is the column vector of n zeros. For any θ, the sample analogue of E[g(xt, θ)] is

gT (θ) =
1

T

T∑

t=1

g(xt, θ) . (124)

Suppose xt satisfies the necessary regularity conditions so that the central limit theorem can be

applied to g(xt, θ0). Then

√
TgT (θ0)

D−→ N(0n,S), as T → ∞, (125)

where S is the spectral density matrix of g(xt, θ0), i.e.,

S =
∞∑

j=−∞
E[g(xt, θ0)g(xt+j , θ0)

′] . (126)

A natural estimation strategy for θ0 would be to choose those values that make gT (θ) as close

to the zero vector as possible. For that reason we choose θ to solve

min
θ

gT (θ)′S−1
T gT (θ) (127)

where ST is a consistent estimator of S. The solution to the minimization problem, denoted by

θ̂T , is the GMM estimator of θ. We assume that g satisfies the regularity conditions laid out in

Hansen (1982) so that θ0 is identified. In that case the following probability limit

D = p- lim
T→∞

∂gT (θ0)

∂θ′ = E

[
∂g(xt, θ0)

∂θ′

]
(128)

exists and has rank k. Hansen (1982) shows that the asymptotic distribution of the GMM estimator

is given by

√
T (θ̂T − θ0)

D−→ N
(
0k, (D

′S−1D)−1
)
, as T → ∞. (129)
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In general, gT (θ̂T ) will be different from the zero vector due to sampling errors. A natural test

for model misspecification would be to examine whether gT (θ̂T ) is indeed different from the zero

vector only because of sampling errors. For that, we need to know the asymptotic distribution of

gT (θ̂T ), which is provided by

√
TgT (θ̂)

D−→ N
(
0n,S − D(D′S−1D)−1D′) . (130)

The covariance matrix S−D(D′S−1D)−1D′ is positive semidefinite and can be degenerate. To test

the moment restriction, Hansen (1982) suggests using the following J-statistic

JT = TgT (θ̂T )′S−1
T gT (θ̂T ). (131)

He shows that the asymptotic distribution of JT is a central χ2 distribution with n − k degrees of

freedom, that is

JT
D−→ χ2(n − k), as T → ∞. (132)

The key to using the GMM is the specification of the moment restrictions, involving the ob-

servable variables xt, the unknown parameters θ, and the function g(·). Once a decision regarding

which moment restrictions are to be used is made, estimating the model parameters and testing

the model specifications are rather straightforward.

5.2 Evaluating beta pricing models using the beta representation

Let Rt be a vector of N stock returns during period t in excess of the risk-free rate. Let ft be a

vector of K economy-wide pervasive risk factors during period t. The mean and variance of the

factors are denoted by µ and Ω. The standard linear beta pricing model, also referred to as the

beta representation, is given by:

E[Rt] = Bδ , (133)

where δ is the vector of factor risk premia, and B is the matrix of factor loadings defined as

B ≡ E[Rt(ft − µ)′]Ω−1. (134)

The factor loadings matrix, B, can be equivalently defined as a parameter in the time-series re-

gression: Rt = φ + Bft + εt. The residual εt has zero mean and is uncorrelated with the factor

ft. The beta pricing model (133) imposes the following restriction on the intercept: φ = B(δ −µ).
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By substituting this expression for φ in the regression equation, we obtain:

Rt = B(δ − µ + ft) + εt (135)

E[εt] = 0N (136)

E[εtf
′
t ] = 0N×K . (137)

As we have pointed out, the key step in using GMM is to specify the moment restrictions.

Equations (135), (136) and (137) in addition to the definition of µ yield the following equations

E[Rt − B(δ − µ + ft)] = 0N (138)

E
[
[Rt − B(δ − µ + ft)]f

′
t

]
= 0N×K (139)

E[ft − µ] = 0K . (140)

Notice that we need equation (140) to identify the vector of risk premium δ. In this case, the vector

of unknown parameters is θ = [δ′ vec(B)′ µ′]′, the vector of observable variables is xt = [R′
t f ′t ]

′,

and the function g in the moment restriction is given by

g(xt, θ) =




Rt − B(δ − µ + ft)
vec ([Rt − B(δ − µ + ft)]f

′
t)

ft − µ


 . (141)

Then, the precision of the GMM estimate can be assessed by using the sampling distribution (129)

and the model can be tested by using the J-statistic with asymptotic χ2 distribution given in (132).

The degree of freedom is N−K because there are N +NK+K equations in the moment restriction

and K + NK + K unknown parameters.

Often we are interested in finding out the extent to which a beta pricing model assigns the correct

expected return to a particular collection of assets. For that purpose it is helpful to examine the

vector of pricing errors associated with a model, given by

α = E[Rt] − Bδ. (142)

The pricing error associated with the CAPM is usually referred to as Jensen’s alpha. When the

model holds, we should have α = 0N . The sample analogue of the pricing error is

αT =
1

T

T∑

t=1

Rt − B̂δ̂, (143)

which can be served as a consistent estimator of the pricing error. In order to obtain the sampling

distribution of αT , we express it in terms of gT (θ̂T ) as follows:

αT = Q̂gT (θ̂T ) where Q̂ =
[
IN 0N×NK B̂

]
. (144)
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Obviously, we have

p- lim
T→∞

Q̂ = [IN 0N×K B] . (145)

Let us use Q to denote the matrix on the right-hand side of the above equation. It follows from

(130) that, under the null hypothesis that the asset pricing model holds and so α = 0N , the

sampling distribution of αT should be

√
TαT

D−→ N(0N ,Q(S − D(D′S−1D)−1D′)Q′) (146)

where S and D, given by (126) and (128) respectively, should be estimated using the function g in

(141).

When an economy-wide factor, say fjt, is the return on a portfolio of traded assets, we call it a

traded factor. An example of a traded factor would be the return on the value-weighted portfolio of

stocks used in empirical studies of Sharpe’s (1964) Capital Asset Pricing Model (CAPM). Examples

of non-traded factors can be found in Chen, Roll, and Ross (1986), who use the growth rate of

industrial production and the rate of inflation, and Breeden, Gibbons and Litzenberger (1989), who

use the growth rate in per capita consumption as a factor. When a factor fjt, is the excess return

on a traded asset, equations (133) and (134) imply δj = µj , i.e., the risk premium is the mean of

the factor. In that case it can be verified that the sample mean of the factor is the estimator of the

risk premium. If the factor is not traded, this restriction does not hold, and we have to estimate

the risk premium using stock returns.

If all the factors in the model are traded, equations (138) and (139) become

E[Rt − Bft] = 0N (147)

E[(Rt − Bft)f
′
t ] = 0N×K . (148)

In that case, we can estimate β and test the model restrictions (147)-(148) without the need to

estimate the risk premium δ. If one needs the estimate of risk premium, it can be obtained from

equation (140). When all the factors are traded, the restriction imposed on the risk premium gives

extra degrees of freedom – the number of degrees of freedom in (147)-(148) is N while the number

of degrees of freedom in (138)-(140) is N −K. With traded factors, we can evaluate pricing errors

of the model in the same way as done with non-traded factors.

The traded factors, however, allow us to estimate the pricing errors more conveniently as un-

known parameters. For this purpose, we use the following moment restriction

E[Rt − α − Bft] = 0N (149)

E[(Rt − α − B′ft)f
′
t ] = 0N×K , (150)
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and investigate the hypothesis α = 0N . The above system is exactly identified because there are

N + NK equations and N + NK unknown parameters. With these moment restrictions, we have

xt = [R′
t f ′t ]

′, θ = [α′ vec(B)′]′ and

g(xt, θ) =

(
Rt − α − Bft

vec ([Rt − α − Bft]f
′
t)

)
. (151)

The above function g defines the matrix S and D through equations (126) and (128). Let ST and

DT be their consistent estimators. Then, the GMM estimator θ̂T can be obtained and the GMM

estimator of α is α̂T = Pθ̂T , where P = [IN 0N×NK ]. Under the null hypothesis α = 0N , it

follows from (129) that

T α̂′
T

(
P
(
DT

′S−1
T DT

)−1
P′
)−1

α̂T
D−→ χ2(N), as T → ∞. (152)

Some remarks are in order. As shown above, for the case of traded factors, we can use the

J-statistic to test the moment restrictions given by (147)-(148). However, we cannot do so for the

moment restrictions given by (149)-(150) because the exactly identified system implies JT ≡ 0. In

that case, we can only examine whether α̂T is statistically different from zero using the distribution

in (152). Therefore, for the case of traded factors, we have two choices. The first is to test (147)-

(148) using the J-statistics, and the second is to test α = 0N using (149)-(150). MacKinlay and

Richardson (1991) refer to the first as restricted test and the second as unrestricted test. It is

important to notice that we cannot add α as unknown parameters to equations (138) and (139)

when factors are non-traded because there will be more unknown parameters than equations. The

pricing error has to be obtained from gT (θ̂T ). In this case, we have to use the J-statistic to test

the moment restriction (138)-(140). Therefore, we can only do the restricted test when factors are

non-traded.

Note that the factor risk premium does not appear in equations (149) and (150). In order

to estimate the factor risk premium it is necessary to add the additional moment restriction that

the factor risk premium is the expected value of the factor, which is the excess return on some

benchmark portfolio of traded assets. As mentioned earlier, it can be verified that the best estimate

of the factor risk premium is the sample average of the factor realizations.

When returns and factors exhibit conditional homoscedasticity and independence over time,

the GMM estimator is equivalent to the ML estimator suggested by Gibbons, Ross, and Shanken

(1989). For details, we refer readers to MacKinlay and Richardson (1991). This implies that

GMM estimator of the risk premia in the linear beta model is the most efficient unbiased estimator

when stock returns and factors are homoscedastic and independent over time. More importantly,

MacKinlay and Richardson (1991) demonstrate that the ML estimation and test are biased when

stock returns are conditionally heteroscedastic. They argue that the advantage of GMM is its
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robustness to the presence of conditional heteroscedasticity and thus recommend estimating the

parameters in beta models using GMM.

5.3 Evaluating beta pricing models using the stochastic discount factor repre-

sentation

We can derive a different set of moment restrictions from the linear beta pricing model. Substituting

equation (134) into equation (133) and appropriately rearranging terms, we obtain

E
[
Rt

(
1 + δ′Ω−1µ − δ′Ω−1ft

)]
= 0N . (153)

If the factors are traded, we have 1 + δ′Ω−1µ = 1 + µ′Ω−1µ ≥ 1. If the factors are not traded, we

assume 1 + δ′Ω−1µ 6= 0. Then, we can use it to divide both sides of equation (153) and obtain

E

[
Rt

(
1 − δ′Ω−1

1 + δ′Ω−1µ
ft

)]
= 0N . (154)

If we transform the vector of risk premia, δ, into a vector of new parameters λ as follows

λ =
Ω−1δ

1 + δ′Ω−1µ
, (155)

then equation (154) becomes

E
[
Rt

(
1 − λ′ft

)]
= 0N . (156)

This moment restriction is often referred to as a stochastic discount factor (SDF) representation

of the beta pricing model. The variable mt ≡ 1 − λ′ft is the stochastic discount factor because

E[Rtmt] = 0N . In general, a number of random variables mt satisfying E[Rtmt] = 0N exist and

thus, there are more than one stochastic discount factor. The linear factor pricing model (156)

designates the random variable mt to be a linear function of the factors ft. Dybvig and Ingersoll

(1982) who derived the SDF representation of the CAPM and Ingersoll (1987) derives the SDF

representation for a number of theoretical asset pricing models. Hansen and Richard (1987) coined

the term ”stochastic discount factor”.

Most asset pricing models have a convenient SDF representation - not just the linear beta pricing

model. The SDF representation typically follows from the Euler equations (first order condition)

for portfolio choice problems faced by an investor. In general, the Euler equation can be written as,

Et−1[Rtmt] = 0N for excess returns, where Et−1 is the expectation conditional on the information

at the end of period t − 1. This is often referred to as conditional SDF representation. When

the utility function in the economic model depends on a vector of parameters, denoted by θ, the
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stochastic discount factor mt is a function of θ and a vector of economic variables ft. Then, the

stochastic discount factor has the form of m(θ, ft). For example, in the representative-agent and

endowment economy of Lucas (1978), m(θ, ft) = ρca
t , where ft = ct, the growth rate of aggregate

consumption, and θ = [ρ a]′. The linear beta model implies m(θ, ft) = 1 − λ′ft, where θ = λ and

ft is the vector of factors. Bansal, Hsieh and Viswanathan (1993) and Bansal and Viswanathan

(1993) specify m as a polynomial function of the factors ft. We will write the general conditional

SDF representation of the pricing model as follows

Et−1[Rtm(θ, ft)] = 0N . (157)

Taking the unconditional expectation, we have

E[Rtm(θ, ft)] = 0N (158)

which includes equation (156) as a special case.

We can test the pricing model using its conditional SDF representation (157) by incorporating

conditional information. Let zt−1 be a vector of economic variables observed by the end of period

t − 1. Consider a M × N matrix denoted H(zt−1), the elements of which are functions of zt−1.

Multiplying H(zt−1) to both sides of (157) and taking the unconditional expectation, we obtain

E [H(zt−1)Rtm(θ, ft)] = 0N . (159)

In testing (157) using zt−1, the common practice is to multiply the returns by the instrumental

variables to get vec(zt−1 ⊗ Rt), generally referred to as the vector of scaled returns. If we choose

H(zt−1) = zt−1 ⊗ IN , then H(zt−1)Rt = vec(zt−1 ⊗ Rt). If we are only interested in testing the

unconditional SDF model (158), we choose the conditional portfolios to be the original assets by

setting H(zt−1) = IN . If m(θ, ft) satisfies equation (159), we say m(θ, ft) prices the portfolios

correctly and call it a valid SDF. The idea of scaling stock returns by conditional variables was first

proposed by Hansen and Singleton (1982).

If we normalize each row of H(zt−1) to a vector of weights that sum to 1, then the vector

R̃t = H(zt−1)Rt is, in fact, the vector of returns on conditional portfolios of stocks. The weights

in these portfolios are time-varying. We thus obtain an unconditional SDF representation of the

beta pricing model, i.e., the SDF representation becomes E[R̃tm(θ, ft)] = 0M . Therefore, testing a

conditional SDF representation using conditional variables is equivalent to testing an unconditional

SDF representation using portfolios managed using conditioning information. For example, portfo-

lios constructed using firm size or book-to-market ratio are portfolios whose weights are managed

to vary over time in a particular way, and tests of the unconditional SDF representation using
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these portfolios can be viewed as tests of conditional SDF representation using firm size or book-

to-market ratio as conditioning variables. Therefore, in principle we do not lose any information

by testing unconditional moment restrictions because we can always augment the set of assets with

portfolios that are managed in clever ways using conditioning information.

The application of GMM to the SDF representation is straightforward. Let xt =
[
R′

t f ′t z′t−1

]′

and

g(xt, θ) = R̃tm(θ, ft) = H(zt−1)Rtm(θ, ft) . (160)

We can provide consistent estimates of matrices S and D using the definition of the function g.

We obtain the GMM estimator θ̂T by solving (127), and test the restrictions (159), using the

framework in Section 5.1. The sample analogue of the vector of pricing errors, gT (θ̂), is defined

by equation (124). This pricing error is analyzed extensively by Hansen and Jagannathan (1997).

Jagannathan and Wang (2002) examine the relation between pricing error and Jensen’s alpha. It is

shown that the former is a linear transformation of the latter in linear beta pricing models. Hodrick

and Zhang (2001) compare the pricing errors across a variety of model specifications. The statistic

JT is calculated as in (131). The approach outlined here applies to SDF representation of asset

pricing models in general - not just the linear beta pricing model which is the focus of our study in

this chapter. In addition, the entries of the matrix H(zt−1) do not have to correspond to portfolio

weights.

Since the SDF representation can be used to represent an arbitrary asset pricing model, not just

the beta pricing model, it is of interest to examine the relative efficiency and power of applying the

GMM to the SDF and beta representations of the pricing model. Jagannathan and Wang (2002)

find that using the SDF representation provides as precise an estimate of the risk premium as that

obtained by using the beta representation. Using Monte Carlo simulations, they demonstrate that

the two methods provide equally precise estimates in finite samples as well. The sampling errors in

the two methods are similar, even when returns have fatter tails relative to the normal distribution

allowing for conditional heteroscedasticity. They also examine the specification tests associated

with the two approaches and find that these tests have similar power.

Although the J-statistic is useful for testing for model misspecification, comparing the J-

statistics across different model specifications may lead to wrong conclusions. One model may

do better than another not because the vector of average pricing errors, gT , associated with it

are smaller, but because the inverse of the optimal weighting matrix, ST , associated with it is

smaller. To overcome this difficulty, Hansen and Jagannathan (1997) suggested examining the

pricing error of the most mispriced portfolio among those whose second moments of returns are

normalized to 1. This corresponds to using the inverse of the second moment matrix of returns,
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G−1 =
(
E[R̃tR̃

′
t]
)−1

, as the weighting matrix under the assumption that G is positive definite.

Hansen and Jagannathan (1997) demonstrate that

d(θ) =
[
E[g(xt, θ)]′G−1E[g(xt, θ)]

] 1

2 (161)

equals the least-square distance between the candidate SDF and the set of all valid SDFs. Further,

they show that d(θ) is the maximum pricing error on normalized portfolios of the N assets, generally

referred to as the HJ-distance.

For given θ, the sample estimate of the HJ-distance is

d̂(θ) =
[
gT (θ)′G−1

T gT (θ)
] 1

2 (162)

where GT is a consistent estimate of G. An obvious choice for the consistent estimate is

GT =
1

T

T∑

t=1

R̃tR̃
′
t =

1

T

T∑

t=1

H(zt−1)RtR
′
tH(zt−1)

′. (163)

To check the model’s ability to price stock returns, it is natural to choose the parameter θ that

minimizes the estimated HJ-distance. This leads us to choose

θ̃T = arg min
θ

gT (θ)′G−1
T gT (θ). (164)

It is important to note that θ̃T is not the same as the GMM estimator θ̂ because G is not equal

to S. Also, the T -scaled estimate of the square of HJ-distance, T [d̂(θ̃T )]2, is not equal to the

J-statistic, and thus does not follow the distribution χ2(M − K) asymptotically.

Following Jagannathan and Wang (1996), it can be shown that the limiting distribution of

T [d̂(θ̃T )]2 is a linear combination of χ2 distributions, each of which has one degree of freedom.

More precisely,

T [d̂(θ̃T )]2
D−→

M−K∑

j=1

ajξj , as T → ∞, (165)

where ξ1, . . . , ξM−K are independent random variables following χ2(1) distributions. The coeffi-

cients, a1, . . . , aM−K , are the nonzero eigenvalues of the matrix

A = S1/2G−1/2
(
IM − (G−1/2)′D(D′G−1D)−1D′G−1/2

)
G−1/2)′(S1/2)′, (166)

where S1/2 and G1/2 are the upper triangular matrices in the Cholesky decompositions of S and G.

The distribution in (165) can be used to test the hypothesis d(θ) = 0. Applications of the sampling

distribution in (165) can be found in Jagannathan and Wang (1996), Buraschi and Jackworth

(2001), and Hodrick and Zhang (2001).
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5.4 Models with time-varying betas and risk premia

In analysis of stock returns in the cross section, financial economists often consider conditional

linear models with time-varying beta and factor risk premia. In that case, we need to consider

conditional moments of stock returns and factors in generating the moment restrictions. We need

the following additional notation to denote the conditional means and variances of the factors and

the conditional betas of the assets.

µt−1 = Et−1 [ft] (167)

Ωt−1 = Et−1

[
(ft − µt−1)(ft − µt−1)

′] (168)

Bt−1 = Et−1

[
Rt(ft − µt−1)

′]Ω−1
t−1 . (169)

The conditional analogue of the linear beta pricing model with time-varying risk premia, δt−1, is

then given by

Et−1 [Rt] = Bt−1δt−1 . (170)

Obviously, it is impossible to estimate and test the above time-varying model without imposing

additional assumptions. Generally, we need to reduce the time-varying unknown parameters to

a small number of constant parameters. In this subsection, we discuss five ways of introducing

testable hypotheses for GMM in conditional linear beta models with time-varying parameters.

Suppose either the betas or the risk premia, but not both, are constants. To see the implication

of this assumption, take the unconditional expectation of both sides of equation (170) to obtain

E [Rt] = E [Bt−1] E [δt−1] + Cov [Bt−1, δt−1] (171)

where E[βt−1] and E[δt−1] can be interpreted as the average beta and the risk premium. The

covariance between beta and the risk premium is Cov(Bt−1, δt−1) = E[Bt−1(δt−1 − E[δt−1])]. If

either beta or premium is constant, the covariance term is zero. Then, the unconditional expected

return is simply the product of the average beta and the average premium. More generally, if

the conditional beta and premium are uncorrelated, the model is essentially equivalent to an un-

conditional or static model. However, it does not make good economic sense to assume that the

conditional beta and the risk premium are uncorrelated because both risk and risk premia are

affected by the same pervasive forces that affect the economy as a whole. As a matter of fact, Ang

and Liu (2002) demonstrate that this correlation is rather high.

The unconditional correlation between conditional betas and conditional risk premia induces

stock returns to be unconditionally correlated with conditional factor risk premia. Therefore, when

a conditional linear beta pricing model holds, the unconditional expected return on an asset will
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be a linear function of the asset’s unconditional factor betas and the asset’s unconditional betas

with respect to the conditional factor risk premia. For example, when the conditional version of

the CAPM holds, Jagannathan and Wang (1996) show that the following unconditional two-beta

model would obtain:

E [Rt] = Ba + Bδb, (172)

where the two vector of betas are defined as

B = E [Rt(ft − µ)]Ω−1 (173)

Bδ = E [Rt(δt−1 − µδ)]Ω
−1
δ . (174)

In above equations, µ and µδ are unconditional mean of the factors and risk premia, and Ω and

Ωδ are their unconditional variances. The vectors a and b are unknown coefficients.

Since the risk premia are not observable, we still cannot estimate and test the model without

additional assumptions. A convenient assumption that is often made in empirical studies is that

the risk premium is a function of a prespecified set of observable economic variables, i.e.,

δt−1 = hδ(γδ, zt−1) (175)

where zt−1 is a vector of economic variables observed at the end of period t− 1, and γδ is a vector

of unknown parameters. For example, when studying the conditional CAPM, Jagannathan and

Wang (1996) choose zt−1 to be the default spread of corporate bonds and hδ a linear function.

Then, equation (172)-(175) can be transformed into an unconditional SDF model:

Hypothesis I : E
[
Rt

(
1 + ϑ′ft + ϑ′

δhδ(γδ, zt−1)
)]

= 0N , (176)

where ϑ and ϑδ are vectors of unknown parameters. This model can be estimated and tested using

GMM as discussed in Section 5.3. When factors are traded, the time-varying risk premia are equal

to the conditional expectation of factors, i.e., δt−1 = µt−1. Then, we can replace equation (175)

by a prediction model for factors such as

µt−1 = hµ(γµ, zt−1), (177)

where γµ is a vector of unknown parameters. The prediction model can be estimated and tested

together with equation (176). That is, we can use GMM to estimate and test the following moment

restriction:

E

[(
ft − hµ(γµ, zt−1)

Rt

(
1 + ϑ′ft + ϑ′

δhµ(γµ, zt−1)
)
)]

= 0K+N . (178)
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The first part of the equation is the restriction implied by the prediction model µt−1 = hµ(γµ, zt−1).

Instead of testing unconditional SDF representation of the conditional linear beta pricing model

using Hypothesis I, we can directly obtain a conditional SDF representation from equation (170)

and derive an alternative test by making additional assumptions about the time-varying parameters.

Equation (176) implies

Et−1

[
Rt

(
1 + δ′

t−1Ω
−1
t−1µt−1 − δ′

t−1Ω
−1
t−1ft

)]
= 0N . (179)

To make this model testable, assume that (177) holds and,

Ω−1
t−1δt−1 = hω(γω, zt−1), (180)

where γω is a vector of unknown parameters. When there is only one factor, Ω−1
t−1δt−1 is the

reward-to-variability ratio. Then, equation (179) becomes

Et−1

[
Rt

(
1 + hω(γω, zt−1)

′hµ(γµ, zt−1) + hω(γω, zt−1)
′ft
)]

= 0N (181)

We can estimate and test the conditional moment restriction given below using the GMM as

described in Section 5.3:

Hypothesis II : Et−1

[(
ft − hµ(γµ, zt−1)

Rtmt

)]
= 0K+N , (182)

where mt = 1+hω(γω, zt−1)
′hµ(γµ, zt−1)+hω(γω, zt−1)

′ft. The advantage of this approach is that

we make use of the information in the conditioning variables zt−1. The cost is that we have to

make assumption (180), which is rather difficult to justify. In empirical studies using this approach

it is commonly assumed that hµ is a linear function of zt−1 and that hω is constant. When factors

are traded, assumption (180) implies

hµ(γµ, zt−1) = Ωt−1hω(γω, zt−1). (183)

Letting ut = ft − hµ(γµ, zt−1), we can rewrite the above equation as

Et

[
utu

′
thω(γω, zt−1) − hµ(γµ, zt−1)

]
= 0K , (184)

which can be added to the moment restriction in Hypothesis II. Harvey (1989) rejects the hypothesis

under the assumption that hµ is linear and hω is constant.

The third approach uses the conditional SDF representation and simply assumes that all the

time-varying parameters are functions of a few chosen observable conditioning variables observed by
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the econometrician. In that case the conditional beta model (170) implies the following conditional

SDF representation

Et−1

[
Rt

(
1 − λ′

t−1ft
)]

= 0N where λt−1 =
Ω−1

t−1δt−1

1 + δ′
t−1Ω

−1
t−1µt−1

. (185)

In this approach, we assume that λt−1 is a function of zt−1 up to some unknown parameters denoted

by γλ. That is, we assume

δ′
t−1Ω

−1
t−1

1 + δ′
t−1Ω

−1
t−1µt−1

= hλ(γλ, zt−1) . (186)

Using GMM, we can test the conditional moment restriction:

Hypothesis III : Et−1 [Rt (1 − hλ(γλ, zt−1)ft)] = 0N . (187)

Cochrane (1996) assumes a linear function λ′ = a′ + z′t−1C, where a is a vector of unknown

parameters and C is a matrix of unknown parameters. Then, the hypothesis becomes

Et−1

[
Rt

(
1 − a′ft − (f ′t ⊗ zt−1)vec(C)

)]
= 0N . (188)

In the empirical literature the convention is to refer to f ′t ⊗ zt−1 as the scaled factors. Equation

(188) can be viewed as a linear conditional SDF representation with scaled factors included as

a subset of the factors. Estimation and testing of this model can be carried out using GMM as

described in Section 5.3. The advantage of this approach is that it is straightforward and simple.

The disadvantage of this approach is that assumption (186) often lacks economic intuition and it

is not clear how to test the assumption.

None of the approaches discussed so far involve making assumptions about the laws governing

the temporal evolution of Bt−1 and Et−1[Rt]. However, assumptions about the dynamics of the

conditional factor risk premia impose restrictions on the joint dynamics of the conditional expected

stock returns and the conditional factor betas. Here onwards, for convenience, we will assume that

all the factors are traded. Then, we have δt−1 = µt−1. Equation (177) and the conditional beta

pricing model (170) implies

Et−1 [Rt−1] = Bt−1hµ(γµ, zt−1) (189)

Bt−1 = Et−1

[
Rtu

′
t−1

] (
Et−1

[
ut−1u

′
t−1

])−1
, (190)

where ut−1 = ft−hµ(γµ, zt−1). It would be rather difficult to verify whether assumptions about the

dynamics of conditional betas conditional expected stock returns are consistent with the restrictions

imposed by the above equations. Hence, it would be advisable to make assumptions regarding the
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dynamics of only two of the three groups of variables, conditional factor risk premia,conditional

factor betas and conditional expected return on assets.

Some empirical studies assume that Et−1[Rt] is a prespecified function of only a few conditioning

variables, zt−1, i.e.,

Et−1 [Rt] = hr(γr, zt−1). (191)

In empirical studies, zt−1 usually contains only a small number of macroeconomic variables that

help predict future factor realizations. Note that equation (191) is a rather strong assumption, since

it requires these variables to be sufficient for predicting future returns on every stock. Therefore,

before testing a conditional beta pricing model we need to examine whether assumptions (191)

and (177) are reasonable. For this purpose we may use the GMM to test the following moment

restrictions:

E

[
H(zt−1)

(
Rt − hr(γr, zt−1)
ft − hµ(γµ, zt−1)

)]
= 0N , (192)

where H(zt−1) is an M × (N + K) matrix of functions of zt−1, as described in Section 5.3.

Equation (191) imposes the following restrictions on the dynamics of conditional factor betas

through the beta pricing model (170)

hr(γr, zt−1) = Bt−1hµ(γµ, zt−1) . (193)

Some empirical studies of conditional beta pricing models assume that conditional factor betas are

specific functions of a few prespecified conditioning variables, i.e.,

Bt−1 = hβ(γβ , zt−1) . (194)

In that case it is necessary to ensure that this assumption does not conflict with equation (193).

For example, Ferson and Korajczyk (1995) assume (177) and (191) and take hµ and hr as linear

functions. Then, the dynamics of conditional betas in (194) cannot be captured by a linear function

of the conditioning variables zt−1 since hr would then be a quadratic function. To understand the

nature of the restrictions on the dynamics of conditional betas, let us consider the special case

where zt−1 is a scalar and hr(γr, zt−1) = γrzt−1, and hµ(γµ, zt−1) = γµzt−1, where γr and γµ are

N × 1 and K × 1 vectors respectively. In that case, Bt−1 is a constant and does not vary with time

since zt−1 can be cancelled out from both sides of equation (193) yielding γr = Bt−1γµ. We can

use GMM to test the following moment restrictions implied by (177) and (170)

Hypothesis IV : Et−1






ft − hµ(γµ, zt−1)

Rt − hr(γr, zt−1)
hr(γr, zt−1) − hβ(γβ, zt−1)hµ(γµ, zt−1)




 = 0K+2N . (195)
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The main problem with this approach is that the specification for hβ can be inconsistent with

the specifications for hµ and hr. Using international stocks, Ferson and Harvey (1993) reject the

above hypothesis under the assumption that all the three functions, hr, hδ and hβ , are linear. For

the one-factor CAPM, Ghysels (1998) compares the mean square prediction error of various model

specifications. Not surprisingly, the assumption of linear dynamics for conditional beta gives the

worst results. This suggests that assumption (191) may not be appropriate. We may therefore test

equations (194) and (189) and omit the second group of equations in (195).

When there is only one factor in the model, the restriction on conditional beta can be tested

without specifying beta dynamics - i.e., equations (193), (177) and (191) can be estimated and

tested without using equation (194). Substituting (190) into equation (193) and using the fact that

ft is a scalar, we obtain

hr(γr, zt−1) = Et−1 [Rtut]
(
Et−1

[
u2

t

])−1
hµ(γµ, zt−1), (196)

where ut = ft − hµ(γµ, zt−1). Multiplying Et−1[u
2
t ] to both sides and rearranging terms, we get

Et−1

[
u2

thr(γr, zt−1) − Rtuthµ(γµ, zt−1)
]

= 0N . (197)

Therefore, we can use GMM to test the following conditional moment restrictions:

Hypothesis V : Et−1






ft − hµ(γµ, zt−1)

Rt − hr(γr, zt−1)
u2

thr(γr, zt−1) − Rtuthµ(γµ, zt−1)




 = 01+2N . (198)

Although this hypothesis has the advantage that a stand on beta dynamics does not have to be

taken, it has two disadvantages. First, it assumes equation (191), which is a prediction model for

stock returns. Second, the asset pricing model can only have one factor. Using both U.S. stock

returns, Harvey (1989) rejects the hypothesis under the assumption that hr and hµ are both linear

functions.

Ghysels (1998) points out that we should be cautious about over fitting data when evaluating

beta pricing models with time varying parameters. When over fitting happens, the GMM test would

not able to reject the model. In that case, it is likely that the constant parameters specified in the

model would exhibit structural breaks. Therefore Ghysels suggests using the supLM test developed

by Andrews (1993) to check the stability of all constant coefficients when a model specification

passes the GMM test, and as an illustration tests linear versions of Hypotheses IV and V. To

ensure that over fitting does occur in the examples he considers, he uses only one asset in each test.

He shows that most of the J-statistics are not significant but many supLM statistics are significant.

These results suggest that it would be advisable to conduct GMM tests using a large number of

assets to rule out over fitting, especially for models containing many factors. Since empirical studies
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in this area typically use returns on a large collection of assets, over fitting is unlikely to be an issue

in practice. For example, Ferson and Harvey (1993) and Harvey (1989) reject the linear versions

of Hypotheses IV and using GMM.

Table 1 compares features of the five types of hypothesis we discussed. As can be seen, Hypoth-

esis I involves minimal assumptions, but the moment restriction does not make use of conditioning

information. As we have argued earlier, this need not be a serious limitation when the collection of

assets available to the econometrician include portfolios managed in clever ways using conditioning

information. The most important distinction of Hypotheses I, II and III from Hypotheses IV and V

is that they do not require additional assumptions regarding the dynamics of conditional expected

stock returns Et−1[Rt]. Hypotheses I, II and III allow the conditional expected stock returns to be

completely determined by the conditional beta pricing model relation. When Hypotheses IV and V

are rejected by GMM, further investigation is necessary to identify whether the rejection is due to

the prediction model or the asset pricing model being wrong. Another important difference is that

Hypotheses I, II and III can be viewed as special cases of SDF representation of the conditional

linear beta pricing model.

Table 1: Comparison of testable hypotheses for GMM.
Type of Additional Moment Factor type Example of
hypothesis assumption on restrictions & dimension studies

I δt−1 unconditional nontraded/multi Jagannathan & Wang (1996)

II µ
t−1, Ω

−1

t−1δt−1 conditional nontraded/multi Harvey (1989)

III
δ′

t−1
Ω

−1

t−1

1+δ′

t−1
Ω

−1

t−1
µ

t−1

conditional nontraded/multi Cochrane (1996)

IV µ
t−1, Et−1[Rt], Bt−1 conditional traded/multi Ferson & Harvey (1993)

V µ
t−1, Et−1[Rt] conditional traded/single Harvey (1991)

6 Conclusions

Linear beta pricing models have received wide attention in the asset pricing literature. In this

chapter we reviewed econometric methods that are available for empirical evaluation of linear beta

pricing models using time series observations on returns and characteristics on a large collection

of financial assets. The econometric methods can be grouped into three classes: the two stage

cross sectional regression method; the maximum likelihood method; and the generalized method

of moments. Shanken (1992) showed that the cross sectional method and the maximum likeli-

hood method are asymptotically equivalent when returns are drawn from an i.i.d. joint normal

distribution. Under that condition MacKinlay and Richardson (1991) showed that the maximum

likelihood method and the generalized method of moments are also asymptotically equivalent. The

56



generalized method of moments, however, has advantages when returns are not jointly normal and

exhibit conditional heteroscedasticity.

In general the number of assets will be large relative to the length of the time series of return

observations. The classical approach to reducing the dimensionality, without losing too much

information, is to use the portfolio grouping procedure of Black, Jensen and Scholes (1972). Since

portfolio betas are estimated more precisely than individual security betas, the portfolio grouping

procedure attenuates the errors in variables problem faced by the econometrician when using the

classical two stage cross sectional regression method. The portfolio formation method can highlight

or mask characteristics in the data that have valuable information about the validity or otherwise

of the asset pricing model being examined. Hence the econometrician has to exercise care to avoid

the data snooping biases discussed in Lo and MacKinlay (1990).

As Brennan, Chordia and Subrahmanyam (1998) observe, it is not necessary to group securities

into portfolios to minimize the errors in variables problem when all the factors are excess returns

on traded assets by working with risk adjusted returns as dependent variables. However, the ad-

vantages to working directly with security returns instead of first grouping securities into portfolios

have not been fully explored in the literature.

When the linear beta pricing model holds, expected returns on every asset is a linear function of

factor betas. The common practice for examining model misspecification using the cross-sectional

regression method is to include security characteristics like relative size and book to price ratios as

additional explanatory variables. These characteristics should not have any explanatory power when

the pricing model is correctly specified. An alternative approach would be to test for linearity using

multivariate tests. The former tests have the advantage that the alternative hypotheses provide

valuable information as to what may be missing in the model. The latter tests, on the other hand,

will have more power in general to detect any type of model misspecification. Hence both types

of tests may have to be used in conjunction, in order to understand the dimensions along which a

given model performs well when confronted with data.
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