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Uhlig, Harald—Should We Be Afraid of Friedman’s Rule?

Should one think of zero nominal interest rates as an undesirable liquidity trap or as the
desirable Friedman rule? I use three different frameworks to discuss this issue. First, I restate
H. L. Cole and N. Kocherlakota’s (1998, Fed. Res. Bank Minn. Quart. Rev., Spring, 2–10)
analysis of Friedman’s rule: short run increases in the money stock—whether through
issuing spending coupons, open market operations, or foreign exchange intervention—
change nothing as long as the money stock shrinks in the long run. Second, two simple
Keynesian models of the inflationary process with a zero lower bound on nomianl interest
rates imply either that deflationary spirals should be common or that a policy close to the
Friedman rule and thus some deflation is optimal. Finally, a formal baby-sitting coop model
implies multiple equilibria, but does not support the injection of liquidity to restore the
good equilibrium, in contrast to P. Krugman (1998,Slate, August 13). J. Japan. Int. Econ.,
December 2000,14(4), pp. 261–303. CenER, Tilburg University; Humboldt University,
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1. INTRODUCTION

Scylla: In Greek mythology, a sea monster who lived underneath a dangerous rock at one side
of the Strait of Messia, opposite the whirlpool Charybdis. She threatened passing ships and
in the Odyssey ate six of Odysseus’ companions. Scylla was a nymph, daughter of Phorcys.
The fisherman-turned-sea-god Glaucus fell madly in love with her, but she fled from him onto
the land where he could not follow. Her disappearance filled his heart with sadness. He went
to the sorceress Circe to ask for a love potion to melt Scylla’s heart. As he told his tale of love
to Circe, she herself fell in love with him. She wooed him with her sweetest words and looks,
but the sea-god would have none of her. Circe was furiously angry, but with Scylla and not
with Glaucus. She prepared a vial of very powerful poison and poured it in the pool where
Scylla bathed. As soon as the nymph entered the water she was transformed into a frightful
monster with twelve feet and six heads, each with three rows of teeth. Below the waist her
body was made up of hideous monsters, like dogs, which barked unceasingly. She stood there
in utter misery, unable to move, loathing and destroying everything that came into her reach,
a peril to all sailors who passed near her. Whenever a ship passed, each of her heads would
seize one of the crew.

Encyclopedia Mythica

The liquidity trap is back, or so it would seem. Of course it has always been
there as part of the standard fare taught to undergraduate students of economics
practically everywhere, but it was just viewed as a possibly irrelevant piece of
theory rather than something one tends to observe. It used to be regarded as a
strange relic of the depression years following 1929. Now, many argue that the
situation in Japan fits the description of a liquidity trap only too well. Indeed,
nominal interest rates along the entire yield curve have been remarkably close to
zero in recent times.

It is no surprise then, that many economists have rushed forward, led by their
undergraduate textbook gut reaction, and are calling upon the Japanese central bank
to inflate the economy out of its misery; see, e.g., Krugman (1998, 1999a,b). The
Japanese central bank is surely in no enviable position. Monetary policies in many
industrial countries are probably led less by what it hopes to achieve but rather what
it hopes to avoid, navigating between the Scylla of deflation on the one side and
the Charybdis of run-away inflation on the other. The Great Depression2 following
1929 as well as the hyperinflationary episodes in countries such as Germany or
Hungary are deeply etched into our collective minds: no central banker wants to
be remembered as having committed the same mistakes yet once again. Will the
current episode in Japan serve as the future prime example of how some hapless
monetary policy has once again pushed an economy over the brink? It is hard to
imagine that this question does not weigh heavily on the minds of Japanese central
bankers these days.

2 It is interesting how easily even economists jump from the word “deflation,” merely indicating
falling prices, to thinking about “depression.” By contrast, the analysis by Bernanke (1983) and the
recent breakthrough by Cole and Ohanian (1999) in the analysis of the Great Depression indicate that
deflation itself may have had much less to do with it than is commonly believed.
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As I am an academic and not a Japanese central banker, however, I have the
luxury of contemplating an altogether different interpretation of the situation of
near-zero nominal interest rates. I shall ask whether this Scylla is in fact not the
ugly sea monster everybody seems to think it is, but rather still the beautiful nymph
one may want to fall in love with. Indeed, a regime of nominal interest rates near
zero is also known by a different name: it is called Friedman’s rule.

Friedman’s rule, proposed by Friedman (1969), postulates creating money until
the marginal costs of money production equal its market price. As it costs practi-
cally nothing to create money,3 and as the opportunity costs of holding money are
given by the short-term nominal interest rate, good monetary policy should aim
at driving these interest rates to zero. One might therefore ask provocatively: has
Japan’s monetary policy achieved a state of bliss or should monetary theorists have
been more careful in what they wished for? E.g., Sargent (1999) and Bernanke
et al. (1999) can both be read as recommending a monetary policy which seeks
low inflation.

Strangely, the literature rarely discusses the optimality of Friedman’s rule on
the one hand and the textbook dangers of a liquidity trap on the other in the same
context. But it should. This paper is meant to be a step in that direction and therefore
distinct from the currently evolving literature on the zero lower bound on nominal
interest rates, such as Akerlofet al. (1996), Fuhrer (1997), Fuhrer and Madigan
(1997), Krugman (1998a,b, 1999a,b), Rotemberg and Woodford (1997, 1999b),
Orphanides and Wieland (1998), Buiter (1999), Clouseet al.(1999), Reifschneider
and Williams (1999), and Svensson (1999) and his discussants Meltzer (1999) and
Woodford (1999a). Closest in spirit is the work by Wollman (1998, 2000), which
examines the consequences of the zero lower bound on nominal interest rates for
optimal monetary policy in a fully specified dynimic general equilibrium model
with sticky prices. His papers also contain a further, excellent review of the relevant
literature, which I shall not restate here.

I should emphasize that this paper is not necessarily about the specific situation in
Japan. Whether or not the problems there are due to a deteriorating banking system
(see, e.g., Bayoumi, 1999), how to restore Japanese economic growth (see, e.g.,
Posen, 1998) and whether or not Japanese monetary policy played and has to play
a key role in that process (see, e.g., Krugman, 1999) is a much-debated subject
in which this author does not have a comparative advantage. The insights here
may be applicable to that situation—in fact, they probably are—but I shall leave
it to more informed participants of the practical debate to make that judgement.
But if they are, then it may be dangerous too for policymakers to ignore these
insights as an academic luxury of merely theoretical interest: instead, they may
pose some serious issues for central bankers who succeeded in achieving low
inflation.

3 There may actually be an issue here, whether inside money, i.e., checking accounts at commercial
banks, is costly to create at the margin: commercial banks are, after all, rather costly operations. I shall
not pursue this issue further.
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I shall take the optimality of Friedman’s rule as my base perspective, but then
examine some other aspects which are relevant from a liquidity trap perspective. I
will do so using three different frameworks. In Section 2, I will first reexamine a
cash-in-advance economy analyzed by Cole and Kocherlakota (1998) and restate
their result of how monetary policy can actually achieve Friedman’s rule. The
equilibrium examined by these authors turns out to have some powerful (and, in
the end, perhaps obvious) conclusions about the ineffectiveness of some policy
proposals which have been made with respect to the Japanese situation. Then I
will examine two very simple monetary models in Section 3, either allowing for
the possibility of a runaway deflation or imposing stability. The choice of these
models was motivated by the proliferation and popularity of linear “reduced form”
models in the current literature and debate on monetary policy and central banking:
it is hoped that this section is a suitable complement to that literature. Finally, I
will draw some conclusions about the frequency, with which we should observe
deflations, and about the desirability of near-zero interest rates.

Krugman (1999) has argued that injecting liquidity into an economy such as
Japan is comparable to issuing coupons in an ill-functioning baby-sitting coop and
thereby stimulating economic activity. While Krugman told me in private con-
versation that he intended this parable only as a way to explain to the general
public how monetary policy might have real effects, it is hard to read his para-
ble from a more informed perspective without giving it a multiple equilibrium
interpretation of moving from a good to a bad equilibrium and back through the
injection of liquidity. I examine this argument formally in Section 4, develop-
ing a formal model of a baby-sitting coop, which indeed gives rise to multiple
equilibria. However, the injection of liquidity is unlikely to enable the economy
to move back to a good equilibrium: rather, it may move the economy to a re-
gion where equilibria, in which money is valued, cease to exist altogether. The
formal analysis here thus offers a dire warning regarding Krugman’s recommen-
dation. Given the attention that this parable and recommendations have received,
more formal research should be devoted to clarify its precise logic, separating
the pitfalls from the genuine insights. The analysis here should be understood as
a step in that direction and as a way of pointing out that a casual treatment of
the baby-sitting coop parable as a guide to monetary policy can be dangerously
misleading.

I finally conclude in Section 5 with an extensive discussion of what has been
learned from these three pieces of analysis. I will cautiously endorse Friedman’s
rule, despite some liquidity trap fears. More importantly, I will argue that our
current theoretical tools, including this paper, are unsatisfactory: they do not yet
allow us to adequately deal with a deflationary economy in which prices fall faster
than the real rate implied by a frictionless situation. I believe that progress in models
with this feature is crucial to understand more deeply the benefits and perils of
near-zero interest rates and zero or negative inflation and therefore crucial to the
proper conduct of monetary policy.
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In this paper, I have ignored the well-known Phelps argument (1973) that the
inflation tax should not be zero in an environment with distortionary taxes and
that therefore zero nominal interest rates are not optimal. That conclusion has
been challenged by, e.g., Chariet al.(1996) and Correira and Teles (1996). Walsh
(1998) offers an excellent survey and discussion, not limited to this point. Another
standard reference on issues of monetary policy is Cukierman (1992). I will also
ignore the arguments by, e.g., Aiyagari and Braun (1998) or Khanet al.(2000) that
optimal monetary policy should aim somewhere between slight deflation and sta-
ble prices, if, e.g., prices are sticky. To incorporate these concerns in future work,
and to precisely understand the role of the zero nominal interest rate equilibrium
as an approximation to an equilibrium with low nominal interest rates, see, e.g.,
Orphanides and Wieland (2000), is beyond the scope of this paper, but offers a
promising avenue for future research. Finally, if interest can be paid on holding
cash or if cash holdings can be taxed—which may now be feasible, given modern
electronic means—the nominal interest rate corresponding to the zero opportunity
costs of holding money is not necessarily zero, but is itself a policy variable, thereby
substantially altering the analysis, as Goodfriend (1999) has pointed out. This is
an interesting avenue which deserves further exploration, but is not pursued here.

2. ZERO NOMINAL INTEREST RATES AND POLICY INEFFECTIVENESS

To think about monetary policy in an environment with near-zero interest rates,
it is useful to recall the following analysis by Cole and Kocherlakota (1998).
These authors have analyzed the following neoclassical growth cash-in-advance
economy.

There is an infinite horizon nonstochastic economy with a continuum of house-
holds. The representative household values consumption ct ≥ 0 and leisurel t ≥ 0
according to the utility function

U =
∞∑

t=0

β t u(ct , l t ),

whereu(·) is assumed to be strictly concave and continuously differentiable and
satisfiesuc(0, l ) = ∞, ul (c, 0)= ∞, for all c, l . The household is endowed with
some initial capitalk0, one unit of time per period, which it can use for leisure or
labor and cashm−1.

Output yt is produced by competitive firms, using capitalkt−1 ≥ 0 and labor
nt ≥ 0,

yt = f (kt−1, nt ),

where f (·, ·) is continuously differentiable, homogeneous of degree one, and con-
cave. The firms rent capital from the household, hire labor, and sell. Output can in
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turn be used for investmentxt or consumptionct ,

ct + xt = yt

kt = (1− δ)kt−1+ xt .

There is a government injecting or withdrawing cash every period, making up
for the difference by lump sum transfers or lump sum taxesτt ,

mt = τt +mt−1.

Finally, trading evolves subject to a cash-in-advance constraint for consumption
goods. The household also has the option of purchasing bondsbt . Let pt be the
price level at datet, wt be nominal wages,rt be the (nominal) return on capital,
andi t−1 be the nominal interest rate. The household chooses (ct , kt , nt ,mt , bt )∞t=0
to maximize its utilityU subject to the constraints

mt−1 ≥ ptct

mt + bt ≤ rtkt−1+ wt nt + bt−1(1+ i t−1)+mt−1+ τt − pt (ct + xt )

kt = (1− δ)kt−1+ xt ,

where

kt ≥ 0,mt ≥ 0, bt ≥ −B.

The lower constraint onbt rules out Ponzi schemes.
Equilibrium is defined in the usual way, imposing that bonds are in zero net

supply,

bt = 0.

Equilibria will be compared to the Pareto optimum of the first-best social planners
solution, which obtains in a moneyless world, i.e., which obtains without the cash-
in-advance constraint.

Cole and Kocherlakota prove the following three key results: they are taken ver-
batim from their publication and are restated here for the sake of comp-
leteness.

PROPOSITION1. Equilibrium quantities are Pareto optimal if and only if it = 0
for all t.

This proposition states that Friedman’s rule is optimal, as should be expected
in this environment.
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PROPOSITION2. An equilibrium such that it = 0 forever exists if and only if
both

1. lim inf
t→∞Mt = 0

and

2. inf
t

Mtβ
−t = κ > 0.

This is an important proposition, because it sheds light on the recent policy
discussions regarding Japanese monetary policy or, more generally, monetary pol-
icy in an environment with near-zero interest rates; see, e.g., Bernanke (1999) or
Meltzer (1999). The proposition states, that short-run movements in money supply
may have no impact on nominal interest rates: all that matters is that the money
stocks eventually shrink to zero at the rateβ t . In practical terms, this means that
there is no reason for the economy to move away from near-zero nominal interest
rates, as long as agents believe it to be an equilibrium, in which the monetary
authority justifies these zero nominal interest rates eventually. Any extra cash is
simply held as an asset, which pays the equilibrium real rate of interest; because
the extra cash is withdrawn from circulation eventually by imposing taxes later on,
the extra cash is not regarded as net wealth. The heart of this logic is Ricardian.
The effect is a liquidy trap, but understood here more deeply through the lense of
dynamic general equilibrium. Furthermore, the liquidity trap is a good thing, not
a disaster: to be at the Pareto optimum means keeping the economy saturated with
liquidity.

It is not hard to generalize this insight to an open economy in which there are
long-term bonds as well as exchange rates with some other currency (think yen
and dollar), and I shall not include the formal details: in the Friedman equilibrium
of the proposition above, short-term monetary injections, whether they be through
outright helicopter drops as here, through open market operations in short-term or
long-term bonds, or through foreign exchange markets, selling the local currency
for foreign currency, are neutral, as long they do not change the long-term outlook
for monetary policy, as stated in this proposition. Agents will simply offset any
such move by monetary policy by a correspondingly inverse shift in their asset
portfolios. Put differently, at zero nominal interest rates, simple quantity theory
ceases to hold: there is no longer a systematic relationship between the quantity
of money and the price level: “along equilibrium paths in which nominal interest
rates are always zero, the inflation rate is independent of the growth rate of the
money supply” (Cole and Kocherlakota, p. 8).

McKinnon and Ohno (1997, 1999a,b) have argued that markets have come to
expect the yen to appreciate vis-a-vis the dollar at a constant speed: therefore, there
has to be a constant interest rate differential in Japan vis-`a-vis the U.S. federal funds
rate. As the U.S. federal funds rate has continued to decline to low levels during
the past decade, the nominal interest rate in Japan had nowhere to go but down as
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well: according to McKinnon and Ohno, Japan’s liquidity trap was imported, not
homemade. The framework here can be used to shed light on this view. Suppose
for the sake of argument that nominal interest rates in the United States stand at
5% forever and that monetary policy is expected to conduct long-run monetary
policy in such a way as to justify a 5% appreciation of the yen forever from some
point onward in the future. By arbitrage, this means that nominal interest rates
have to be at zero forever from that same point onward. By Proposition 2 above,
monetary policy must therefore satisfy the conditions listed, implying that there is
an equilibrium in which nominal interest rates are at zero, starting now. Shortrun
monetary policy activism such as foreign exchange interventions or other forms
of liquidity injections will then have no effect.

Arguably, the results above are knife-edge and strictly hold only at zero nomi-
nal interest rates: with nominal interest rates slightly above zero, holding money
is always dominated by interest bearing assets, and the liquidity trap disappears
entirely. In practice, this may be of little comfort, and it is probably reasonable
to argue that the zero nominal interest rate equilibrium and the very elastic de-
mand for money analyzed here offer a better approximation to the situation of
low nominal interest rates than an analysis based on a strict interest rate domi-
nation argument. Orphanides and Wieland (2000) pursue this question in greater
detail.

For an injection of money to have an effect, one of two things has to be true.
Either they imply that long-run monetary policy does not satisfy the conditions
in the proposition. In practical terms, this means that agents have a believe that
monetary policy will be inflationary eventually, see Krugman (1998a,b, 1999a,b),
or that exchange rate appreciations are not such that a nominal interest rate of zero
will be justified forever; see McKinnon and Ohno (1997, 1999a,b). Or there are
sunspot equilibria in this economy in addition to the Friedman rule equilibrium
i t ≡ 0, with the amount of liquidity in circulation acting as the coordinating sunspot
variable. In Section 4, we will encounter a model which essentially has such
a feature.

This analysis, while providing useful insights, is somewhat unsatisfactory in
two ways. First, it does not allow me to discuss the danger of runaway deflation, in
which prices decrease faster than rateβ. I will turn to that issue in the next section.
Second, if money is withdrawn from circulation too fast, an equilibrium may not
even exist. Cole and Kocherlakota state the following third proposition

PROPOSITION3. If u(c, n) = log(c)+ v(n), then if Mt+1/Mt ≤ δ < β for all
t, there is no equilibrium.

This proposition is disconcenting because there are monetary policies, for which
theory—so far—is no guide as to what will happen. One view of deflation-
ary spirals may be that these are episodes with such “freak” monetary poli-
cies. Obviously, this is a gross misinterpretation of the result above: the fact that
there is no equilibrium cannot be interpreted to mean that there is a deflationary
spiral.
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More generally, suppose thatu(c, n) = (c1−η − 1)/(1− η)+ v(n), suppose that
the cash-in-advance constraint binds int and t + 1, i.e., ptct = mt , pt+1ct+1 =
mt+1, and suppose thatmt+1/mt = δ < β. One can then show that

1+ i t = δ

β

(
ct+1

ct+2

)1−η
.

With i t ≥ 0, this implies thatct must be shrinking at the rate of at least (δ/β)1/(1−η)<

1, if η < 1 and thatct must be growing at the rate of at least (β/δ)(1/(η − 1)> 1,
if η > 1. The caseη = 1, i.e., the caseu(c, n) = log(c)+ v(n) turns out to be
knife-edge.

In sum, this is interesting territory worthy of further study.

3. REDUCED-FORM KEYNESIAN MODELS

Nominal interest rates are widely viewed as being constrained by zero from
below.4 There are therefore two arguments that explain why zero nominal interest
rates are not a good idea despite the results of the previous section: I will describe
these arguments in greater detail below. Briefly: first, zero nominal interest rates
and the modest deflation which goes along with them may be a cliff from which
one may fall into a deflationary spiral, see 3.1, rather than the nirvana of Pareto
optimality as envisioned in the previous section. Second, to the degree that it is
desirable to conduct countercyclical monetary policy, the maneuvering room in
recessions disappears at zero nominal interest rates; see 3.2. In this section, I wish to
examine both arguments by using some extremely simple reduced form models of
inflationary (or deflationary) dynamics. These models have been called Keynesian
by Claridaet al. (1999), although one may not necessarily want to attach that
interpretation. For simplicity and to explore the relevant issues, we shall assume a
rather old-fashioned backward-looking inflationary process, rather than a modern,
forward-looking Phillips curve. It should be therefore all the more surprising that
this framework delivers the recommendation to essentially follow Friedman’s rule;
see Section 3.2.

3.1. Deflationary Spirals

According to the first argument, suppose that price changes are a persistent,
stochastic process, somewhat controllable through real interest rates. With real
interest rates above some benchmark level, prices tend to fall, whereas they tend
to rise with real interest rates below the benchmark level. Then, while nominal
interest rates are above zero, monetary policy has enough maneuvering room to
counteract falling or rising prices. But as nominal interest rates hit the lower bound
of zero, any additional deflation will raise real interest rates as a consequence, thus

4 One may be able to get around this constraint through borrowing subsidies, a topic to which I will
return in the discussion in Section 5.
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reinforcing the downward pressure on prices: a deflationary spiral results; see
Krugman (1999b).

This logic leads Rotemberg and Woodford (1997, 1999b) to propose a robust
control framework in which some desirable distance to the zero lower bound is
added to the objective function of the central bank. Likewise, Orphanides and
Wieland (1998) merely analyze how likely it is for monetary policy to hit the zero
lower bound, calculating the chance to be small for modest inflation targets and
realistic parameters.

This, however, begs the question of what would actually happen if monetary
policy were to hit the lower bound: while efforts may be made to keep away from
it, the models by the authors mentioned above will imply that monetary policy gets
there eventually. Theory should provide some guidance as to what happens next.

Here, I will take a framework similar to the framework by these authors to argue
that if indeed a runaway deflation could happen, then economies will, on average,
spend substantial time in deflationary regimes. This insight has two interpretations.
Either it means that we have been lucky so far in not running into deflationary
spirals more often, and that the situation in Japan is actually the norm rather
than the exception. Or it means that the danger of a deflationary spiral is more
apparent than real: I therefore study a more benign version of the price dynamics
in Section 3.2.

Here, suppose that the rate of price change

πt = log(Pt )− log(Pt−1)

evolves according to

πt+1− πt = −θπt − ξ (rt−1− πt − r̄ real)+ εt , (1)

wherer̄ real is some benchmark level of real interest rates,rt is the nominal interest
rate for a risk free security maturing in periodt + 1, andθ andξ are coefficients.
Thus, the expression in brackets is the difference between realized real rates and
the benchmark level.

Clearly, Eq. (1) is not a good substitute for proper economic theorizing. While
Goodfriend and King (1997), Walsh (1998), and Woodford (1999b) provide a
more in-depth discussion of how equations of this type may result from a more
full-fledged model, and while equations of this type have essentially been used by
popular contributions to the literature surveyed by Claridaet al. (1999) such as
Fuhrer and Moore (1995), Rudebusch and Svensson (1999), or Orphanides and
Wieland (1999), the best defense may simply be that an equation such as (1) should
simply be regarded as a starting point to provide some insights and intuition. If
these insights are deemed interesting, a more in-depth investigation may be called
for. It may also be more fruitful to regard the dynamics (1) as arising from the kinds
of learning processes discussed in Sargent (1999) rather than some fully rational
expectations equilibrium.
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Importantly, Eq. (1) captures some elements which I believe are important to
the analysis of monetary policy near the zero lower bound on interest rates. First,
central banks do not control inflation directly: they only have indirect control over
it via their monetary policy instrument. This is captured by the random shock:
actual inflation may overshoot or undershoot its target. Second, there may be
substantial inertia to the dynamics of price changes. Inflations or deflations are
rarely one-off events: bringing these back to “normal” levels usually requires time.
This is captured by the autoregressive term. Finally, it seems fairly reasonable to
postulate that, e.g., inflation gets slowed down, if there is a hike in real rates, and
that inflation is predetermined one period in advance. One might be tempted to
call Eq. (1) a first-generation Keynesian model (see Goodfriend and King, 1997)
and debate whether it is more appropriate to write this equation as an expectational
forward-looking equation or to mix backward-looking and forward-looking terms.
I believe that it is interesting to extend the analysis in that direction. I also believe
that the essence of the argument will survive except for fairly extreme (and, some
might say, incredible) alterations.

Equation (1) implies that with realized real rates equal to the benchmark level,
inflation is mean-reverting to zero at rateθ . (It would be nice for future work to
modify the model so that it allows for long-run neutrality: the steady state inflation
rate here should be arbitrary rather than zero.) If 0< θ < 2, a monetary policy
which keeps the real rate of interest rates unchanged will achieve a stationary
process forπt , hovering around zero. This equation also implies that atrt−1 ≡ 0,
the dynamics of the price change is given by

πt+1− πt = (ξ − θ )πt + ξ r̄ real+ εt .

In particular, ifξ > θ andr̄ real= 0, the price change variableπt has an explosive
dynamics, with either accelerating deflation or accelerating inflation as a result.

Equation (1) can be rewritten as

πt+1− πt = c− θπt − ξ (rt−1− πt )+ εt , (2)

where

c = ξ r̄ real.

An OLS regression of Eq. (2), using annual U.S. data from 1961 to 1998, yields
c = 2.05(0.57),θ = 0.30(0.09), andξ = 0.31(0.09) with standard errors in paren-
thesis. The standard deviation ofεt was estimated to be 1.5% andR2 = 0.75.
Based on these (admittedly rather crude) results5, I cannot reject the hypothesis

5 Another implication would be that the real rate is estimated to be 2.05/0.31= 6.6%, which strikes
me as too high for short-term riskless assets. Instead, average real rates of returns for treasury bills
have hovered around 1%. For the subsequent analysis, I shall use this 1% level rather than the implied
6.6% figure.
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TABLE I
Baseline Parameters

r̄ real 1
α 1.5
π∗ 2
ξ 0.3
θ 0.2
σ 1.3
π
¯

−5
π̄ 5

thatθ = ξ , i.e., the knife-edge case just between explosive or stable price change
dynamics forrt−1 ≡ 0. In this section, I shall emphasize the explosive possibil-
ity, θ < ξ , whereas I examine the more benign case of stable dynamics even for
rt−1 ≡ 0 in Section 3.2. In my calculations below, I will therefore choose my
baseline parameters as listed in Table I.

I now wish to calculate the steady state distribution of the rates of price changes.
To that end, I make three more assumptions. First, in order to employ convenient
mathematical tools, I shall use a continuous time formulation of (1),

dπt = ((ξ − θ )πt + ξ r̄ real) dt + σdWt . (3)

Second, I assume that interest rates are set according to a simple Taylor-rule-like
formula, respecting the lower bound at zero,

rt = max{0;α(πt − π∗)+ r̄ real}, (4)

whereπ∗ is some target inflation level and whereα is a parameter6. I do not
try to derive this behavior from some optimization problem for monetary policy:
essentially, because of the problem of runaway deflation, such problems may
be ill-defined! However, rules such as (4) have been proposed by, e.g., Taylor
(1993) and found to robustly deliver near-optimal results in many models; see
Taylor (1999a,b). It therefore certainly makes sense to examine the consquences
of adopting (4), notwithstanding the objections in, e.g., Reifschneider and Williams
(1999).

Our third assumption deals with the problem of runaway deflation, which arises
for ξ > θ , as explained above. In that case, there would not be a nondegener-
ate steady state distribution forπt . Instead, I therefore assume that there is some
lower boundπ for πt which acts as a reflecting barrier. One might justify this
assumption by saying that something changes as the economy experiences a rapid
decline in prices and that prices at that point will no longer be set quite as me-
chanically as Eq. (3) would imply. In more practical terms, this allows me to draw

6 Note that atπt = π∗ and with (4), I generally expect inflation to move further toward zero, unless
θ = 1. One therefore needs to be a bit careful in interpretingπ∗ as the target inflation.
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conclusions regarding the long-run average behavior of this economy, as parame-
ters are changed. I will rather arbitrarily setπ

¯
= −5% in my simulations below.

Additionally, I have cut off the densities atπ
¯
= 5%; i.e., I have rescaled the den-

sities so that they integrate to unity over the intervalπ ∈ [π
¯
, π̄ ].

With these three assumptions together, the stationary distribution of inflation
rates8(π ) will satisfy the stationary version of the Kolmogorov forward equation,
i.e., will be the solution to the differential equation

0= σ 2

2
8′′(π )− (p(π )π + q(π ))8′(π )−p(π )8 (5)

with boundary condition

0= σ 2

2
8′(π

¯
)− (p(π

¯
)π
¯
+ q(π

¯
))8(π

¯
), (6)

where

p(π ) =
{
θ + ξ for π ≤ π0

θ + ξ (1− α) for π > π0

q(π ) =
{
ξ r̄ real for π ≤ π0

ξαπ∗ for π > π0

and where

π0 = π∗ − r̄ real

α

is the inflation rate at which the interest rate rule hits the zero lower boundary7.
The differential equation above has (to my knowledge) no closed form solution,

unlessrt ≡ 0 (for, e.g.,π∗ = ∞) andθ = ξ . In that case, the solution is of the
form

8(π ) = 80 exp

(
2ξ r̄ real

σ 2
(π − π

¯
)

)
,

where80 needs to be chosen so that the integral equals unity. Forr̄ real> 0, one
obtains runaway inflation. For̄r real< 0, one obtains runaway deflation. To get
meaningful desities at all, I rely on the lower and upper bounds on inflation.

In Fig. 1, I show the resulting densities. For this figure, I have chosenθ = ξ =
0.3, variedr̄ real, and have otherwise used the baseline parameters listed in Table I.
As one can clearly see, the steady state density is extremely sensitive to the value
of r̄ real. Thus, one should treat any calculation of a low likelihood of entering a

7 Note thatp(π )π + q(π ) is continuous atπ0, even thoughp(π ) andq(π ) are not.
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FIG. 1. This figure shows the price change densities when nominal interest rates are fixed at zero.
Price changes are bounded by−5 and 5.

deflationary regime, which relies on solidly high real interest rates, with a note of
caution.

For the more general case, I rely on numerical solutions to the differential
equation (5). In Fig. 2 I show the steady state distribution of inflation, varying
r̄ real and using the baseline parameterization of Table I for the other parameters.
This figure is the counterpart to Fig. 2 except that now the deflation dynamics is
explosive forrt ≡ 0 and that rising inflation is combatted with increasing nominal
interest rates.

Figure 3 tells a similar story aboutθ . As explained above, values ofθ < ξ = 0.3
result in runaway deflation, whereas the inflation dynamics is stable forθ > ξ .

While r̄ real andθ should probably both be regarded as fundamental parameters
of this economy, it may be more interesting to examine the impact of changing the
policy parametersπ∗ andα.

In Fig. 4, I have variedπ∗: occasionally, it is claimed that a higher inflation
target helps in avoiding the cliff of runaway deflation. The figure shows that,
indeed, mass is moved away from the deflationary regime, but not substantially so:
even with an inflation target of 3%, we should see economies spending a sizeable
fraction of their time in the deflationary regime! This figure therefore offers a
dire prediction: while the transition probabilities between the inflationary and the
deflationary regime may be small, so that deflationary regimes have luckily been
observed fairly rarely, over time we will find that economies are commonly in that
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FIG. 2. Price change distribution, assuming thatr follows a Taylor rule. The solutions are obtained
numerically.

FIG. 3. Density of price changes when varyingθ .
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FIG. 4. Density of price changes when varyingπ∗.

situation. Orphanides and Wieland (1998) and Reifschneider and Williams (1999)
have argued that with some appropriate monetary policy rules and even at inflation
target levels close to zero, one should rarely enter deflationary regimes. While their
analysis is based on more sophisticated modeling and on a more careful estimation
of the underlying equations, there may be an issue how eagerly one should share
their optimism. First, given the simple model here, the conclusion that the transition
into the deflationary state is rare may not be sufficiently robust. Indeed, the referee
to this paper wrote that “a central bank may face such a situation due to some
large negative supply shock,” caused in the case of Japan by “the collapse of
stock prices and land prices in the early 1990s and the delay of understating their
consequences on the bank and corporate balance sheets”; see Ogawa and Kitasaka
(2000). Second, given that one may enter a deflationary regime once in a while,
one may then stay there for a prolonged period: a low probability of entering that
regime and the fact that deflationary episodes have been rarely observed so far is
therefore of little comfort. It would be interesting in the context of this model to
calculate the transition probabilities into the deflationary regime, and I hope that
this will be pursued in subsequent work.

In Fig. 5, the result of changingα is shown: apparently, this parameter has little
effect on the steady state distribution. Indeed, there are two opposing effects. On
the one hand, a higher value forα means that inflation is more tightly controlled
while rt > 0, providing a tendency forπt to cluster more closely to the targetπ∗.
On the other hand, a higher value forα means thatπ0 is closer toπ∗ and that
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FIG. 5. Density of price changes when varyingα.

the lower zero bound forrt and thus the regime of a deflationary spiral will be
entered at higher values of the price changeπt , resulting in a flattening tendency
for the density8. Apparently, both effects are reasonably close to balance for the
numerical case studied here.

3.2. Benign Price Dynamics and Maneuvering Room for Monetary Policy

Summers (1991) has argued that a positive average inflation rate and avoidance
of the zero lower bound on interest rates is necessary in order to leave maneuver-
ing room for countercyclical monetary policy. I wish to make some progress on
examining this issue in this section. I use a slight generalization of Eq. (1). Our
aim will be to calculate optimal monetary policy, taking into account the effect
of choosing nominal interest rates on both inflation (or deflation) and the output
gap. To do so, I need to rule out the possibility of a deflationary spiral: otherwise,
the entire problem will solely be driven by the desire of the policymaker to avoid
the deflationary spiral regime. I will therefore pick parameters which make the
evolution of price changes stable, even ifrt ≡ 0.

More specifically, suppose that

πt+1 = φπt + γ yt + εt (7)

8 As Henning Bohn pointed out to me, that intuition is not compelling: after all, in that region, there
is still more upward pressure on inflation than for a lower value ofα.



278 HARALD UHLIG

yt+1 = ψyt − ρ(rt − πt+1), (8)

whereπt is the rate of price change from periodt to t + 1, yt is the output gap,rt

is the nominal interest rate for safe assets maturing in periodt + 1, εt is a date-t
mean zero normally distributed random shock with varianceσ 2 andφ, γ, ψ , and
ρ are parameters. These equations make an assumption, which is surely crucial in
light of the preceeding Section 3.1: the benchmark real interest rate is assumed to
be zero. One should therefore think of this model as capturing a rather sluggish
period in time when, e.g., productivity growth is slow. The model does not apply
to times of fast productivity growth as in the United States in the latter half of the
1990s, but is more applicable to the current situation in Japan: that, of course, is
precisely the time when one might need to worry about the zero lower bound on
nominal interest rates.

I assume that the monetary policymaker choosesrt every period, knowing the
predetermined price changeπt+1 as well as the current output gapyt . Further, I
assume that the objective of the central bank is to maximize

U = −E

[∞∑
t=0

β t

(
(πt − π∗)2

2
+ λ y2

t

2

)]
.

Except for some minor differences, this model has been taken practically verbatim
from Svensson (1997) and, subsequently, Orphanides and Wieland (2000). I do
not claim any originality at this point. It should be clear that this model is highly
stylized and perhaps even oversimplified. The model belongs to a class of models
which have recently become popular in debates and research regarding monetary
policy surveyed by Claridaet al. (1999), see, e.g., Further and Moore (1995),
Svensson (1997), Rudebusch and Svensson (1999), or Orphanides and Wieland
(1999), and it should simply be regarded as a starting point to provide some insights
and intuition. Goodfriend and King (1997), Walsh (1998), and Woodford (1999b)
provide a more in-depth discussion of how equations of this type may result from
a more full-fledged model. Here, I just notice that I have not given a reason that
output gap stabilization may be desirable to begin with. Presumably, there must be
some market failure which monetary policy may be able to correct: without more
detailed modeling, it is hard to see why the private sector cannot do that itself.
Furthermore, output is a deterministic function of lagged output, inflation, and
interest rates; i.e., there are no “supply shocks” in the language of that literature. I
am ignoring them for the sake of simplicity, because my focus is on the autonomous
dynamics of inflation rates.

These equations have some features which one may find appealing. As in Eq. (1),
central banks do not control inflation directly and actual inflation may overshoot
or undershoot its target due to the stochastic term, there is inertia to the dynamics
of price changes, and inflation is predetermined one period in advance. Inflation
here is now no longer directly linked to real rates: the link is now via the output gap
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instead. Again, it should be interesting to extend this model to allow for forward-
looking elements, to allow for shocks to the output gap equation, and to proceed to
a more fully specified model with genuine micro foundations: I find it likely that
some of the conclusions here remain intact. In fact, I believe them to depend more
on the specific parameters chosen than on the particular underlying theoretical
model, although such a statement must be pure speculation in the absence of
actually undertaking the exercise of extending the analysis.

Note also that fiscal considerations for the determination of the price level have
been left out entirely: this is an ommission in any case, as fiscal policy undoubtedly
becomes an important part of the set of policy tools available at near-zero interest
rates. I do not see this as a major drawback at this stage of the analysis, however,
since the focus here is on monetary policy per se and not on output stabilization at
large. More importantly, though, recent advances in the fiscal theory of the price
level point out that the price level or perhaps even the inflation rate should be more
properly viewed as being determined by fiscal policy rather than monetary policy
altogether; see, e.g., Leeper (1991), Sims (1994), Woodford (1995), and Cochrane
(1998). It might be interesting to puruse the implications of that framework for the
question of the zero lower bound on interest rates. Doing so here would lead us
too far away, however.

The benchmark real rate has been fixed at zero for this exercise (i.e., it is abent
from the equations above). If the realized real rate is always equal to zero, i.e., equal
to the benchmark real rate, the stability of the system is given by the eigenvalues
of the matrix

Art−πt+1≡0 =
[
φ γ

0 ψ

]
and hence byφ andψ . Thus, if bothφ andψ are smaller than unity in absolute
value, the system is stable around the steady state valuesπ∞ = 0, y∞ = 0 for a
constant real rate. If the realized real rate is always equal to some other valuer̄ ,
say, the steady state shifts to

y∞ = −ρ
1− ψ r̄ , π∞ = γ

1− φ y∞.

I.e., to achieve a steady state of permanently positive inflation, one needs to perma-
nently push the short-term real rate below the benchmark level: this model assumes
that this is in principle possible.

If rt ≡ 0, i.e., if nominal interest rates hit the zero lower bound, the stability of
the system is given by the eigenvalues of

Art≡0 =
[
φ γ

ρ ψ

]
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TABLE II
Parameters for the

Two-Equation Model

φ 0.7
γ 0.65
ψ 0.35
ρ 0.16
σ 1.3
β 0.95

and hence by the two rootsζi , i = 1, 2, to the quadratic equation

p(ζ ) = ζ 2− ζ (φ + ψ)+ (ψψ − γρ).

I have estimated the two equations (7) and (8) with OLS using annual U.S.
data from 1961 to 1998, including an intercept. To obtain the output gap, I have
HP-filtered the logarithm of real GDP, removing the smooth trend. For my HP
parameter, I have used the value 7, rather than the more conventional value of
100: the justification can be found in Ravn and Uhlig (1997). For Eq. (7), I ob-
tainedφ = 0.75(0.08), γ = 0.80(0.16), and a significant intercept of 1.20(0.41).
The standard error of the residual wasσ = 1.3 andR2 = 0.8. For Eq. (8), I obtained
ψ = 0.24(0.15), ρ = 0.19(0.07), and an insignificant intercept of 0.41(0.25) (stan-
dard errors are in parenthesis). The standard error was 1.2 andR2 = 0.27. The
eigenvalues ofArt≡0 areζ1 = 0.96 andζ2 = 0.03 and therefore are both stable.
For the simulations below, I have used the parameters listed in Table II, which
differ somewhat (but not significantly) from my empirical estimates. The roots
for the parameters listed there areζ1 = 0.89 andζ2 = 0.16, i.e., somewhat more
benignly stable.

Taking all equations together, the problem of the central bank can be rewritten
as a dynamic programming problem,

V(πt+1, yt ) = max
rt≥0

{
−π

2
t+1

2
− λ y2

t+1

2

′
+ βE[V(πt+2, yt+1)]

}
yt+1 = ψyt − ρ(rt − πt+1) (9)

πt+2 = φπt+1+ γ yt+1+ εt+1.

The crucial difference to similar models of optimal monetary policy in the literature
is the restriction that nominal interest rates must be positive,rt ≥ 0. What I am
looking for in particular is the optimal monetary policy rule,

rt = f (πt+1, yt ).

It is useful to first consider this problem without the zero lower bound on nominal
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interest rates. In that case, this is a standard linear-quadratic problem. I assume
additionally thatπ∗ = 0 as perhaps the most interesting benchmark:

PROPOSITION4. Without the constraint rt ≥ 0, and withπ∗ = 0, there is a
solution to the dynamic programming problem, given by

V(πt+1, yt ) = −a
π2

t+1

2
− c

(10)

rt = ψ

ρ
yt +

(
ω

ρ
+ 1

)
πt+1,

where

ω = βφγa

λ+ βγ 2a

c = β

1− β
σ 2
ε

2
a

and where

a = p

2
+
√(

p

2

)2

− q

with

p = λβφ2+ βγ 2− λ
βγ 2

q = − λ

βγ 2
.

This proposition can be proved by the method of “guess and verify.” More
precisely, substitute the form (10) into the right-hand side of Bellman’s Eq. (9). Take
first-order conditions and calculate the envelope conditions. After some tedious
calculations, the result above obtains. Alternatively, check Svensson (1997) or
Orphanides and Wieland (2000), who also derive practically the same result.

There are a few things to notice. First, the decision rule for interest rates takes the
form of a Taylor rule; see Taylor (1993). I.e., interest rates are set to react linearly
to the (deviation in) inflation and the output gap. The coefficients have the expected
sign: interest rates should be raised if the output deviations (the negative of the
output gap) are particularly large or inflation is particularly strong. This is good
news: there is fairly convincing evidence that monetary policy in practice comes
close to following a Taylor rule; see Claridaet al.(1998). Our model is certainly not
unique in giving rise to a Taylor rule as the optimal (or nearly optimal) decision rule
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for a central bank: a survey of a variety of monetary models and their implications
for Taylor rules is in Taylor (1999a,b).

Second, one can actually bypass interest ratesrt in the model above completely
and directly assume that the central bank controlsyt . Evenψ then does not matter
anymore. One finds that

yt = −ωπt .

From this, it follows that

ω = σy

σπ
,

i.e., the ratios of the observed standard deviations of output and inflation yield the
(negative of the) reaction cofficient of the output gap to inflation. A more extensive
discussion, in particular in the relationship to the data on unemployment volatility
and inflation volatility across countries, can be found in Uhlig (1999). Finally, I
note that there is no systematic inflation bias whenπ∗ = 0.

To solve the dynamic problem with the zero lower bound on nominal interest
rates, I use numerical techniques9 in an exercise similar in spirit to the one per-
formed by Orphanides and Wieland (1999). The parameters have been taken from
Table II.

A plot of the decision rule for the “benchmark” parameterizationπ∗ = 2 and
λ = 1 can be seen in Fig. 6. Naturally, the nominal interest rate is set equal to zero
for large ranges of the state space. Nonetheless, interest rates are raised quickly if
the output gap or the inflation rate is too large.

A comparison to the benchmark situation of no lower bound is in Fig. 7. As
one can see, the nominal interest rate is held at zero for somewhat higher levels
of inflation (which should be clear from an “option value” perspective), but is
otherwise not substantially different.

Simulation results when varyingπ∗ andλ can be found in Tables III for the
price changesπt , IV for the output gap, and V for the nominal interest rates.
Furthermore, Figs. 8 and 9 contain histograms for the nominal interest ratesrt :
Fig. 8 shows the histograms when fixingλ = 1, but varyingπ∗ = 0, 0.5, . . . ,3,
whereas Fig. 9 fixesπ∗ = 2 and variesλ = 0, 1, 10,∞.

A clear and striking feature emerges from all these results: optimal monetary
policy in this setting keeps nominal interest rates close to zero in a substantial
fraction of the periods. Indeed, one may want to regard the results here as a

9 I have used a grid method on equally spaced grids and value function iteration. I have discretized
the shockεt , calculating an appropriate Markov transition matrix for inflation rates on the grid once. For
each state on the grid, the optimal decision was used by bisection methods, using a linear interpolation
of the expected value function, given on the grid. With the decision rules calculated this way, I have
then performed simulations of length 1500 with normally distributed shocks, truncated to fit the range
of π ′t s on the grid, discarding the first 500 observations and linearly interpolating the decision rule
between grid points.
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FIG. 6. A plot of the decision rule usingπ∗ = 2 andλ = 1.

FIG. 7. This figure compares the no-constraint decision rule and the decision rule constrained by
a lower bound of zero on the nominal interest rate. For the parameters, we have usedπ∗ = 0 andλ = 1.
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TABLE III
Results forπ

λ = 0 1 10 ∞
π∗ = −0.5 −1.09 (1.90) −0.94 (1.94) −0.62 (2.06) −0.47 (2.12)
π∗ = 0.0 −0.75 (1.99) −0.68 (2.02) −0.53 (2.08) −0.47 (2.12)
π∗ = 0.5 −0.50 (2.07) −0.47 (2.08) −0.45 (2.11) −0.47 (2.12)
π∗ = 1.0 −0.27 (2.16) −0.29 (2.16) −0.38 (2.13) −0.47 (2.12)
π∗ = 1.5 −0.14 (2.23) −0.17 (2.22) −0.32 (2.16) −0.47 (2.12)
π∗ = 2.0 −0.04 (2.30) −0.08 (2.28) −0.26 (2.18) −0.47 (2.12)
π∗ = 2.5 0.01 (2.33) −0.02 (2.31) −0.21 (2.20) −0.47 (2.12)

Note.Means and standard deviations are in parenthesis.

practical means to implement the Friedman rule. In words, the recipe would be to
keep nominal interest rates at zero all the time, except if prices start to rise too fast:
in that case, swiftly react with high nominal interest rates to bring inflation down
again.

The intuition for the choice of a zero nominal interest rate is clear. If inflation
is below the target level or if output is below trend, the central bank would want
to choose low nominal interest rates anyhow and ends up choosing zero nominal
interest rates here. The monetary policymaker is not worried about runaway defla-
tion, because I have assumed that even deflationary processes are stable. Should
inflation reach levels which are deemed too high, then nominal interest rates are
raised just as most monetary models would recommend: there is no surprise here.

Interestingly, the inflation target level matters little for the actual average rate
of inflation achieved: because of the inherently stable price change dynamics, it is
too costly to try to keep inflation high (and it is impossible to force prices to go
up, when the economy is in the deflationary regime). Indeed, if anything, a higher
inflation target results in adopting a zero nominal interest rate more often! This
result casts doubt on the recommendation of some observers to avoid deflationary
zero-interest-rate episodes by adopting positive levels of inflation as the inflation
target.

TABLE IV
Results fory

λ = 0 1 10 ∞
π∗ = −0.5 −0.51 (0.40) −0.44 (0.33) −0.30 (0.32) −0.22 (0.36)
π∗ = 0.0 −0.35 (0.41) −0.32 (0.36) −0.25 (0.34) −0.22 (0.36)
π∗ = 0.5 −0.24 (0.41) −0.23 (0.38) −0.22 (0.36) −0.22 (0.36)
π∗ = 1.0 −0.13 (0.44) −0.15 (0.42) −0.19 (0.38) −0.22 (0.36)
π∗ = 1.5 −0.07 (0.47) −0.09 (0.45) −0.16 (0.40) −0.22 (0.36)
π∗ = 2.0 −0.03 (0.50) −0.04 (0.49) −0.13 (0.41) −0.22 (0.36)
π∗ = 2.5 −0.01 (0.52) −0.02 (0.51) −0.11 (0.43) −0.22 (0.36)

Note.Means and standard deviations are in parenthesis.
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TABLE V
Results forr

λ = 0 1 10 ∞
π∗ = −0.5 0.99 (2.72) 0.86 (2.07) 0.58 (1.22) 0.45 (0.93)
π∗ = 0.0 0.69 (2.39) 0.63 (1.80) 0.50 (1.15) 0.45 (0.93)
π∗ = 0.5 0.47 (1.84) 0.45 (1.53) 0.43 (1.07) 0.45 (0.93)
π∗ = 1.0 0.28 (1.49) 0.30 (1.23) 0.38 (0.99) 0.45 (0.93)
π∗ = 1.5 0.16 (1.07) 0.19 (0.98) 0.32 (0.91) 0.45 (0.93)
π∗ = 2.0 0.08 (0.75) 0.11 (0.74) 0.27 (0.85) 0.45 (0.93)
π∗ = 2.5 0.04 (0.46) 0.06 (0.54) 0.23 (0.78) 0.45 (0.93)

Note.Means and standard deviations are in parenthesis.

4. BABY-SITTING COOPS

Some, in particular Sweeney (1978) and Krugman (1998b, 1999a), have argued
that monetary policy is best understood using the parable of a baby-sitting coop.
In fact, Krugman (1999a) uses it throughout his book as a key device to analyze
the current situation in Japan and to discuss remedies.

The story is probably familiar to many. A community decided at some point to
organize mutual baby-sitting by trading coupons. Each family would be endowed
with an initial number of coupons. If a family requested baby-sitting services from

FIG. 8. Histogram of nominal interest rates when varyingπ∗.
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FIG. 9. Histogram for nominal interest rates when varyingλ.

someone within the community, it would give that person or family a coupon.
Likewise, for baby-sitting services rendered, it would receive a coupon. At some
point, this system of mutual baby-sitting came to a halt. Krugman (1999a) writes on
p. 9, that “one couple’s decision to go out was another’s opportunity to baby-sit; so
opportunities to baby-sit became hard to find, making couples even more reluctant
to use their reserves except on special occasions. . . .” The remedy turns out to be
a helicopter drop of money. On p. 11, Krugman (1999a) states that “eventually,
however, the economists prevailed, and the supply of coupons was increased. The
results were magical: with larger reserves of coupons to baby-sit more plentiful,
making couples even more willing to go out, and so on.. . .The monetary screwup
had been rectified. Recession, in other words, can be fought simply by printing
money—and sometimes (usually) be cured with surprising ease.”

While Krugman told me in private conversation that he intended this parable
only as a means of explanation to the general public how monetary policy might
have real effects, it is hard to read his description above from a more informed
perspective without giving it a multiple equilibrium interpretation of moving from a
good to a bad equilibrium and back through the injection of liquidity. I shall proceed
to examine his argument with the rigor of a formal model of a baby-sitting coop. I
shall show that it indeed can give rise to multiple equilibria. However, the injection
of liquidity is unlikely to enable the economy to move back to a good equilibrium:
rather, it may move the economy to a region where equilibria, in which money is
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valued, cease to exist altogether. The intuition is simple: if multiple equilibria exist,
the “bad” equilibrium branch does not disappear for higher values of coupons per
person, as one might think, given the baby-sitting coop parable above. Rather, both
branches coexist except for a single maximal value of coupons, at which monetary
equilibria are sustainable. Beyond that, existence breaks down as there are too
many coupons chasing too few baby-sitters.

The formal analysis here thus offers a dire warning regarding Krugman’s rec-
ommendation. Given the attention that his parable and recommendations have
received, more formal research should be devoted to clarifying its precise logic,
separating the pitfalls from the genuine insights. The analysis here should be un-
derstood as a step in that direction and as pointing out that a casual treatment of
the baby-sitting coop parable as a guide to monetary policy can be dangerously
misleading.

The model is developed in Section 4.1 and solved in Section 4.2. Insights into
the nature of multiple equilibria as well nonexistence are provided in Section 4.3.

4.1. The Model

There is a continuum of agents who live in an infinite number of discrete periods
t = 0, 1, 2, . . . . They own coupons exchangable for baby-sitting services. I assume
that agents are not allowed to borrow coupons, but there is no upper limit to holding
coupons. Receiving baby-sitting services yields random utilityut at datet , drawn
iid according to some continuous distribution functionF . Agents themselves may
be asked in turn to baby-sit, in which case they receive a coupon. I assume for
simplicity that they do not experience any disutility for rendering this service.
Furthermore, the selection of the baby-sitting agents is assumed to be random. In
each period, both events can take place. I assume that agents know the utilityut

generated by the baby-sitting service but do not know whether they in turn will be
asked to baby-sit “later” in that period, when making the decision whether or not to
make use of a coupon. Perhaps it is a bit absurd to assume that couples can go out
as well as baby-sit in the same period, but it simplifies the analysis considerably
(and it may not be so absurd after all, judging from my own experience). I suppose
that the average number̄n of coupons per agent is given.

Solving for the social planners’ solution is simple: demand that every oppor-
tunity to go out is taken, i.e., that there is baby-sitting all the time. This result is
but an artifact of the simplifying assumption that baby-sitting is painless: while
reasonable as a simplifying device, this is certainly not reasonable for providing a
welfare analysis, from which I will therefore refrain. The assumption of painless
baby-sitting also delivers the artificial equilibrium if there is at least one coupon
per agent, in which all agents request baby-sitting every period, always using
one coupon and receiving one in return.10 While agents might as well participate,
given that they are indifferent between providing baby-sitting services and not
baby-sitting, this equilibrium is rather “perverse”: it is as if agents are willing to

10 I am grateful to Kyoji Fukao, my discussant, for pointing this out.
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deliver a free good for receiving valueless money and therefore do not mind hold-
ing the extra reserves forever, if the number of coupons exceeds one per agent.
It is likely that this equilibrium will disappear with a small cost for baby-sitting,
although this shall not be shown formally. Instead, I will simply proceed with my
fingers crossed, focussing on the “reasonable” equilibria instead, in which agents
perceive the coupons as scarce and valuable.

Focusing on the stationary environment, I shall now describe the dynamic pro-
gramming problem faced by the agents. When making their decisions, agents
knows the probabilityp that they will be asked later in that period to render the
baby-sitting services themselves. I shall therefore takepas given: eventually, I will
need to solve forp in equilibrium.

Letv(n, u) be the value of havingn coupons, provided that receiving the service
generates utilityu this period. Letβ be the discount factor, 0< β < 1. I have

n = 0: v(0, u) = βw(0)

n ≥ 1: v(n, u) = max{u+ βw(n− 1);βw(n)},

wherew(n) is the expected continuation value forn coupons before being possibly
asked to render the service oneself,

w(n) = (1− p)ve(n)+ pve(n+ 1), (11)

where

ve(n) = E[v(n, u)] =
∫
v(n, u)F(du).

It is clear that the optimal decision rule is of the threshold type, i.e., to request
the baby-sitting service iff

u ≥ ū(n) = β(w(n)− w(n− 1)), n ≥ 1 (12)

andū(0)= 1 (note that I do not particularly worry about the case of equality as I
have assumed the distribution foru to be continuous). Hence,

ve(n) = βw(n)+
∫

u≥ū(n)
u− ū(n)F(du)

= βw(n− 1)+
∫

max{u, ū(n)}F(du). (13)

With these decision rules, I can now calculate the population dynamics. Focusing
on the stationary case, letλn be the mass of agents withn coupons. An agent who
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hasn coupons this period has experienced one of exactly four different scenarios
last period, providedn ≥ 1:

1. The agent started withn+ 1 coupons, used one, but did not receive one.
2. The agent started withn coupons, did not use one, and did not receive

one.
3. The agent started withn coupons, used one, and also received one.
4. The agent started withn− 1 coupons, did not use one, but received one.

Formally, forn ≥ 1:

λn = λn+1(1− F(ū(n+ 1)))(1− p)+ λnF(ū(n))(1− p)

+ λn(1− F(ū(n)))p+ λn−1F(ū(n− 1)))p. (14)

For n = 0, one gets

λ0 = λ1(1− F(ū(1)))(1− p)+ λ0(1− p). (15)

The weightsλ need to be probability weights,

1=
∞∑

n=0

λn. (16)

Furthermore, it needs to be the case that 0≤ λn ≤ 1.
Finally, it needs to be the case that the average number of coupons spent per

agent equals the probabilityp of receiving a coupon and that the average number
of coupons held equals the average endowmentn̄,

p = 1−
∞∑

n=0

λnF(ū(n)) (17)

n̄ =
∞∑

n=0

λnn. (18)

DEFINITION 1. Anequilibriumis a vector ((w(n), ve(n), ū(n), λn)∞n=0, p) such
that

1. the dynamic programming is solved, i.e., Eqs. (11)–(13) are satisfied,
2. the distribution (λn)∞n=0 is stationary, i.e., satisfies Eqs. (14)–(16),
3. aggregate feasibility holds, i.e., Eqs. (17) and (18) are satisfied.

It should already be clear that this model is essentially a model of search and
thus closely related to the search-theoretical models of money as a medium of
exchange; see Kiyotaki and Wright (1989, 1993) or Trejos and Wright (1993,
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1995) and others. In the model here, agents can hold several units of the medium
of exchange (i.e., coupons). Money here comes in discrete, but multiple, units
whereas the service does not. One might want to follow Trejos and Wright (1995)
and cast this into a bargaining framework, i.e., introduce bargaining about the cost
of baby-sitting in terms of the number of coupons each time somebody seeks the
service. In the environment here, one may then want to take into account questions
of observability. Here, instead, we go the opposite and perhaps simpler route. There
is no bargaining over the price level—the price level is instead fixed at one coupon
per one unit of baby-sitting. Furthermore, there is no problem in finding agents
willing to render the service. Instead, the “search” feature here is with respect to the
urgency of need in receiving the service. Nobuhiro Kiyotaki pointed out to me that
there is a paper by Pesek, Saving, Li, and Runero, which I unfortunately have not
been able to locate (and which therefore does not appear in the list of references),
but which, I am told, also has the feature that making money too attractive may
slow down the exchange, because the money holder becomes too picky or too lazy
in his or her search effort.

4.2. Analysis

Counting equations and unknowns in the definition above, one can see that
there are two equations too many. One superfluous equation is easily spotted:
because Eqs. (14) and (15) inλn are homogenous of degree 1, a rescaled version
of a solution still statisfies these equations. Still, there needs to be one more. The
following lemma provides the answer.

LEMMA 1. Equation(17) is superfluous.

Proof. Suppose that all other equations hold. Imagine taking “one step” from
t to t + 1 in this economy, starting from this distribution, having agents spend
coupons according to their optimal decision rules, i.e., the threshold levelsū(n)
and a fractionp of the population receiving coupons. Since (λn)∞n=0 is a stationary
distribution, the total number of coupons will not change, implying that the average
number of coupons spent must equal the average number of coupons received. But
this is exactly what Eq. (17) states.■

It is also useful to recognize thatve(n) can be eliminated:

LEMMA 2. Equations(11)and(13)can be replaced by

0 = −(1− β)w(n)+ (1− p)
∫

u≥ū(n)
u− ū(n)F(du) (19)

+ p
∫

max{u, ū(n+ 1)}F(du). (20)
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Proof. Substitute. ■

To proceed further, I need a convenient assumption on the distribution of the
utility u:

Assumption A.1. uis uniformly distributed between 0 and 1, i.e.,F(u) =
u, 0≤ u ≤ 1.

I can now proceed in three steps. First, I calculate the solution to the dynamic
programming problem. Next, I show how the stationary distribution can be cal-
culated. Finally, I check for aggregate feasiblity to determine the probabilityp,
which I have treated as a parameter in the first two steps.

4.2.1. Solving the dynamic programming problem.With the assumption of a
uniform distribution, the dynamic equation (19) turns out to have a particularly
tractable form:

PROPOSITION5. With assumption(1), Eq. (19)can be rewritten as

0= pβw(n+ 1)− (2− β)w(n)+ β(1− p)w(n− 1)+ 1 (21)

for n > 0 and

0= pβw(1)− (2− (2− p)β)w(0)+ p. (22)

The solution is given by

w(n) = w∗ − aνn, (23)

where

w∗ = 1

2(1− β)
a = ν

β(1− ν)

and whereν is the nonexplosive solution to the quadratic equation11 (24) stated
in the proof.

Proof. Equations (19) and (12) and a bit of algebra, exploiting the uniform
distribution assumption, directly yield Eqs. (21) and (22). Note, that (21) is a
second order linear difference equation. It is well known that these equations have
the generic solution

w(n) = w∗ − aνn
1 − bνn

2 ,

11 This claim is subject to the caveat that I need that the other root solving the same quadratic equation
is explosive, but have not formally shown this to be the case in the proof. However, this was always
the case in the numerical examples, so I skip this step.
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wherew∗ is the steady state of (21), wherea andb are coefficients and whereν1

andν2 are solutions to the characteristic equation

0= pβν2− (2− β)ν + β(1− p) (24)

provided the two solutions are distinct. First, check thatw∗ = 1/(2(1− β)) is
indeed the solution of Eq. (21), if one were to setw(n+ 1)= w(n) = w(n− 1)=
w∗ there. The quadratic equation (24) has the two solutions

ν1,2 = 1

pβ
− 1

2p
±
√(

1

pβ
− 1

2p

)2

− 1− p

p
.

While I have not formally shown this yet, for all my numerical examples, one of
the roots turned out to be explosive, whereas the other one turned out to be positive
and stable. Letν = ν1 be the stable andν2 be the unstable root. It is clear that
w(n) is bounded above from always consuming the maximal possible utility, i.e.,
by 1/(1− β), and is bounded below from never consuming anything, i.e., by 0.
This implies that the coefficientb on the explosive part must equal zero. Finally, to
calculatea, I exploit the initial condition (22). That equation can now be rewritten
as

1− p = a(2− 2β + pβ − pβν).

Finally nothing that (24) implies

2− β − pβν = β(1− p)
1

ν

yields the stated solution for the coefficienta. ■

The previous lemma with (12) immediately implies that the threshold values
ū(n) are given by

ū(n) = νn.

4.2.2. The stationary distribution.While I cannot obtain a single formula
for λn, the population weights can easily be calculated recursively as follows. I
continue to uphold the assumption (1) of a uniform utility distribution.

PROPOSITION6. Given the threshold values̄u(n), let λ̃o = 1, let

λ̃1 = p

(1− p)(1− ū(1))
,
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and recursively calculate

λ̃n+1 = ((1− p)− (1− 2p)ū(n))λ̃n − pū(n− 1)λ̃n−1

(1− p)(1− ū(n+ 1))

for n ≥ 1. The population weights are now given by

λn =
( ∞∑

j=0

λ̃ j

)−1

λ̃n.

Proof. Direct. ■

4.2.3. Closing the model.I finally have to check the feasibility relationship

n̄ = f (p),

where

f (p) =
∞∑

n=0

λn(p)n,

where I have indicated the dependence ofλn on the value forp, which I have
so far treated as a parameter. This equation can be solved by “brute force”: for
all p ∈ (0; 1), trace out the functionf (p) on the right-hand side of this equation.
By construction,f (p) can be shown to be continuous. Thus, if inff (p) ≤ n̄ ≤
sup f (p), then a solution exists, otherwise, it will not.

In fact, note thatf (p) does not depend on̄n itself! I can therefore calculatef (p)
once and then immediately provide solutionsp for anyn̄ this way.

4.3. Discussion

In the last section, I made the assumption of a uniform distribution for the
utilities u, and I then proceed to characterize the solution to my model. It takes the
form

n̄ = f (p).

This formulation immediately allows the discussion of the number of equilibria

p ∈ 8(n̄) = f −1(n̄) = {p | n̄ = f (p)}.

The only parameter left to vary is the discount factorβ: I shall therefore write the
equation above as

n̄ = f (p;β).
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FIG. 10. This figure showsf (p;β) for β = 0.90. The function looks monotonic.

For β = 0.9, the function is plotted in Fig. 10. The function appears to be
rising monotonically: for each̄n there is therefore at most one solutionp(n̄) with
n̄ = f (p) for any givenn̄. In this economy, I may think ofpas the level of economic
activity of GNP. Clearly, economic activityp(n̄) rises with the total amount of
coupons in circulation. I interpret the comments by Paul Krugman during a private
conversation that this may be his desired interpretation of the baby-sitting coop
parable. If so, it is perhaps a bit tricky to motivate why economic activity would
collapse here—a reduction in the number of coupons in circulation? A shift in
tastes? Some “government” interference in markets?—and one would probably
like to understand the specific cause before suggesting a specific remedy. In any
case, note, that there are no (stationary) equilibria ifn̄ is too large, so there is a
problem in injecting too much liquidity, an issue which we shall discuss in greater
detail toward the end of the paper.

Figure 11 is similar to the preceeding figure, except that the consumers are now
more patient:β = 0.99 instead ofβ = 0.90. For, e.g.,̄n = 2, one can now see that
there are two equilibria: a low-activity equilibrium and a high-activity equilibrium.
For the low-activity branch, economic activity behaves as expected: more coupons
n̄ = f (p) result in a higherp (which one has to look up on thex-axis). For the
high-activity branch, economic activity behaves “perversely,” though: an additional
injection of coupons actually lowers economic activity. And, again, if there are
too many coupons in circulation, no stationary equilibrium exists (except for the
perverse equilibrium of always providing baby-sitting services): theory, at least
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FIG. 11. This figure showsf (p;β) for β = 0.99. Notice the hump-shape, indicating multiple
equilibria.

developed so far, offers little guidance as to what would happen then, although I
shall feel free to speculate a bit further below.

The fact that multiple equilibria only emerge if agents are more patient suggests
that this problem is more likely to arise in countries in which patience is seen as
a relatively greater virtue. It is conceivable that this helps explain why this type
of problem has arisen in Japan rather than, say, in the United States, if indeed this
analysis is appropriate for the situation there.

To understand how the multiple equilibria arise, it may be useful to examine the
changing shape of the stationary distributions, asp is varied forβ = 0.99: this can
be seen in Fig. 12. When looking at this figure, keep in mind, that the total number
of coupons in circulation varies according tof (p;β), as I varyp: in fact, f (p;β)
results from integrating the number of coupons, using these distributions. Appar-
ently, both at low levels ofp and at high levels ofp, the distribution concentrates
on low levels ofn, but for different reasons: for low levels ofp, there simply is
not a large supply of coupons per agent, so most of them “dry up.” For high levels
of p, agents do not mind spending their coupons as quickly as possible, because
they can rest assured that they will receive another coupon very shortly. It is only
in the intermediate range that agents typically wish to hold a number of coupons:
while there is ample supply so that it will not “dry up,” coupons nonetheless arrive
sufficiently infrequently so that agents wish to carry a buffer stock. The result of
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FIG. 12. This figure shows the distribution (λn) asp varies. At a givenp, the “slice” of this figure
shows the distribution.

this logic is the banana-shape of this three-dimensional picture of the population
distribution.

The evolution off (p;β) can be seen in Fig. 13 or, as a three-dimensional “hill,”
in Fig. 14. Whenever there are peaks, there are multiple equilibria, whenn̄ is
sufficiently high: a high-activity equilibrium and a low-activity equilibrium.

Taking the contour-plot of the hill in Fig. 14 yields Fig. 15, which finally pro-
vides the sets8(n̄) asβ varies.

Some more speculative remarks after this analysis may be in order. First, the
story told in the Introduction may be a story of an economy falling from a high-
activity stationary equilibrium into a low-activity equilibrium. The theory here
certainly does not provide a rationale for how this might happen, but it may not be
too hard to envision this possibility. For example, perhaps all the families in the
coop woke up one morning, each individually believing that now everybody would
coordinate on the low-activity equilibrium, whereas this was thought impossible
just yesterday. What, then, would happen if additional coupons would be injected
in order to stimulate economic activity? The pictures suggest perhaps nothing
much. If the additional injection of coupons resulted in the stationary steady state
moving “locally” (again, this is quite a stretch of the theory—there is nothing in
the theory that would allow me to make this leap of faith! But it may noetheless
be useful to guide intuition in future, more fully specified models), then economic
activity would simply inch up a bit, but stay on the low-activity branch.



SHOULD WE BE AFRAID OF FRIEDMAN’S RULE? 297

FIG. 13. f (p;β) for several values ofβ are shown.

FIG. 14. Here, one can see the functionn = f (p;β) on its two-dimensional domain. The hill-
shape indicates the existence of multiple equilibria.
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FIG. 15. For eachβ and each̄n (on the contour curves), one can read off this figure the solution
set of allp’s, satisfyingn̄ = f (p;β).

Perhaps, then, remembering the “good old times,” the coop leaders might be-
come desperate and inject a lot more coupons. For example, somebody might come
up with the idea of measuring the change in economic activity due to the recent
injection of extra coupons and extrapolating the result to figure out how many
additional coupons would be needed to restore the old level of activity. The result
would be disastrous. Rather than restoring that old level of activity, the economy
would instead enter the range of nonexistence of a stationary equilibrium. More
precisely, only the perverse equilibrium of always baby-sitting remains, but pre-
sumably disappears when assuming a small cost to delivering the baby-sitting
service.

What, exactly, will happen then? Again, the theory as described so far is of little
assistance. Intuition suggests that the coupons simply become totally valueless:
there will be too many of them circulating for anybody to be interested in accepting
them as payment for services rendered, again supposing some disutility to baby-
sitting to rule out the perverse baby-sit-always equilibrium. The families in the
coop would surely find other ways to agree on mutual baby-sitting arrangements,
i.e., they would resort to some form of barter and pairwise contracting instead.
As a parable of monetary policy, this suggests that inflating a country out of a
liquidity trap may actually result in runaway inflation and a complete change in
the payment system rather than restoration of the old level of economic activity.
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This may be the most important of the overlooked implications of the baby-sitting
coop analogy to monetary policy making.

Now, one may object that surely the comparison here has been taken too far.
Monetary policy is different from raising or lowering the number of coupons in a
baby-sitting coop. Sure it is. But if that is so, why should one attach much weight
to the claim that monetary policy can get a country out of deep recession simply by
rekindling inflation, as Krugman (1999) has claimed, using the baby-sitting coop
parable in support of his thesis? A deeper analysis is called for.

5. DISCUSSION AND CONCLUSION

I have discussed three different frameworks in order to gain a few more in-
sights into the phenomenon of a liquidity trap, of Friedman’s rule, and of runaway
deflation. None of these models are sufficiently satisfactory.

In the first section, I examined a cash-in-advance economy, restating some re-
sults by Cole and Kocherlakota (1998). It turns out that Friedman’s rule can be
implemented by shrinking the money stock at the appropriate rate in the long run.
As this leaves ample room in the short run, one important lesson to be drawn here
is that increases in the money stock—be they through outright helicopter drops,
any form of open market operation, or foreign exchange intervention—change
nothing as long as the economy remains in the equilibrium of a long-run shrinkage
of the money stock. I believe that this lesson is probably correct and a general
one. However, the cash-in-advance structure is also perhaps too rigid in its impli-
cations. How should markets know whether or not the Bank of Japan is bent on
implementing Friedman’s rule in the long run? More appropriately then, near-zero
interest rates and deflationary tendencies in prices are more appropriately viewed
as medium-term developments, due to the capricious nature of the price process
and economic activity itself.

This view was taken up in the next section, which examined two simple mod-
els of the inflationary process. One was inherently instable, unless controlled by
sufficiently drastic action in nominal interest rates. But as the economy spiraled
into deflation, nominal interest rates hit the zero lower bound, thus accelerating
the deflationary tendencies. This model offered a dire warning: if these dynamics
are indeed inherently unstable, then one should expect to see economies spending
a substantial fraction of time in deflationary regimes.

While this prediction seems to be perhaps too dire, the prediction emerging from
a model in which a central bank maximizes some objective function in inflation
and the output gap, facing an inherently stable price change process, is perhaps
too panglossian: in this scenario, the central bank will set the nominal interest rate
to zero a large fraction of times, thus erring on the side of deflation rather than
inflation.

It is clear that both models do not go deep enough. What is needed is a clearer un-
derstanding of exactly what will happen as economies enter deflationary regimes,
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forcing central banks to zero nominal interest rates. So far, there is too little his-
torical experience to know and too little theorizing to allow any safe predictions.
Perhaps, the two models offered here straddle the reasonable middle ground.

Finally, even if prices and nominal interest rates remain unchanged, it may make
sense to inject liquidity: by putting liquidity in the hands of agents, they may be
more willing to use it to acquire goods, because they expect to soon receive cash by
others on a similar shopping spree: an injection of liquidity may move the economy
from a bad equilibrium to a good one. Krugman has popularized the parable of a
baby-sitting coop as an analogy to the workings of an economy in trouble, and the
multiple equilibrium interpretation of his parable is strikingly reasonable, even if
not intended. Here, I have examined a formal baby-sitting coop model. While the
model generates multiple equilibria, I find the conclusion about the injection of
liquidity unwarranted: in fact, it can make matters even worse.

The baby-sitting model also leaves many questions unanswered. To begin with,
it is a model in which the medium of exchange is measured in real rather than
in nominal units. The analysis only fits the case of money to the degree that one
regards the price level as unchanged. The model is essentially silent on what would
happen if prices were to change. Second, the analysis so far is static, comparing
across equilibria. A dynamic analysis is called for.

In sum, are zero nominal interest rates to be recommended? Is the dreaded
liquidity trap instead an implementation of the benign Friedman rule? Is the Scylla
lurking at the lower bound of nominal interest rate a frightening multiheaded sea
monster or a beautiful nymph? Central bankers may not have the luxury to decide
and probably should prefer to err on the side of caution. Academics, such as I,
should at least question the conventional wisdom that a liquidity trap is really such
a terrible situation. Hopefully, this paper has thrown some question marks into the
usual analysis and has shown the need to model deflationary processes with deeper
and greater caution. This time, more research really is needed.
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