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Abstract This article discusses a solution to Coombs’s project of a discrete, ordinal

factor analysis for dichotomous data that is structurally homologous to Galois lattice

analysis and to other related algebraic approaches. It compares this approach to the better

known ‘‘biorder’’ approach to the same problem. In contrast to the biorder approach which

is NP-hard, here the set of minimal solutions can be determined with a reasonably simple

coloration algorithm. The dimensionality of the resulting solution may be larger than that

retrieved by the closely related biorder approach, but the underlying space may be more

parsimonious in that there are fewer possible regions. In a class of reasonably important

cases, the two are equivalent.

Keywords Algebraic � Lattice � Coombs � Discrete � Biorder

1 Introduction

In many cases in the social and behavioral sciences, we confront a rectangular data matrix

consisting of the responses of a set of persons to a set of items, and we attempt to find a

parsimonious representation of the data by factoring the matrix. While in some cases, such

a factoring is used merely for purposes of data reduction and/or prediction, it is often used

to generate a plausible model of a response process. The assumption guiding the appli-

cation of the technique is that the factors retrieved represent psychological traits that vary

semi-independently across subjects.

How we approach the factorization problem depends upon whether our data are discrete

or continuous, whether the response process is deterministic or stochastic, and whether or

not the relation between the factors is seen as compensatory, in that having more of one
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factor makes up for having less of another (for compensatory approaches to dichotomous

data, see Takane and de Leeuw 1987; Reise 1999: 224f; also see the interesting approach

of Magdison and Vermunt 2001).

Here I wish to re-consider the case of factoring dichotomous data assumed to result

from a deterministic, non-compensatory response process. Such a case was originally

proposed by Coombs (1964) in his Theory of Data, and turns out to have formal

homologies to other algebraic techniques currently of interest in the social and behavioral

sciences (e.g., Butts and Hilgeman 2003; Degenne and Lebeauz 1996; Duquenne 1995,

1996; Ganter and Wille 1999; Martin and Wiley 2000; Mische and Pattison 2000; Mohr

and Duquenne 1997; Pattison 1993, 1995; Van Mechelen et al. 1995; White 1996; Wiley

and Martin 1999).

This case was re-explored under the name of ‘‘biorders’’ by Doignon et al. (1984),

Doignon and Falmagne (1984), Chubb (1986), and Koppen (1987); Leenen et al. (1999)

have recently incorporated this approach in a more general system. In the biorder approach,

the emphasis is placed on finding the solution of lowest dimensionality that could re-create

the observed patterns. However, this is not the only criterion of parsimony that one might

consider when choosing solutions. A second may be minimizing the number of unobserved

patterns that are considered acceptable combinations by the factorization. A third criterion

may be the total number of distinctions made between persons. Here I consider a solution

to Coombs’s problem recently discussed by Martin (2014), and demonstrate that where it

diverges from the biorder approach, it is more parsimonious in these latter two senses,

though less parsimonious in terms of the number of dimensions. Most important, I

demonstrate under what conditions these two approaches yield the same solution. I begin

by replicating Coombs’s logic of the response process.

2 Noncompensatory response processes and Galois lattices

Imagine that we give to N subjects a set of J items which draw upon K abilities. More

specifically, we follow Coombs (1964) and propose that any dichotomous item requires

that the subject be above a particular threshold on each and every trait in order to answer

the item in a positive direction (which could be ‘‘correct’’ for a test of ability or ‘‘agree’’ for

an attitude). Thus the response process is noncompensatory and deterministic. Consider the

ith individual to have a position in a K-dimensional trait space Y (=RK) which we can

denote as a real vector yi = [yi1, yi2,…, yiK]. This individual’s responses to the J items can

be summarized as a Boolean vector xi = [xi1, xi2, …, xiJ] with xij = 1 if the ith respondent

answered the jth item in a positive direction, and = 0 otherwise. Coombs’s logic says that

the jth item possesses a set of K thresholds1 {d1j, d2j, … dKj} such that

xij ¼ 1
� �

, yik � dkj 8k 2 1; . . .;Kf g: ð1Þ

This process then generates a data matrix X; we can also consider X a set of rows

x1, x2,… xN. We assume that all rows and all columns are distinct: persons (items) with

identical distributions across items (persons) may be treated as a single person (item). The

set of thresholds for any item can also be interpreted as defining a ‘‘discrete item curve

1 The degenerate case in which a threshold is at -? will (following Coombs) here be noted as the threshold
being 0, and the trait space being confined to non-negative traits. When we speak of the set of thresholds in a
Coombs factorization, we will not include such degenerate cases.
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(DIC)’’, a set of connected points that divides the space Y into regions in which the item is

answered positively from regions in which it is not.

Figure 1 is an example constructed by Coombs (1964: p. 256). Each item’s thresholds

appear as a point in this space with lines extending upwards and outwards so that only

those persons located ‘‘inside’’ the corner corresponding to any item answer it positively.

These L-shapes are the DICs in a two-dimensional space. In a three-dimensional space,

each DIC would be a corner composed of three semi-planes, and so on. Table 1 contains

the possible response patterns produced organized by the score (the number of positive

responses) and indexed according to the numbers in Fig. 1.

Of course, in an actual application, we begin with a data matrix X, and not the fac-

torization; our factorization ala Coombs is equivalent to embedding the response vectors in

a multidimensional space. Note that this embedding may imply the possibility of unob-

served response patterns. If we let CJ denote the Cartesian product {0,1}J for J items, since

X ( CJ, we can consider the non-observed possibilities X = CJ\X. Some of these (call

them Xe), if added to X, would imply a different factorization, while the others (call them

Xp ¼ XnXe) would not; hence, under the factorization of X, the former are excluded

possibilities and the latter permitted. In an analysis of some X* = X [ Xp, we will refer to

the rows of X* as ‘‘states,’’ as they are possible states that a respondent could be in, though

they have not all necessarily been observed. All the algebraic approaches cited above

permit the Boolean intersections of any observed elements; that is, for any x1, x2 ( X,

with x3 = x1 \ x2, if x3 (X, then x3 ( Xp. Because they also all permit the universal

upper bound 1 (xij = 1 V j) and the universal lower bound [ (xij = 0 V j), all assume that

the permitted states form a lattice (see ‘‘Appendix’’ for conventional algebraic definitions).

For example, let us imagine that we have three persons asked a short test of three items,

with one person answering only the first item (a) correctly (x1 = [1,0,0]), the second

answering only the second item (b) correctly (x2 = [0,1,0]), and the third answering only

the third item (c) correctly (x3 = [0,0,1]; hence X = {[0,0,1], [0,1,0], [1,0,0]}. By the

closure of intersection as well as our inability to rule out someone having no degree of any

trait, our Xp would also include [0,0,0]; by our inability to rule out someone having

complete possession of all traits, our Xp would also include [1,1,1].

Fig. 1 Coombs’s example of
noncompensatory, discrete,
ordinal space
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Now let us go on to attempt to place this resulting X* = {[0,0,0], [0,0,1], [0,1,0],

[1,0,0], [1,1,1]} in a space (we will go over this more technically below; here we use an

impressionistic discussion to bring a crucial contrast to light). First, consider one factor-

ization solution (which will turn out to be that reached by the biorder approach) in which

we propose two traits, each with three levels, producing nine possible regions (see Fig. 2).

none

a,b,ca

b

c

0 1 2

2

1

0

Fig. 2 A two-dimensional factorization

Table 1 Response patterns
associated with Fig. 1

Pattern
number

Item Score

A B C D E F

1 1 1 1 1 1 1 6

2 1 1 1 1 1 0 5

3 0 1 1 1 1 1 5

4 1 0 1 1 1 0 4

5 0 1 1 1 1 0 4

6 0 0 1 1 1 1 4

7 1 0 1 1 0 0 3

8 0 0 1 1 1 0 3

9 0 0 0 1 1 1 3

10 1 0 1 0 0 0 2

11 0 0 1 1 0 0 2

12 0 0 0 1 1 0 2

13 0 0 0 0 1 1 2

14 0 0 1 0 0 0 1

15 0 0 0 1 0 0 1

16 0 0 0 0 1 0 1

17 0 0 0 0 0 1 1

18 0 0 0 0 0 0 0
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Item a requires that a subject exceed the second threshold on the vertical dimension (which

is why neither the second nor the third subject answers this positively); item c requires that

a subject exceed the second threshold on the horizontal dimension (which is why neither

the first nor the second subject answers this positively), while item b requires that a subject

exceed the first threshold on both the vertical and the horizontal dimension (which is why

neither the first nor the third subject answers this positively).

A different factorization (which will turn out to be that termed a ‘‘Coombs factoriza-

tion’’ below) is graphed in Fig. 3. Here we propose three dimensions, each with a single

threshold dividing it into high and low ability. Every item requires that a subject exceed

this threshold on two of the three dimensions. Which solution is to be preferred? Here we

may be interested both in issues of parsimony, and in issues of plausibility. The first

solution has only two dimensions, as opposed to three. But it allows for 9 (=3 9 3)

possible underlying ability states as opposed to 8 (=2 9 2 9 2). Most troublingly, the first

solution implies that we well could have observed [1,1,0] and [0,1,1] but did not.2

If our data are sparse, then the omission of such observations is quite plausible, but if we

had a great number of observations, we might wonder why we find persons with values on

our two dimensions of [2,0], and others with values of [1,1] and [2,2], but not, it seems,

anyone with values of [2,1]. Such empty regions troubled Coombs (1964: p. 278). (While

the factorization of Fig. 3 allows for 8 possible ability states, four of these ([0,0,0], [1,0,0],

[0,1,0], [0,0,1]) all map onto the same observed response pattern [0,0,0] and thus there are

no missing observations, or Xp = [.) Thus it is not always obvious that we will prefer a

factorization of minimal dimensionality as a model of the response process.

I go on to briefly describe the logic of the second solution; without denying that the

biorder approach is also related to Coombs’ problem, I term this second solution a

‘‘Coombs factorization’’ out of eponymous motives. This approach may be of interest for

five reasons. The first is that, as shown in Martin (2014), the permitted states are

homologous to those explored using seemingly different methods, namely the ‘‘concept’’

or ‘‘Galois’’ lattices that have attracted attention as a theoretically generative descriptive

none

a,b,c

b

a

c

Fig. 3 A three-dimensional factorization

2 It is of course true that in this case, the biorder approach is indifferent to which of the three items we treat
as requiring two as opposed to one trait. Similarly indeterminacies can occur in all Boolean factorizations.
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technique in the social sciences (see Birkhoff 1967: p. 124; Ganter and Wille 1989, 1999;

also Duquenne 1995, 1996; Freeman and White 1993). The second reason is that as we will

see below, the solution for the Coombs factorization is simpler than that of the biorder

approach. The third reason is that the spatial basis may prove important for generalizing to

other response processes. For example, an ‘‘unfolding scale’’ type response process, where

a respondent chooses an item if it is ‘‘close enough’’ to his own ideal point in a latent space,

generalizes to the rectangle graphs and their higher-dimensional analogues which may also

have an algebraic analogue (Trotter 1983: 256f; see Doignon and Falmagne 1994 for a

solution to the one-dimensional case). The fourth reason is that there is a second criterion

of a solution’s parsimony (in addition to low dimensionality), and the biorder approach

may lead to solutions that are less parsimonious according to this criterion. But the most

important reason is that in some cases, we may find that the Coombs solution provides

greater insight as to the nature of the underlying response process.

We begin by considering the set of responses generated by Eq. (1). The remainder of

this section briefly outlines the ‘‘Coombs factorization’’ that, for any set of Boolean

vectors, re-creates the space in which a Coombs-style response process could have pro-

duced the observed data along with other possible unobserved but permitted states.

Definitions Definitions of poset and lattice are found in the ‘‘Appendix’’. We denote a

graph G as a set of vertices V and edges E. Given a poset (A, BA), we can define an

‘‘incomparability graph’’ S(A) = (A, E) in which the elements are the elements of A and for

some a, b [ A, (a, b) [ E iff (not a BA b) and (not b BA a). Given a graph G = (V, E), a

subset C of V is said to form a clique if (a, b) [ E for all a, b [ C. Define the ‘‘clique

number’’ Q(G) of some graph G as the size of the largest clique present in it. Define a

‘‘coloration’’ of some graph G = (V, E) as a partitioning of vertices W such that for any

vertex a in V, W(a) can be labeled as a color or consecutive positive integer, and that if

(a, b) [ E, W(a) = W(b). Let the chromatic number for G be the smallest number of colors

in an adequate colorization of the graph. Note that the chromatic number of any incom-

parability graph such as S(A) is its clique number (see Lovásv 1983: 57f, Theorem 2.6; also

Dilworth 1950).

Given a lattice L, an element m [ L is said to be a meet irreducible element (or MIRE) of

L if m = a ^ b implies that a = m or b = m. Martin (2014) shows that Coombs’s process

(given observations in all regions of the trait-space) produces a set of response patterns that

form a lattice. In this lattice, meet is equivalent to intersection or element-wise Boolean

multiplication. Given such a set of response patterns we can determine the minimum

dimensionality as follows. First, we construct the lattice of states and select the MIREs.

Second, we construct a matrix D0 by stacking the MIREs of X and taking their comple-

ment; thus the (i, j)th element of D0 is ‘1’ iff for the ith MIRE, xij = 0. Third, we construct

the matrix P = Dc
0D

T
0

� �c
, where Dc

0 indicates the complement of D0 (i.e. dc
0ij = 1 - d0ij)

and DT
0 indicates the transpose of D0 (i.e. dT

0ij = d0ji) and addition is Boolean (1 ? 1 = 1).

By construction, pij = 1 iff xi B xj. Then, interpreting P as a graph PM (in which the

vertices are the MIREs and an edge connects vertices i and j iff pij = 1), we construct the

incomparability graph S(PM). As shown by Martin (2014: p. 969, theorem 2), the chromatic

number of S(PM) is then the minimum possible dimensionality of a Coombs factorization

of the data X. This number (denoted K) is not, however, the same as that considered the

minimum dimensionality according to the biorder approach, to which we now turn.
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2.1 Comparison to biorders

2.1.1 Biorder approach reviewed

We begin with a general overview of the differences between the biorder approach and the

Coombs factorization. The biorder approach was discussed by Doignon et al. (1984),

Doignon and Falmagne (1984), Chubb (1986), and Koppen (1987); we use the last of these

to frame the problem and the solution. Here the task was to determine for any N 9 W set of

Boolean data X the smallest number KB such that we may express X as the intersection of

KB N 9 W biorders. A biorder, in turn, may be seen as a matrix B in which there is no h, i,

j, and k such that bij = bhk = 1; bik = bhj = 0. This is as much as to say that the rows and

columns of B may be permuted so that for any i, there is some j such that bi1, bi2,

…,bij = 0; bi,j?1, bi,j?2, biW = 1. This clearly can be understood involving the same basic

equation as (1) above: in the terms of Koppen (1987: 158; notation adapted for consistency

with this exposition), if we let A = {1, 2,…, N} and D = {1, 2,…, W} then the biorder

dimension (or bidimension) of some X is the smallest number KB for which there are two

mappings f ¼ f1; . . . ; fKBð Þ : i ! RKB

and g ¼ g1; . . . ; gKBð Þ : j ! RKB

such that for all

i [ A and j [ D, xij = 1 iff fk(i) B gk(j) for k = 1, 2,…, KB.

Finding this number KB has proven to be NP-hard for more than two dimensions

(Doignon et al. 1984), although there are some possible simplifications. In particular,

Koppen (1987) shows that the problem can be seen as reducible to finding the chromatic

number of a hypergraph H(Xc), where the vertices of this graph are the failures in X (that is,

all pairs (i,j) for which xij = 0), and the edges are alternating cycles in the complement of

X, interpreted as sets. Thus let us say that we can permute four rows and four columns of

X so that the following pattern emerges

0xx1

10xx

x10x

xx10

where the x’s can be either 1 s or 0 s. Then this represents an edge connecting the four

zeros found on the diagonal. We go on to review Koppen’s approach only insofar it is

necessary for the subsequent results.

The problem of coloring this hypergraph, though quite complex, can be simplified

somewhat. Most importantly for our purposes, we do not need to examine all the vertices.

One vertex may be dominated by another so that if we color the graph excluding the

dominated vertex, we can extend this coloring to include the graph with the dominated

vertex.3 Determining the relations of domination in the hypergraph is itself rather complex.

But this task too can be simplified. Koppen defines an ‘‘enemies’’ graph G(Xc) in which the

elements are again the ‘‘zeros’’ in X and a tie is present between two elements (i, j) and

(i*, j*) iff xi*j = 1 and xij* = 1. The enemies graph G(Xc) = (VG, EG) is therefore a sub-

hypergraph of H(Xc) = (VH, EH) where VG = VH and EG = {e [ EH such that |e| = 2}.

Koppen shows that we can actually extend the coloration of the hypergraph minus a vertex

that is dominated in G(Xc) to the hypergraph that adds this vertex; hence, we need only

determine the relations of dominance in the ‘‘enemies graph.’’

3 More technically, in this hypergraph H = (VH, EH) for any two vertices, v dominates w if for any edge e in
EH that contains w, the set Bvw = (e\w) [ v is ‘‘non-stable,’’ meaning that there is no edge e* [ EH|e*( Bvw.
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In particular, we can ignore any element (a zero) that is ‘‘implied’’ by another. For

example, consider some x1, x2, x3 [ X, where x3 = x1 \ x2. If for some j, x3j = 0, this is

failure and hence (3,j) is a vertex in the enemies graph. However, by the definition of

intersection, either x1j = 0 or x2j = 0, and hence either (1, j) or (2, j) is a vertex in the

graph which implies that (3, j) would also be present; hence (3, j) is an implied zero. In

particular, a zero xik is said to be ‘‘row implied’’ if there is some xj such that xi B xj and

xjk = 0. Despite this simplification, the problem remains NP-complete. Indeed, the biorder

dimensionality turns out to be equivalent to Ferrers dimensionality as explored in graph

theory (Cogis 1982).

2.1.2 Comparison of the coombs factorization to the bidimension problem

One difference between the Coombs factorization and the biorder approach is that the

problem of computing the bidimension is NP-complete, while the Coombs factorization, as

it relies on finding the clique number of an incomparability graph, is much easier and can

be completed in polynomial time (Jungnickle 2005: p. 256). Thus even though the

dimensionality retrieved is not necessarily the lowest possible, there may be advantages for

tasks that involve determining dimensionality for a large number of vertices, such as lattice

drawing (see Müller-Hannemann 2001). A lattice that may be embedded in a two-di-

mensional space (K B 2) as above can be represented using a Hasse diagram on a two-

dimensional plane without crossed lines.

More important, the two have different principles of parsimony. Following the notation

of Martin (2014), we can say that a Coombs Factorization is ‘‘M-minimal’’ if the total

number of thresholds in all dimensions is the same as the number of MIREs in X. We call a

Coombs Factorization is ‘‘K-minimal’’ if number of dimensions is the chromatic number of

S(PM) as defined above. The biorder approach is always at least K-minimal; the Coombs

factorization will never retrieve fewer dimensions than the biorder approach, while the

biorder approach may retrieve fewer dimensions than the Coombs factorization. (This

necessarily follows from the fact that the biorder dimensionality is equivalent to the Ferrers

dimensionality, and the Coombs dimensionality is not). However, the Coombs factoriza-

tion but not necessarily the biorder approach is always M-minimal; thus the Coombs

factorization may retrieve fewer total thresholds than the biorder approach.

Consider data arising through a response process outlined in Eq. (1) where the density

of subjects is sufficient to ensure that all possible response patterns are observed and hence

our resulting X is a lattice closed under intersection. In this case, the biorder approach may

be overly parsimonious, in that it allows us to construct a space of dimensionality lower

than that which generated the data. (Of course, it is also possible for a Coombs factor-

ization to retrieve a lower K than that responsible for generating the data; consider, for

example, a perfect chain that happens to arise in a three-dimensional space.) Thus although

the biorder approach is always at least as parsimonious in terms of dimensions, the Coombs

factorization may (or may not be) more parsimonious in terms of thresholds and the

number of possible observations. More importantly, there may be cases in which we find

no unobserved permitted regions (Xp = [) for the Coombs representation but not for the

biorder, in which case we may suspect that the Coombs factorization is a better repre-

sentation of the dimensionality of the trait space that generated the observations, even if

the biorder approach is a better representation of the minimum dimensionality necessary to

factor the observations.
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Take, for example, the simple data portrayed in Table 2a (which we have already

analyzed in Fig. 2 above). It can easily be seen that such data can be decomposed into two

biorders (presented as Table 2b, c respectively above). However, if we were to follow

Coombs’s logic and turn this into a geometric model with ordinal thresholds (see Fig. 4, a

recasting of Fig. 2), we find that two regions are empty (these are shaded). (This lattical

structure of three incomparable elements with a common meet and join is known as an M3

sub-lattice; this fact will be used below.) Such empty regions might be understood as a lack

of ‘‘convexity’’ in the geometric representation; we show below (corollary 2.2) that such

gaps are sufficient but not necessary to destroy convexity in a technical sense. Coombs

(1964: p. 278) had actually suggested from his experiments that one criterion for a proper

model was the absence of such empty regions. If we refuse to entertain these particular

empty regions, we would find that three, not two dimensions are necessary, since not one of

the three rows in the data matrix in Table 2a can be reduced to the intersection of other

rows; each row therefore corresponds to a unique meet-irreducible element. The Coombs

factorization then would consist of a space of three dichotomous dimensions (as in Fig. 3).

There is an additional dimension of the Coombs factorization, but fewer possible

A

C

B

000

100

010

001

111

Fig. 4 Absences in biorder representation

Table 2 Example Data and
Biorder Solution

a b c

(a) Observed data

1 1 0 0

2 0 0 1

3 0 1 0

(b) Biorder 1

1 1 1 1

2 0 0 1

3 0 1 1

(c) Biorder 2

1 1 0 0

2 1 1 1

3 1 1 0
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observations than the two trichotomous dimensions of the biorder approach (as noted

above; 2 9 2 9 2 = 8 versus 3 9 3 = 9).

Further, we can determine when the Coombs factorization reaches the same results as a

biorder approach. It turns out that in a large set of (perhaps) substantively important cases,

the two are equivalent, and hence the biorder dimensionality can be determined in poly-

nomial time. Even more important, consideration of the conditions of this equivalence

sheds light on the relation between our data and our models. We close with this.

2.2 The simplicity condition

2.2.1 Simplicity defined

The requirements of the jth item in terms of the K dimensions may be represented as a

(column) vector dj with values d1j, d2j, … dKj [ R; the set of all W column vectors is then a

K 9 W matrix D. We can use Eq. (1) to define a mapping between any position y [ RK to

x [ {0,1}W, denoted x = D(y) and hence the matrix X = {x} as the set of all possible

observed responses stacked to form a matrix; hence we also can say X = D(Y) where Y is

the (infinite) set of all positions similarly stacked. Here and elsewhere we shall assume that

the density of Y is such that every possible response vector x is observed. Martin (2014)

demonstrated that a set of points z = {y | D(y) = x}, where x is some particular observed

response state, may be termed a ‘‘region’’ and denoted by its unique minimum point; hence

each region can be denoted as a vector with one value for each of K dimensions.

Call any D ‘‘simple’’ if there is no i, j and k such that dki = dkj. This is to say that no two

items have precisely the same threshold on any dimension.4 Given a poset P and a, b [ P,

a is said to ‘‘cover’’ b if b B a and b B c B a implies a = c or b = c. Let the ‘‘score’’ of

any Boolean vector x be defined h(x) = Ri xi. We say that a lattice is ‘‘graded by score’’ or

‘‘score-graded’’ when, if whenever element x1 covers x2 then h(x1) = h(x2) ? 1. (We note

that a lattice of Boolean vectors can be graded without being score-graded.) A lattice L is

said to be ‘‘lower semi-modular’’ if for distinct elements a, b, c [ L, [c covers a, c covers

b] implies that both a and b cover a^b (Birkhoff 1967: 14f). A lattice is said to be ‘‘lower

locally distributive’’ if it is lower semimodular and does not contain a sublattice isomor-

phic to M3 (which is homomorphic to Fig. 4) (Monjardet 2003: theorem 16, p. 132). We

may say that two regions z1 and z2 are ‘‘contiguous’’ if there are points y1 [ z1 and y2 [ z2

such that there is a curve connecting y1 and y2 that intersects only one DIC.

Note that not all Coombs factorizations have simple D matrices; the importance of the

simplicity criterion has to do with the relation between Coombs factorizations and biorders.

The first theorem simply helps illustrate the effect of the simplicity criterion on the

mapping between Z and X.

Theorem 1 If D is simple, given any two regions z1 and z2 as defined above, if z1 and z2
are contiguous with x1 = D(z1) and x2 = D(z2), then either x1 covers x2 or x2 covers x1 in

the lattice X.

Lemma 1.1 If any two regions z1 and z2 as defined above are contiguous, then either

z1 B z2 or z2 B z1.

4 We note that this implies that each dimension can be considered a permutation of the items; this has
implications for the relation to incomparability graphs, though we do not make use of this here (though see
Golumbic et al. 1983). Also note that we here exclude degenerate thresholds as discussed in note 1.
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Proof If not, then there is at least some k such that z1k[ z2k and some k* such that

z1k*\ z2k*; let j and j* be the items whose DICs contribute the kth dimension boundary for

z1 and the k*th dimension boundary for z2 respectively. Then the DIC of j separates z1 and

z2 and the DIC of j* separates z1 and z2 and hence by definition z1 and z2 are not

contiguous.

We now restate two findings from the previous paper as Lemmas; for proofs we direct

the reader to the earlier treatment.

Lemma 1.2 For any two regions z1 and z2, if x1 = D(z1), x2 = D(z2), and z1 B z2, then

x1 B x2.

Proof See Martin (2014), Corollary 2.

Lemma 1.3 If x1 = D(z1), x2 = D(z2), and x1 B x2, then z1 B z2.

Proof See Martin (2014), Theorem 6.

Proof of Theorem 1 Let z1 and z2 as defined in Theorem 1 be contiguous regions with

x1 = D(z1) and x2 = D(z2); since we are indifferent to the labeling, by Lemma 1.1 we may

assume that z1 B z 2 and hence by Lemma 1.2, x1 B x2. Now imagine that there is some

distinct x3 = D(z3) such that x1 B x3 B x2; this means that (1a) A i | x2i = 1; x3i = 0; (1b)

A i*|x3i* = 1; x1i* = 0 and (2) A k | z3k\ dki B z2k and k* | z1k*\ dk*i* B z3k*. Either

(a) z2k*\ z3k* or (b) z3k*\ z2k*; by the simplicity condition we know that z2k = z3k. If

(a) then z3 not B z2 and by Lemma 1.3 x3 not B x2, a contradiction. If (b) then in order for

z1 and z2 to be contiguous there must be some dimension j in which either (b1)

z3j\ z1j\ z2j or (b2) z1j\ z2j\ z3j both of which are impossible given Lemma 1.3 since

x1 B x3 B x2.

Fig. 5 Contiguous regions connected
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Comment We have now established that when no DICs overlap, the relation of proximity

between regions corresponds to the relation of ‘‘covering’’ in the lattice X of observed

states. The lattice for Coombs’s example is drawn in Fig. 5 which connects adjacent

regions; Coombs’s example is thereby a simple one.

Theorem 2 If D is simple, X = D(Y) is lower semi-modular.

Lemma 2.1 If D is simple, X = D(Y) is a score-graded lattice; that is, if element x1
covers x2 then h(x1) = h(x2) ? 1.

Proof By definition of ‘‘cover’’ we know that h(x1)[ h(x2) so we need only demonstrate

that there is no i, j| x1i = x1j = 1; x2i = x2j = 0. Assume there is; consider the points

corresponding to columns of D, di and dj; both cannot be less than the other; since we are

indifferent to labeling we can assume that di not B dj, i.e. A a|dai[ daj.

Let Y* be the set of all points y such that x2 = D(y) and let y2 be some minimal

member of Y*; construct the point y3 such that y3k = max(y2k, dkj) for all k and consider

x3 = D(y3). By Eq. (1) x3 is such that x2 B x3 B x1; thus unless either x2 = x3 or x3 = x1,

x1 will not cover x2, a contradiction. We know that x2 = x3 because x2j = 0 while x3j = 1

by construction. If x3 = x1 then x3i = 1. Let A = {g|x2g = 1}; because x2i = 0 we know A
b | dbi[ dbg V g [ A), but because (we now assume) x3i = 1, y3b C dbi and hence dbj C dbi.

In words, there is some dimension on which item j’s requirements are high enough to meet

item i’s requirements, and there is no other item present in x2 about which we can say this.

Let B be the set of all such b’s and recall dbj C dbi for b [ B. The question then is whether

this inequality is a strict one or not. Imagine that dbj[ dbi V b [ B and construct the point

y* as follows: y*k = max(y2k, dki) and consider x4 = D(y*). Note that x2 B x4 and

x4 B x1; further, since x4i = 1 and x2i = 0 by construction, x2 = x4, and since we have

assumed dbj[ dbi, x4j = 0 and so x4 = x1. Thus x2\ x4\ x1 and so x1 does not cover x2,

a contradiction. This means that there is at least one b such that dbj not[ dbi, that is,

dbj = dbi and so D is not simple.

Corollary 2.1 If D is simple, and hence X = D(Y) is a score-graded lattice, X contains

no sublattice isomorphic to M3. Because this result is not used in the results below but

rather to indicate the relation to other work, the simple proof of this is left to the reader as

an enjoyable exercise.

Proof of Theorem 2 In some X = D(Y) with D simple let x1 cover x2 and x3; let x4 =

x2 ^ x3. If x2 and x3 do not cover x4, X is not lower semi-modular. Assume (since we are

indifferent to labeling) x2 does not cover x4. By lemma 2.1, X is score-graded which means

that there is a distinct i (j) such that x1i = 1, x2i = 0 (x1j = 1; x3j = 0); for k = i, j,

x3k = x2k = x1k. Because meet is equivalent to intersection we know that x4i = x4j = 0;

x4k = x1k, k = i, j. Hence h(x4) = h(x2) - 1 = h(x3)–1. If x2 does not cover x4, A x5 such

that x4 B x5 B x2; ditto x3, but this is a contradiction as it requires that h(x4) =

h(x5) - 1 = h(x2) - 2 and hence h(x2) - 2 = h(x2) - 1 or 2 = 1, a contradiction.

Corollary 2.2 If D is simple, X = D(Y) is lower locally distributive. This follows from

Theorem 2 and Corollary2.1.

Comment Note that every lower locally distributive lattice is isomorphic to the lattice of

closed sets of a convex geometry (Monjardet 2003: Theorem 17, p. 132; Stern 1999:

p. 279; Theorem 7.2.27). Hence corollary 2.2 implies that ‘‘unoccupied spaces’’ (as in

Fig. 4) which cause the lattice not to be score graded destroy convexity.
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Simplicity is sufficient but not necessary for the lattice X to be score-graded; the

important results regarding the relation of the Coombs factorization to the biorder approach

require the score-graded condition as opposed to the simplicity itself. Hence there may be

other classes of substantively interesting cases other than ‘‘simple’’ ones in which the two

approaches give the same results.

2.2.2 Mappings of score graded lattices to the enemy graph

In the following, when we speak of MIREs, we will imply only the set of non-trivial meet

irreducible elements; that is, we exclude the topmost vector 1. We will speak of the

elements of Xc (the failures in X) as ‘‘zeroes’’ and denote them xij. We begin by stating the

central theorem which this section sets out to prove:

Theorem 3 Given some X = D(Y) with X score graded, if KB is the biorder dimen-

sionality of X and K is the Coombs dimensionality, then KB = K. Note that D being simple

is sufficient though not necessary for this equivalence.

Because of the relation between such a lower locally distributive lattice and convex

geometries, this theorem is related to work on the relation between convex geometries and

the width of their meet irreducible elements (Edelman and Saks 1988: p. 30), but here this

result is established in ways that are particularly relevant to the biorder approach for binary

vectors, and makes use of the notation that has been employed in algorithms to solve the

biorder problem (Koppen 1987). Key is the notion of the domination of one vertex by

another (which allows for a simplification of the coloration problem); here, recall, the

vertices are zeros in the X matrix.

Lemma 3.1 Given a lattice L of Boolean vectors closed under intersection, (a) if xik is a

non-dominated zero, xi is a MIRE; (b) if xi is a MIRE, it has some value xij that is a non-

row-implied zero.

Proof Koppen (1987: 164) shows the following (in our notation): given xi and xj such

that xj B xi, if xik = 0, then xjk (which also = 0) is dominated by xik. (That is, a ‘‘row

implied’’ zero is dominated; not every dominated zero, however, is row implied.) (a) As-

sume xi is not a MIRE, and let J be the set of all j such that xj covers xi (|J|[ 1); let xik be

the non-dominated zero. By definition of L, xi = ^{xj, j [ J} = \{xj, j [ J}, which means

A j* [ J|xj*k = 0, which means that xj*k dominates xik, a contradiction. (b) is reasonably

obvious.

Corollary 3.1 In a graded lattice, every row has at most 1 non-dominated zero.

Definitions For any (hyper)graph H = (V, E), where V = {v}, define an ‘‘induced

sub(hyper)graph’’ as some H* = (V*, E*) where V* ( V and E* = {e [ E| there is no v [
e, v 62 V*} (Harary 1969: 11). That is to say, it is a maximally connected sub(hyper)graph

on the vertices V*, including all edges in H between vertices in V*.

Lemma 3.2 Given a lattice of Boolean vectors L = (X, B), where X = {xi}, let

G(L) = G(Xc) be the enemies graph = (VG,EG), of elements where every v [ VG is a zero

that can be notated xij. Let P
M be the poset of the MIREs of L, as defined above. Construct

S(PM) = (VSPM, ESPM) as the incomparability graph of PM. Consider the mappings HV:

VG ? X defined such that HV(xij) = xi, and HE: EG ? E* defined such that

HE(xij, xi*j*) = (xi, xi*). That is, we collapse all enemies associated with a single row to a

vertex, and establish a relation between vertices that have any enmity between them. Now
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let V* be only those vertices in G(L) that are not row implied, and construct the induced

subgraph G*(L) = (V*, E*). Then consider the graph S = (VS, ES) such that VS = HV(V*)

and ES = HE(E*). S = S(PM).

Proof (a) VS = VSPM. By lemma 3.1a, only MIREs are in VS = HV(V*); further, by

lemma 3.1b HV(V*) ‘‘covers’’ VSPM (the mapping is surjective). (b) ES = E SPM. By the

definition of enemies, it is clear that if two MIREs contain enemy zeros, they are

incomparable (and hence {xi, xj} [ ES ? {xi, xj} [ ESPM). For the reverse ({xi, xj} [
ESPM ? {xi, xj} [ ES), note that {xi, xj} [ E SPM ? Sij = 1 ? [P [ PT]c

ij = 1 ? [P [
PT]ij = 0 ? Pij = PT

ij = 0 ? P ij = Pji = 0. Take the first of these and note that since

P ¼ Dc
0D

T
0

� �c
, Pij = 0 ? Dc

0D
T
0

� �c

ij
= 0 ? Dc

0D
T
0

� �
ij
= 1 ? Rk Dc

0ikD
T
0ij = 1 ? Rk

(1 - D0ik)D0jk = 1 which means there is at least one k such that d0ik = 0 and d0jk = 1,

which, by the definition of D0, means that there is at least one k such that xik = 1 and

xjk = 0. Doing the same for Pji = 0 leads to demonstrating that there is at least one k*

such that xik* = 0 and xjk* = 1. This is the definition of an enemy relation between zeros

xjk and xik* and so by the definition of the mapping HE, {xi, xj} [ ES.

Lemma 3.3 If L is graded by score, HV is bijective. (That is, HV(a) = HV(b) iff a = b.)

Proof This follows from Corollary 3.1 and Lemma 3.2 above. (Every MIRE has at least

one non-row-implied zero; in a graded lattice, each has one and only one.)

Corollary 3.2 If L is graded by score, G*(L) as defined in Lemma 3.2 is isomorphic to

S(PM).

Lemma 3.4 (The induced subhypergraph coloration lemma) Consider a hypergraph

H = (VH, EH) with chromatic number cH = w(H). Let H* = (VH*, EH*) be an induced sub-

hypergraph (VH* ( VH, EH* ( EH) with chromatic number cH* = w(H*). Then cH* B cH.

Proof Obvious; any coloration of VH*in H colors H*.

Proof of Theorem 3 For a score graded lattice L let H(L), G(L), G*(L), and S(PM) be

defined as above, with respective chromatic numbers KB = w(H(R)), KB* = w(G(L)),

K* = w(G*(L)) and K = w(S(PM)). By corollary 3.2, K* = K. Note that G(L) is an

induced subgraph of H(L), and that G*(L) is an induced subgraph of G(L). Then by the

induced subhypergraph coloration lemma, K = K* B KB* B KB. Since by definition of

Ferrers relation KB B K, KB = K, and the Coombs reduction reaches the same dimen-

sionality as the biorder reduction.

3 Conclusion

We have investigated the relations between two different, closely related approaches to the

discrete factorization of dichotomous items. Both involve assuming a response process that

may be seen as deterministic and non-compensatory. Such a discrete factorization may be a

useful technique for cases in which we want to reduce the dimensionality of response

without losing a sense of qualitative distinctions between sets of persons.

Both the Coombs factorization and the biorder approach may be interpreted as

embedding a data structure in a space of unobserved traits. Although the biorder approach

is superior when our object is to reduce dimensionality, we generally are less interested in

reduced dimensionality for its own sake than in the development of a plausible model in
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which the dimensions are interpretable characteristics. If we heed Johnson’s (1935) call for

a more realistic testing of task aptitudes, we may move towards theories of data that

attempt to reconstruct processes as opposed to building on mathematical properties. When

we have bad data, neither approach is likely to provide enlightening results. But when we

have good data, we may consider it problematic for a factorization if there are unobserved

but permitted states, and hence may use this as a criterion to choose between factorizations.

‘‘Good data’’ may seem too high a bar, for this means not only very low (or no)

measurement error, but also a non-stochastic process and a sufficient distribution of per-

sons in the trait space so that all possible response vectors are observed. Sets of data that

good may be few and far between, but it is noteworthy that Coombs, setting out his

monumental Theory of Data, did not think this too fanciful. He suggested that if we found

‘‘blank spaces,’’ we perhaps should reject the model; in our terms, this means that a

Coombs factorization for data that is not closed under intersection is potentially prob-

lematic. While methodologists may be happy to construct good models for bad data,

Coombs thought that if we had good models we should be able to collect very good data.

Further, it is interesting that as we go from ‘‘good data’’ to ‘‘truly excellent data,’’ the

two approaches discussed here will converge. That is, the criterion of simplicity is that no

two items have exactly the same position on any dimension. We can see that in practice,

simplicity will be limited by the smallness of our sample. Thus as N ? ?, it becomes

decreasingly likely that two items could be seen as having the same threshold, in that we

are more likely to observe people who are ‘‘in between’’ two closely placed thresholds.

Thus we might say that when the biorder approach is more parsimonious than the Coombs

factorization, we may suspect that our data is not quite as good as it should be.

Alternately, we may suspect that the ‘‘leaps’’ that lead to the non-graded character come

from qualitative logical reasoning, and not the nature of the distribution of persons in the

latent trait. In such cases, we may not want to pursue a factorial reduction at all; rather, we

might want to try to decompose the items into components, using the Haertel and Wiley

(1993) inversion. Presumably, the mathematical properties of the matrix can only tell us so

much; beyond that, close reading of items and repeated testing is required.
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Appendix: conventional algebraic definitions

The classic treatment of lattice algebra is Birkhoff (1967 [1940]); the exposition here

includes only terms needed. The reader familiar with partial orders and lattices may skip

this section. A ‘‘partially ordered set’’ (or ‘‘poset,’’ for short) is a set of elements {d1, d2,

d3,…} and a binary relation denoted B, which satisfies the following three conditions:

(i) transitivity: d1 B d2, d2 B d3 implies d1 B d3;

(ii) reflexivity: d1 B d1;

(iii) antisymmetry: d1 B d2 and d2 B d1 implies d1 = d2.

Given a set of elements A and a relation B , d1 [ A is said to be the ‘‘minimum’’ of A if for

any d2 [A, d2 B d1 implies d2 = d1. Note that the set of all points is a poset.
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Consider a poset A, consisting of elements d1, d2, d3 etc. together with a binary rela-

tion B as defined in the text. The ‘‘lower bound’’ of a pair of elements, d1 and d2, in A is an

element d3, such that d3 B d1 and d3 B d2. Similarly, the ‘‘upper bound’’ of a pair of

elements, d1 and d2, in A is an element d3, such that d1 B d3 and d2 B d3. The ‘‘greatest

lower bound’’ or ‘‘meet’’ of any two elements d1 and d2 in A, denoted d1^d2, is a unique

element d3 in A such that d3 B d1 and d3 B d2, and there is no d4 in A such that

d3 B d4 B d1 and d3 B d4 B d2. Similarly, the ‘‘least upper bound’’ or ‘‘join’’ of any two

elements, d1 and d2 in A, denoted d1_d2, is a unique element d3 in A such that d1 B d3 and

d2 B d3, and there is no d4 in A such that d1 B d4 B d3 and d2 B d4 B d3. A ‘‘lattice’’ is

then a poset that is closed under the binary operations of meet and join; that is, for any two

elements d1 and d2 in A, d1_d2 [ A, d1^d2 [ A. Given a set of elements {d1, d2, d3,…} we

may write d1^ d2^ d3^… as ^{d1, d2, d3,…}.
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