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Learner (1983) has given bounds for a parameter of a model estimated by ordinary least squares 
for all possible specifications with a given group of explanatory variables. However, some of these 
specifications will have low R2 specification and these can lead to wide bounds. In this paper, 
bounds are derived for all specifications with R* values a given percentage of the maximum R2 
value. These exact bounds can be found from calculating only two regressions. The techniques are 
applied to a study of the velocity of money. 

1. Introduction 

A modeller is faced with many different possible specifications for the model 
when there are several possible explanatory variables, each of which can enter 
with various lags. Learner (1983) has suggested that certain essential features 
of the model can vary greatly between alternative specifications, thus making 
the interpretation of the model difficult or ‘fragile’. An easily understood 
version of his argument has a single dependent variable y, a group of variables 
X, that ‘should’ be used as explanatory variables in any model of ,v when a 
particular question is under consideration, and a second group of variables X, 
that may or may not enter the model as explanatory variables. A basic or 
‘restricted’ model would be 

y = /3,X, + residual, 

a complete model would be 

(1) 

y = BFXF + &Xi, + residual, (2) 

with some linear constraints on /3,,, such as requiring that certain variables be 
given a zero coefficient in (2). Thus, for example, if one was interested in the 
effect of an interest rate on velocity, then the equation for velocity would 
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certainly include this interest rate in X, plus possibly also velocity lagged 
once, money lagged once, and a price index lagged. These explanatory vari- 
ables might be thought of as a minimum set of variables necessary to explain 
velocity, according to some theory. This would give the basic model. However, 
it may be thought necessary, by some modellers, to augment the basic model 
so that the model better explains the main features of the actual velocity series. 
This augmentation may include further lags of the variables already used plus 
other variables, such as variability of money base. As there are many possible 
ways to augment the basic model so there will be many different specifications. 
Suppose that we are most interested in the value of a particular coefficient, 
denoted Pa, such as the coefficients on interest rate in the velocity equation. 
The estimates of & may vary considerably from one specification to another, 
and the extremes taken by the alternative estimates are called the ‘extreme 
bounds’ by Learner (1983). The extent of these bounds are viewed as measur- 
ing the fragility of the estimate of &, as alternative specifications are used. The 
value and interpretation of these bounds have been strongly criticized by 
McAleer, Pagan, and Volker (1983,1985) and also by Breusch (1985) and 
defended by Learner (1985). 

One criticism of the use of extreme bounds, which has some impact, is that 
the actual extremes may come from models that most economists would find 
unreasonable in some way, such as having low Durbin-Watson statistics, for 
example, in a time-series context. One way to express this problem is in terms 
of R2 statistics. We are not defending R2 as an ideal measure of the quality of 
a model but it is possibly a relevant statistic and some exact results are 
achievable using it. Suppose that the maximum value achievable for R2 is 

R2,,, which is certainly found by using all of the variables X,, X, in (1) with 
no exclusions, which might be called the ‘full’ model. Of course, other 
specifications may also achieve this Ri,. The above worry about the virtues 
of using extreme-bounds analysis is that the extreme may come from specifi- 
cations that achieve R2 values very much smaller than Ri,, and these 
specifications might be considered irrelevant because of their relatively low 
goodness-of-fit so that estimates of PO based on them would also be strongly 
discounted. It may be thought that specifications that achieve R2 values not 
too far from Rf,,,, would produce much narrower extreme bounds for PO. It is 
this possibility that we consider in this paper. Suppose that Rf& is found 
from the full model and Ri, from the basic model (1). Consider model 
specifications achieving R2 values equal to or greater than 

R2, = (1 - 8) RZ,, + 6R2,,,, 

where 0 < S < 1 .i For S small these may be considered as being ‘reasonable’ 

‘See also Learner (19X1), in which similar ideas and results are obtained when constraining ridge 
estimates to achieve a given level of significance. 
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specifications as they are not far from the ‘best’ model in terms of goodness- 

of-fit, as measured by R2. In the next section of the paper an equation for the 
values of the extreme bounds of & is presented for any given 8. The proof is 
found in the appendix. A numerical example is presented in section 3, 
concerning the modelling of velocity and using time-series models. It is found 
that quite wide extreme bounds can occur using 6 values as low as 0.1 or 0.2, 
relative to the extreme bounds found from the full set of possible specifica- 
tions. This result strengthens Learner’s arguments about the difficulties that 
can arise when interpreting particular coefficients. Some further considerations 
are presented in the final section. 

2. The model and results 

The model being considered is 

where y is the vector of observations on the variable y and X is the matrix of 
observations on a vector of explanatory variables. At this stage, no distinction 
is being made between time-series or cross-section situations. It will be 
assumed that E is N(0, ~~52) where the covariance matrix a26? is assumed 
known for the time being. The object of primary interest is the ‘focus’ 
coefficient 

so that & can be any individual coefficient or a weighted linear combination 
of coefficients. There will be a set of prior linear constraints, 

cp = c. (5) 

We assume that C is nonredundant, i.e., has full row rank. It is convenient to 
use this general form for the constraints, but if the two types of variables 
X,, X, are considered, as in the first section, then the coefficients on X, are 
free of restrictions (hence the notation /3,) and the coefficients on X, are 
‘doubtful’ in that they may or may not appear in any particular specification. 
The restrictions would then be C = (0, I) with appropriate sizes of the zero 
and unit vectors, and c = 0. In a particular specification any linear combina- 
tion of these restrictions can be used, so the objective is to study the range of 
estimators for & when imposing linear constraints of the form 

M(Cj3-c)=O, (6) 
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for some matrix M, which is assumed without loss of generality to be of full 
row rank. If no restrictions are placed on M, one gets the extreme bounds 
suggested by Learner (1983). The following notation is used: 

The generalized least-squares (GLS) estimates of /3 using the full model (3) 
with no exclusions is 

b = ( X’ti-‘X)-lX’~-ly, 

which gives the estimate of &, b, = #‘b. 
Let 

D = o’( X’OplX)-‘, A = CDC’, 

and let A- i be a symmetric square root of A-‘. 

For a given A4 in (6) define 

W=A:M’. 

Two important vectors are 

u=A-iCD# 

and 

(7) 

u=A-i(Cb-c). (8) 

The Euclidean norm of u is I(uI( = (z/u) k. It is convenient to define an angle 

8 E [O, 7r/21 by 

u’u 
cos 28 = cos( 24, u) = - 

ll~llll4l ’ 
(9) 

and cos28=cos(u.u)=O if u=O or u=O. The GLSE 6 of & under the 
restriction (6) is 

~O=h,-u’W(W’W)~‘W’u. 

Breusch (1985) proved: 

Theorem 1. The extreme values of & over all choices of (full row rank 
matrices) A4 are 

i.e., 

b, - :(COs28 + l)ll~llll~ll> 

h, - cos2 f9llullllull to b, + sin2Bllullllull. 

The bounds can be attained for some M. 
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Suppose now that a value for 8 is chosen, with 0 I 6 I 1, and models are 
considered having R2 values2 greater or equal to 

R; = (1 - 8) RZ,, + SR2,,. 

The upper and lower bounds on & will be given by 

6, - 9LII~IIII~II 

COG8 - cos2(e + h), 

and if X 2 7~/2 - 8, then 

+L = c0s2e. 

The proof is in the appendix. 

For given 6, and thus A, the extreme bounds can be found directly from the 
two regressions,3 the basic regression involving just the free variables X,, 

‘Alternatively, restrict M to be of rank m, with 0 < m < rank(C). Consider all models where 
the F-statistic for testing the set of linear constraints M(CP - c) is less or equal to 

F 8. ,,z = 65,. ,x,x + (1 - 6) 5,. min, 

where L. milx is the maximum and F,, ,,,in is the minimum among the achievable F-statistics when 
there are m restrictions. Again, Theorem 2 gives the correct bounds. 

Observe that the F-statistic is essentially R2 except for the number of regressors. Furthermore, 
any R2 can be achieved for any given number m, 0 <m < rank(C), of restrictions: for the 
maximal R’, simply include the regressor that arises as the linear combination of regressors with 
coefficients taken from the unrestricted regression. For the minimal R2, choose regressors 
orthogonal to that regressor. Therefore fixing the number m is no restriction. 

‘Observe that the bounds do not depend on u2. Thus one might therefore set a* = 1 to simplify 
the calculation. 
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which gives 6, as the estimate PO and also provides Rki,, and the complete 
regression in which all variables enter, which gives b as the estimate of p and 
b, as the estimate of & and Rk,. It follows that 

* 
U’U = h,, - h,,, 

(Jull=(Ch-c’)A-‘(C&c), 

and 

llull= var(b,) - var( 6,). 

From these quantities 6’ is determined as cos28 = co@ U, u). It may be 
suggested that it is good economic practice to report the values of u’u, JIuJI, 
\lull as well as the extreme bounds on &, for various values of 6, say 0.1 and 

0.05. 

3. The effect of interest rates and inflation on the velocity of money 

We want to analyze the effect of interest rates and inflation on the increase 
in the velocity of money. To this end, we consider two models in quarterly 
data and homoskedastic errors with unknown variance. 

We used the following list of variables: 

veloc =velocity of money, computed as GNP/Ml, 
dveloc = first differences in the velocity of money, 
tbill = three month treasury-bill rate, 
inJEa = inflation, computed from the consumer price index CPI, 

gnp = gross national product, 
mbuariab = variability of money,4 computed as standard deviation within one 

year of the growth rate of the monetary base from its global mean 
and trend and 12 own lags, using monthly data. We multiply that 
number by 10,000 for numerical reasons. 

GNP, CPI, Ml, and monetary base are seasonally adjusted. We use first 
differences in the velocity of money in our regression.5 The time index t 
counts quarters. 

41t has been argued that the recent decline in the velocity of money was caused by changes in 
the variability of money supply [see Friedman (1984) and Hall and Noble (1987)]. 

51t has been argued that the velocity of money follows a random walk, i.e., that there are unit 
roots in the corresponding regression equation in levels. Then, first differencing the velocity series 
is a reasonable procedure. But also in the level model the inference drawn from OLS (instead of 
using unit-roots distribution theory) is valid, if the linear combination of regressors that we look at 
for our focus coefficient doesn’t lie in the eigenspace of the unit root in the joint VAR [see Sims, 
Stock; and Watson (1986)]. Another way to justify using levels is the Bayesian point of view, in 
which the posterior distribution of the coefficient given the data is still almost normal even in the 
presence of unit roots [see Sims (1987)]. In fact, the results don’t change much using levels instead 
of first differences except that the range of R2 becomes much smaller. We chose a model in first 
differences because the results are more instructive and not because we believe the level model to 
yield incorrect results 
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Model I 

(a) Unrestricted (‘equation 1’) 

duefoc( t) = (Y + && + t /3,,,dueloc(t - I) + 5 Pl,2tbill( t - 1) 
I=1 I=0 

+ C p,,,mbuariab(t - 1) + E,. 
I=0 

(b) Restricted (‘equation 2’) 

dueloc( t) = (Y + &-J + i /3,,Iduefoc( t - 1) + i P,,2tbill( t - I) + E,. 
I=1 I=0 

Model II 

(a) Unrestricted (‘equation 1’): Same as in model I 

(b) Restricted (‘equation 2’) 

2 2 

dueloc( t) = (Y - fio,$ + c /3,,ldueloc( t - I) + c PI,ztbill( t - I) 
I=1 I=0 

+ ,$o/?,,3infla(t - I) + i /?,,,mbuariab(t - I) + E,. 
I=0 

Ordinary least squares were used to estimate the models. 

Table 1 highlights a few results [the numbers for ]]u]], I/u]], and cos(u, u) are 
calculated for a2 = 1, see remarks above]. These results contain several inter- 
esting aspects: The range of possible estimates for the trend variable is bigger 
than the two coefficient estimates in the restricted and the unrestricted model 
suggest. This coincides with the uncertainty about the trend coefficient as 
indicated by the t-statistic [see McAleer et al. (1985)]. 
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Table 1 

Model I 

Focus coeff. 62 = 1.0 a2 = 0.1 82 = 0.05 

/3,,,(tbill - first lag) 

Upper 0.08110 0.07342 0.06806 
Lower - 0.00540 0.02420 0.03230 

(Ilull = 0.16853, llull= 0.51325, cos(u, o) = 0.31675) 

W.,(trend) 

Upper 0.00300 0.00161 0.00107 
Lower - 0.00342 - 0.00224 - 0.00172 

(\I~‘11 = 0.01251. Ilull = 0.51325, cos(u, u) = -0.0392) 

Model II 

Focus coeff. s? = 1.0 62 = 0.1 s2 = 0.05 

P,,,(tbill - first lag) 

Upper 0.07635 0.07044 0.06591 
Lower - 0.00108 0.02709 0.03441 

(Ilull = 0.15999, lIDI\ = 0.48395, cos( u, I)) = 0.35931) 

P,,2(tbill - second lag) 

Upper 0.00725 - 0.02404 
Lower - 0.10847 - 0.09251 

(\lull= 0.23911, llull= 0.48395. cos(u, u) = 

6 

C P,,z(elTect of permanent increase in interest rates) 
I= 0 

Upper 0.01682 0.01288 0.01048 
Lower - 0.01911 - 0.00799 - 0.00469 

_ 

- 0.03436 
- 0.08411 

0.16570) 

(I(uII = 0.23911, [/till = 0.48395, cos( u, v) = -0.16570) 

p, ,(inflation - first lag) 

Upper 0.01156 0.00918 0.00795 
Lower - 0.00513 - 0.00072 0.00076 

(IIu(/ = 0.03449, Ilull = 0.48395, cos( u, u) = 0.15132) 

62 = 0.0 

0.05154 
0.05154 

- 0.00034 
- 0.00034 

6’ = 0.0 

0.05155 
0.05155 

- 0.06019 
- 0.06019 

0.00334 
0.00334 

0.00448 
0.00448 

The shape of the range of coefficient estimates for the first lag of tbilf 
changes little in either model. In both cases it has a positive coefficient as long 
as we stay in the top 20% of R2, say. Similarly, the second lag has a negative 
coefficient. Notice that the unrestricted EBA doesn’t allow here for that 
conclusion (since coefficients of the opposite sign in these cases are included 
here when R2 is not restricted). It is of course subject to debate whether it is 
reasonable to look at a fraction of the range of possible R*. The point is that 
we have to make the unrestricted model pretty much as bad as possible within 
the admissible range to arrive at coefficients of the opposite sign in either case. 
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It is now up to the judgement of the individual researcher to decide whether 
(s)he wants to rule out these coefficients as unreasonable (because of the ‘bad’ 
R2) or not. This type of sensitivity analysis, with the basic facts exposed, is of 
course the whole point of this approach. 

We also see that not much can be said about the permanent effects of, e.g., a 
permanent rise in the nominal interest rate. Different models allow for 
different conclusions within the top 20% range of R2 and that might be all that 
can be said. The same applies to money-base variability which we did not find 
to have a clear effect on velocity. Looking at a plot of real interest rates 
(computed as t&l/(t) - injhztion (t), where contemporaneous inflation is used 
as a crude substitute for the inflation expectation of agents in our economy), it 
seems that the recent change in the behavior of the velocity of money 
coincides with the shift of real interest rates from negative values to positive 
values. 

An analysis as shown here helps to understand better the possibilities for 
the outcomes from different models and the type of restrictions we impose 
when passing from a large ‘benchmark’ model to a smaller model. 

4. Conclusions 

Our result enables the researcher with a ‘continuum’ of choices between 
classical econometrics and Learner’s ‘extreme’ EBA: if one only wants the 
maximal R2, the theorem will give the coefficient of the classical analysis. If 
one allows for any R2, the theorem gives the extreme bounds as, e.g., given by 
Breusch’s theorem (which is contained in our theorem as a special result). It 
seems reasonable, as explained above, to give the extreme bounds of the 
coefficient of interest subject to restricting R2 to be in the top 5% or top 10% 
of the range of possible R2: using ordinary-regression output, this can be done 
using the formulas of the theorem. Of course, one would like extensions of our 
result: How can we deal with a vector of coefficients of interest? Is there a 
similar version of the theorem that controls for the Durbin-Watson statistic? 
How can we incorporate uncertainty about the covariance matrix D in our 
model? Are there similar results for other inference procedures (such as probit 
models) or in the presence of nonnormal distributions (as in the unit-roots 
case, for example)? How can one include coefficient-uncertainty arising from 
any of the specific models included in our range? Can bounds be found if 
positivity constraints are imposed on certain coefficients? Are there interesting 
asymptotic results? 

The theorem above allows us to get a feel of how much actually changes, if 
we proceed from a general ‘benchmark’ model to a smaller, restricted model. 
The procedure described above is intended to append current practice in that 
way and not to replace it, and can thus provide useful insights about the data. 



168 C. W.J. Grunger und H. F. Uhlig, Reusonahle extreme-hounds unaiysis 

Appendix 1: Proof of the theorem 

Let k 2 2 be the number of possible restrictions, i.e., the row dimension of 
C. Note that we get any full column rank matrix W as M ranges over all full 
row rank matrices and vice versa. It therefore suffices to restrict attention to 
full column rank matrices W. 

Theorem 2 is correct if ]]u]] = 0 or ]]uJ] = 0: this follows directly from the 
formula for & Hence assume ](u]( # 0 and (]u(] # 0. 

Define functions 

Observe that 0 I y(W) I 1 and that these bounds are sharp, since 
W( W’W)-‘W’ is a matrix that maps any k-dimensional vector in an orthogo- 

nal way on the range of W. 
Fix 6 E [O,l] and choose W. A little calculation shows that the GLSE $,, of 

&, [under the restriction W’A- i(Cfl- c) = 0] and the corresponding correla- 
tion coefficient R2 are given by 

180 = &I - cp(w)ll~llll4l~ 

R2 = 1 _ e’e+ Y(W>II~I~~~ 
(Y -Y>‘b -3 ’ 

where e is the vector of residuals under the unrestricted model and 3 is the 
mean of Y.~ Consequently, R2 2 Rfj is equivalent to y(W) I 6. 

If {u, u} is linear dependent, then there are two cases: cos( U, u) = 1 or 
cos( U, u) = - 1. Suppose that y(W) 2 8. In the first case, 

and in the second case, 

These bounds can be achieved: find a vector x # 0 orthogonal to u. Such a 
vector exists since k 2 2. Let W(t) = tx + (1 - t)u. Observe that ‘p( W(0)) = 
COS(U, u), cp(W(1)) = 0, and that cp is continuous. Hence, for any + E [O,l], 

‘We have, of course, _F = 0 if the model is already in deviation form 



C. W.J. Grunger and H.F. Uhlig, Reasonable extreme-hounds analysis 169 

there is some t so that 

This proves Theorem 2 for the case where {u, u} is linear dependent. 

Assume now that {u, u} is linear independent. The proof involves two steps. 
First, we show that any W can do only ‘worse’ than some matrix x # 0 of the 
form x = au + bu, i.e., at the same R2, q(W) will be restricted to the range 
given by the q(x) for some a and b. Secondly, we show that we get the 
bounds mentioned in the theorem within this subset of matrices that can be 
written as linear combinations of u and u, thus proving the theorem. To 
simplify the calculations, renormalize u and u so that ]]u]] = ]]u]] = 1 (we use 
the same notation for the renormalized vectors). 

Claim. For all W, there is a linear combination x # 0 of u and u and a real 
number TJ with 0 I 17 I 1 such that y(W) = y(x) and q(W) = TJC~(X). 

Proof of the claim. Fix W. Let P be the orthogonal projection on the plane 
spanned by u and v. Let y = W( W’W)-‘W’v and z = Py. Then rp( W) = u’z, 
and similarly y(W) = u’z. If z = 0, we are done: choose a linear combination 
x of u and v which is orthogonal to v and choose TJ = 0. Hence, assume z # 0. 
Observe that z’z 2 y’y = y’v = z’v by the definition of P. Let q be orthogonal 
to u in the plane spanned by u and v, of unit length, and so that q’u 2 0. Set 
x = (z’u)u + aq, where (Y is the solution to the equation (Y* = (z’u)(l - z’v) 
that satisfies a( U’Z) 2 0. Check that z’v = x’u = x’x and thus x = x(x’x)-lx’v. 

Furthermore, ]]x]12 = z’v 2 ]]z]]*. Therefore we can write z as z = (z’u)v + nxq, 
where ]T] 2 1. We find that y(x) = v’x = u’z = y(W) and (for the case U’Z f 0, 
otherwise the claim is now trivial) q(x) = U’X = u’z + (1 - T)au’q = rp( W)/q, 
where l/q = 1 + (1 - ~)a(u’q)/(u’z) 2 1. This finishes the first part of the 
proof. 

Attention is now turned to the second part of the proof: 

Since cp( W) = rp(sW) and y(W) = y(sW) for any nonzero scalar s, it is 
enough to consider only matrices of the form 

W, = sin(p) v + cos( p)q, 

for p E [-r/2, m/2] (recall from above, that q was defined to be orthogonal 
to v in the U-U plane, of unit length, and so that u’q 2 0). Calculate 

y( W,) = sin2(p). 
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This implies that for the matrices W,, R* 2 Ri is equivalent to ]p] I A. 
Furthermore, we find 

u’Wp = sin( p)cos(28) + cos( p) ~‘4 = sin( p + 2f3), 

since u = (u’q)q + cos(28)u, 19 E [0, r/2], and u’q 2 0. With the help of the 
usual theorems about cos and sin, we thus have 

-cp(W,)= -sin(p)sin(p+28)= -(cos*(e)-cos2(r9+p)) 

= sin*(o) - sin*(8 + p). 

Observe now, that 

since 6 E [0, x7/2]. Hence, 

where +L is the bound stated in the theorem. The bound is achieved at 
p = min{ A: 7r/2 - 0). Likewise, 

and the bound is achieved for p = - min{ A; e}. This completes the proof of 
the theorem. 
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