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TESTING MOMENT INEQUALITIES

BY JOSEPH P. ROMANO, AZEEM M. SHAIKH, AND MICHAEL WOLF1

This paper considers the problem of testing a finite number of moment inequalities.
We propose a two-step approach. In the first step, a confidence region for the moments
is constructed. In the second step, this set is used to provide information about which
moments are “negative.” A Bonferonni-type correction is used to account for the fact
that, with some probability, the moments may not lie in the confidence region. It is
shown that the test controls size uniformly over a large class of distributions for the
observed data. An important feature of the proposal is that it remains computationally
feasible, even when the number of moments is large. The finite-sample properties of
the procedure are examined via a simulation study, which demonstrates, among other
things, that the proposal remains competitive with existing procedures while being com-
putationally more attractive.

KEYWORDS: Bonferonni inequality, bootstrap, moment inequalities, partial identifi-
cation, uniform validity.

1. INTRODUCTION

LET Wi� i = 1� � � � � n, BE AN INDEPENDENT AND IDENTICALLY DISTRIBUTED
(i.i.d.) sequence of random variables with distribution P ∈ P on R

k and con-
sider the problem of testing

H0 :P ∈ P0 versus H1 :P ∈ P1�(1)

where

P0 = {
P ∈ P :EP[Wi] ≤ 0

}
(2)

and P1 = P \ P0. Here, the inequality in (2) is intended to be interpreted
component-wise and P is a “large” class of possible distributions for the ob-
served data. Indeed, we will only impose below a mild (standardized) uni-
form integrability requirement on P. Our goal is to construct tests φn =
φn(W1� � � � �Wn) of (1) that are uniformly consistent in level, that is,

lim sup
n→∞

sup
P∈P0

EP[φn] ≤ α(3)

for some prespecified value of α ∈ (0�1).
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In the interest of constructing tests of (1) that not only satisfy (3), but also
have good power properties, it may be desirable to incorporate information
about which components of EP[Wi] are “negative.” Examples of tests that in-
corporate such information implicitly using subsampling include Romano and
Shaikh (2008) and Andrews and Guggenberger (2009), whereas examples of
tests that incorporate such information more explicitly include the “generalized
moment selection” procedures put forward by Andrews and Soares (2010),
Canay (2010), and Bugni (2011). Andrews and Barwick (2012a) proposed a re-
finement of “generalized moment selection” termed “recommended moment
selection” and discussed four reasons why such an approach is preferable.
Therefore, our theoretical and numerical comparisons will be mainly restricted
to the method of Andrews and Barwick (2012a); extensive comparisons with
previous methods are already available in that paper.

Our two-step solution to this problem is similar in spirit to the recommended
moment selection approach. In the first step, we construct a confidence region
for EP[Wi] at some “small” significance level β ∈ [0�α]. In the second step, we
then use this set to provide information about which components of EP[Wi]
are “negative” when constructing tests of (1). Importantly, similarly to the ap-
proach of Andrews and Barwick (2012a), we account in our asymptotic frame-
work for the fact that, with some probability, EP[Wi] may not lie in the confi-
dence region, using a Bonferonni-type correction; see Remark 2.4 for further
discussion.

Our testing procedure and those just cited are related to Hansen (2005),
who uses a similar two-stage approach for the same problem, but does not
account for the fact that with some probability, EP[Wi] may not lie in the con-
fidence region. He instead assumes that β tends to zero as n tends to infinity
and only establishes that his test is pointwise consistent in level instead of the
stronger requirement (3). The importance of the distinction between (3) and
this weaker requirement has been emphasized in the recent literature on in-
ference in partially identified models; for example, see Imbens and Manski
(2004), Romano and Shaikh (2008), and Andrews and Guggenberger (2010).
Another important feature of our approach stems from our choice of con-
fidence region for EP[Wi]. Through an appropriate choice of confidence re-
gion for EP[Wi], our approach remains computationally feasible even when the
number of components of EP[Wi], denoted by k, is large. In particular, unlike
Hansen (2005), we are able to avoid having to optimize over the confidence
region numerically.

As described in Remark 2.6, similar computational problems are also
present in the approach put forward by Andrews and Barwick (2012a). As
a result, they employ computational shortcuts whose validity is only justified
using simulation. Even using these shortcuts, they must restrict attention to
situations in which k ≤ 10, which precludes many economic applications, in-
cluding entry models, as in Ciliberto and Tamer (2009), where k = 2m+1 when
there are m firms, or dynamic models of imperfect competition, as in Bajari,
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Benkard, and Levin (2007), where k may even be as large as 500. For situations
in which k ≤ 10 and α = 0�05, both procedures are equally easy to implement;
however, for situations in which α �= 0�05, our procedure is considerably easier
to implement even when k ≤ 10. This feature allows us, for example, to con-
struct p-values more easily than Andrews and Barwick (2012a). On the other
hand, in contrast to Andrews and Barwick (2012a), we are unable to establish
that the left-hand side of (3) equals α and expect that it is strictly less than
α, though we can argue it is not much less than α; see Remark 2.2. Even so,
for the situations when both procedures are available, we find in a simulation
study that our procedure is nearly as powerful as the one proposed by Andrews
and Barwick (2012a).

Other related literature that uses a two-stage approach like the one de-
scribed in Hansen (2005) includes Loh (1985), who studies some parametric
hypothesis testing problems, and Chernozhukov, Lee, and Rosen (2013), who
study testing conditional moment inequalities. Importantly, these papers, like
Hansen (2005), do not account for the fact that with some probability the nui-
sance parameter may not lie in the confidence region. Berger and Boos (1994)
and Silvapulle (1996) improve upon Loh (1985) by introducing a Bonferonni-
type correction similar to ours. This same idea has been used by Stock and
Staiger (1997) to construct a confidence region for the parameters of a linear
regression with possibly “weak” instrumental variables, by Romano and Wolf
(2000) to construct a confidence interval for a univariate mean that has finite-
sample validity and is “efficient” in a precise sense, and by Chernozhukov,
Fernandez-Val, Hahn, and Newey (2013) to construct confidence intervals for
marginal effects in nonlinear panel data models. Finally, this idea is intro-
duced in a general setting by McCloskey (2012), though the assumptions there
technically preclude moment inequality problems; see McCloskey (2012, Sec-
tion 2.1.3) for further discussion. For a related construction in the context of
testing conditional moment inequalities, see Chetverikov (2012).

The remainder of the paper is organized as follows. In Section S.1 of the
Supplemental Material to this paper (Romano, Shaikh, and Wolf (2014)), we
first consider the testing problem in the simplified setting where P = {N(μ�Σ) :
μ ∈ R

k} for a known covariance matrix Σ. Here, it is possible to illustrate the
main idea behind our construction more clearly and also to obtain some exact
results. In particular, we establish an upper bound on the power function of any
level-α test of (1) by deriving the most powerful test against any fixed alterna-
tive. This result confirms the bound suggested by simulation in Andrews and
Barwick (2012b, Section 7.3). We consider the more general, nonparametric
setting in Section 2. We apply our main results to the problem of constructing
confidence regions in partially identified models defined by a finite number of
moment inequalities in Section 3. Section 4 sheds some light on the behavior of
our procedures in finite samples via a simulation study, including an extensive
comparison of our procedure with the one proposed recently by Andrews and
Barwick (2012a). Proofs of all results can be found in the Appendix.
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2. THE NONPARAMETRIC MULTI-SIDED TESTING PROBLEM

Let Wi� i = 1� � � � � n, be an i.i.d. sequence of random vectors with distribu-
tion P ∈ P on R

k and consider the problem of testing (1). The unknown fam-
ily of distributions P will be a nonparametric class of distributions defined
by a mild (standardized) uniform integrability condition, as described in the
main results below. Before proceeding, we introduce some useful notation.
Below, P̂n denotes the empirical distribution of the Wi� i = 1� � � � � n. The no-
tation μ(P) denotes the mean of P and μj(P) denotes the jth component of
μ(P). Let W̄n = μ(P̂n) and W̄j�n = μj(P̂n). The notation Σ(P) denotes the co-
variance matrix of P and σ2

j (P) denotes the variance of the jth component
of P . The notation Ω(P) denotes the correlation matrix of P . Let Ω̂n = Ω(P̂n)
and S2

j�n = σ2
j (P̂n). Finally, let S2

n = diag(S2
1�n� � � � � S

2
k�n).

Our methodology incorporates information about which components of
μ(P) are “negative” by first constructing a (nonparametric) upper confidence
rectangle for μ at nominal level 1 − β. Our bootstrap confidence region for
this purpose is given by

Mn(1 −β) =
{
μ ∈ R

k : max
1≤j≤k

√
n(μj − W̄j�n)

Sj�n

≤ K−1
n (1 −β� P̂n)

}
�(4)

where

Kn(x�P) = P

{
max
1≤j≤k

√
n(μj(P)− W̄j�n)

Sj�n

≤ x

}
�(5)

Next, a test statistic Tn is required such that large values of Tn provide evi-
dence against H0. For simplicity, below we consider several different test statis-
tics of the form

Tn = T
(
S−1
n

√
nW̄n� Ω̂n

)
for some function T :Rk × (Rk)2 → R that is continuous in both arguments and
weakly increasing in each component of its first argument. As in Andrews and
Barwick (2012a), other test statistics may be considered as well. In particular,
we consider

Tmax
n = max

1≤j≤k

√
nW̄j�n

Sj�n

�(6)

T qlr
n = inf

t∈Rk:t<0
Zn(t)

′Ω̂−1
n Zn(t)�(7)

where

Zn(t)=
(√

n(W̄1�n − t)

S1�n
� � � � �

√
n(W̄k�n − t)

Sk�n

)
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and the inequality in the infimum is interpreted component-wise. Following
Andrews and Barwick (2012a), we also consider an “adjusted” version of T qlr

n

in which Ω̂n is replaced with

Ω̃n = max
{
ε− det(Ω̂n)�0

} · Ik + Ω̂n

for some fixed ε > 0, with Ik denoting the k-dimensional identity matrix, that
is,

T qlr�ad
n = inf

t∈Rk:t<0
Zn(t)

′Ω̃−1
n Zn(t)�(8)

This modification accommodates situations in which Ω(P) may be singular.
Finally, we also consider the “modified method of moments” test statistic of
Andrews and Soares (2010) defined as

Tmmm
n =

k∑
j=1

(√
nW̄j�n

Sj�n

)2

· 1{W̄j�n > 0}�(9)

We also require a critical value with which to compare Tn. For x ∈ R and
λ ∈ R

k, let

Jn(x�λ�P) = P
{
T

(
S−1
n

(√
n
(
W̄n −μ(P)

)) + S−1
n

√
nλ� Ω̂n

) ≤ x
}
�(10)

Note that

P{Tn ≤ x} = Jn
(
x�μ(P)�P

)
�(11)

Importantly, for any x and P , Jn(x�λ�P) is nonincreasing in each component
of λ. It is natural to replace P in the right-hand side of (11) with P̂n, but this
approximation to the distribution of Tn fails when P is on the “boundary” of the
null hypothesis; for example, see Andrews (2000). On the other hand, if μ(P)
were known exactly, then one could plug in this value for μ(P) and replace the
final P in the right-hand side of (11) with P̂n. Obviously, μ(P) is not known
exactly, but we may use the confidence region for μ(P) defined in (4) to limit
the possible values for μ(P). This idea leads us to consider the critical value
defined by

ĉn(1 − α+β) = sup
λ∈Mn(1−β)∩Rk−

J−1
n (1 − α+β�λ� P̂n)�(12)

where R− = (−∞�0]. The addition of β to the quantile is necessary to account
for the possibility that μ(P) may not lie in Mn(1 − β). It may be removed by
allowing β to tend to zero with the sample size. However, the spirit of this
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paper, as well as Andrews and Barwick (2012a), is to account for the selec-
tion of moments in order to achieve better finite-sample size performance; see
Remark 2.4 below for further discussion.

The calculation of ĉn(·) in (12) is straightforward because J−1
n (1 − α + β�

λ� P̂n) is nondecreasing in each component of λ. It follows that the supremum
in (12) is attained when λ = λ∗ has jth component equal to the minimum of
zero and the upper confidence bound for the μj , that is,

λ∗
j = min

{
W̄j�n + Sj�nK

−1
n (1 −β� P̂n)√

n
�0

}
�(13)

Then,

ĉn(1 − α+β) = J−1
n

(
1 − α+β�λ∗� P̂n

)
�(14)

Since β ∈ (0�α), we define our test so that it fails to reject the null hypothesis
not only whenever Tn is less than or equal to the critical value defined above,
but also whenever Mn(1 −β) ⊆ R

k
−. Formally, our test is, therefore, given by

φn = φn(α�β) = 1 − 1
{{
Mn(1 −β) ⊆ R

k
−
} ∪ {

Tn ≤ ĉn(1 − α+β)
}}
�(15)

where 1{·} denotes the indicator function. The following theorem shows that
this test controls the probability of a Type I error uniformly over P in the sense
that (3) holds, as long as P satisfies a mild (standardized) uniform integrability
condition.

THEOREM 2.1: Let Wi� i = 1� � � � � n, be an i.i.d. sequence of random vectors
with distribution P ∈ P on R

k. Suppose P is such that, for all 1 ≤ j ≤ k,

lim
λ→∞

sup
P∈P

EP

[(
Wj�1 −μj(P)

σj(P)

)2

1

{∣∣∣∣Wj�1 −μj(P)

σj(P)

∣∣∣∣> λ

}]
= 0�(16)

Fix 0 ≤ β ≤ α. The test φn of (1) defined by (15) with Tn given by (6), (8), or (9)
satisfies (3).

REMARK 2.1: If, in addition to satisfying the requirements of Theorem 2.1, P
is required to satisfy infP∈P det(Ω(P)) > 0, then the conclusion of Theorem 2.1
holds when Tn is given by (7).

REMARK 2.2: By arguing as in Remark S.2 in the Supplemental Material, it
is in fact possible to show that the left-hand side of (3) is at least α−β, so that,
for small β, the test is not overly conservative.
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REMARK 2.3: In some cases, the null hypothesis may be such that some com-
ponents of EP[Wi] are equal to zero rather than less than or equal to zero. That
is, rather than testing that P belongs in P0 given by (2), the problem is to test
that P belongs to P̃0 given by

P̃0 = {
P ∈ P : EP[Wj�1] = 0 for j ∈ J1�EP[Wj�1] ≤ 0 for j ∈ J2

}
�

where J1 and J2 form a partition of {1� � � � �k}. Such a situation may be ac-
commodated in the framework described above by writing EP[Wj�1] = 0 as two
inequalities EP[Wj�1] ≤ 0 and −EP[Wj�1] ≤ 0. Note that it may be possible to
improve upon this approach by exploiting the additional structure of the null
hypotheses, as is done in Remark S.4 in the Supplemental Material.

REMARK 2.4: For β = βn tending to zero, it follows from our analysis that
the test φ∗

n(βn), where

φ∗
n(β) = 1 − 1

{{
Mn(1 −β) ⊆R

k
−
} ∪ {

Tn ≤ ĉn(1 − α)
}}
�

satisfies

lim sup
n→∞

sup
P∈P0

EP

[
φ∗

n(βn)
] ≤ α

under the assumptions of Theorem 2.1. To see this, suppose that the assump-
tions of Theorem 2.1 hold. Let φn = φn(α�β) be defined as in (15). Fix any
ε > 0. By monotonicity, we have, for all large enough n, that Mn(1 − βn) ⊆
Mn(1 − ε). Hence, for all such n, we have that φ∗

n(βn) ≤ φ∗
n(ε). Moreover,

φn(α+ ε�ε)=φ∗
n(ε). It, therefore, follows from Theorem 2.1 that

lim sup
n→∞

sup
P∈P0

EP

[
φ∗

n(βn)
] ≤ lim sup

n→∞
sup
P∈P0

EP

[
φn(α+ ε�ε)

] ≤ α+ ε�

Since the choice of ε > 0 was arbitrary, the desired result follows. The test
φ∗

n(βn) defined in this way is similar to the “generalized moment selection”
procedures of Andrews and Soares (2010), Canay (2010), and Bugni (2011).
On the other hand, the test φn defined by (15), which accounts for the impact
of the choice of β on the finite-sample behavior of the testing procedure, is
more similar to the procedure of Andrews and Barwick (2012a).

REMARK 2.5: An “optimal” approach to choosing β is described in Re-
mark S.6. We have found that a reasonable simple choice is β = α/10. Further
discussion is given in Section 4.

REMARK 2.6: For the hypothesis testing problem considered in this section,
Andrews and Barwick (2012a) considered an alternative testing procedure that
they termed “recommended moment selection.” In order to describe a version
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of their method based on the bootstrap, fix κ< 0. Let λ̂n be the k-dimensional
vector whose jth component equals zero if

√
nW̄j�n/Sj�n > κ and −∞ otherwise

(or, for practical purposes, some very large negative number). Define the “size
correction factor”

η̂n = inf
{
η> 0 : sup

λ∈Rk:λ≤0

Jn
(
J−1
n (1 − α� λ̂n� P̂n)+η�λ� P̂n

) ≥ α
}
�(17)

The proposed test is then given by

φn(α)= 1
{
Tn > J−1

n (1 − α� λ̂n� P̂n)+ η̂n

}
�

where Tn is given by T qlr
n or T qlr�ad

n ; see (7) and (8). The addition of η̂n is re-
quired because, in order to allow the asymptotic framework to better reflect
the finite-sample situation, the authors did not allow κ to tend to zero with
the sample size n. As explained in Remark S.5 in the Supplemental Material,
determination of η̂n defined in (17) is computationally prohibitive, even in a
parametric setting. This remains true here, so the authors resorted to an ap-
proximation to the supremum in (17) analogous to the one described in Re-
mark S.5. The authors provided an extensive simulation study, but no proof,
in favor of this approximation and restricted attention to situations in which
k ≤ 10 and α = 0�05. The authors also provided simulation-based evidence to
support a further approximation to η̂n that only depends on k and the smallest
off-diagonal element of Ω̂n. A data-dependent way of choosing κ similar to the
way of choosing β described in Remark S.6 was described as well.

3. CONFIDENCE REGIONS FOR PARTIALLY IDENTIFIED MODELS

In this section, we consider the related problem of constructing a confidence
region for identifiable parameters that is uniformly consistent in level. Con-
cretely, let Xi� i = 1� � � � � n, be an i.i.d. sequence of random variables with dis-
tribution P ∈ P on some general sample space S , where P is again a nonpara-
metric class of distributions defined by a mild (standardized) uniform integra-
bility requirement on P. We consider the class of partially identified models in
which the identified set, Θ0(P), is given by

Θ0(P) = {
θ ∈ Θ :EP

[
g(Xi�θ)

] ≤ 0
}
�(18)

where Θ is some parameter space (usually some subset of Euclidean space) and
g :S ×Θ →R

k. Here, for each θ, g(·� θ) is a vector of k real-valued functions,
and the inequality in (18) is intended to be interpreted component-wise. We
wish to construct random sets Cn = Cn(X1� � � � �Xn) satisfying

lim inf
n→∞

inf
P∈P

inf
θ∈Θ0(P)

P{θ ∈ Cn} ≥ 1 − α(19)



TESTING MOMENT INEQUALITIES 1987

for some prespecified α ∈ (0�1). As in Romano and Shaikh (2008), we refer
to such sets as confidence regions for identifiable parameters that are uni-
formly consistent in level. Note that, in this paper, we will not consider the con-
struction of confidence regions for the identified set itself; see Chernozhukov,
Hong, and Tamer (2007), Bugni (2010), and Romano and Shaikh (2010) for
further discussion of such confidence regions.

As in Romano and Shaikh (2008), our construction will be based upon the
duality between constructing confidence regions and hypothesis tests. Specifi-
cally, we will consider tests of the null hypotheses

Hθ :EP

[
g(Xi�θ)

] ≤ 0(20)

for each θ ∈ Θ that control the usual probability of a Type I error at level α.
To this end, for each θ ∈ Θ, let φn(θ) be the test of (20) given by the following
algorithm.

ALGORITHM 3.1:
(a) Set Wi = g(Xi�θ).
(b) Compute the bootstrap quantile K−1

n (1−β� P̂n), where Kn(x�P) is given
by (5).

(c) Using K−1
n (1 −β� P̂n) from (b), compute Mn(1 −β) via equation (4).

(d) Using K−1
n (1 −β� P̂n) from (b), compute λ∗ via equation (13).

(e) Compute the bootstrap quantile ĉn(1 −α+β) = J−1
n (1 −α+β�λ∗� P̂n),

where Jn(x�λ�P) is given by (10).
(f) Compute φn(θ) = φn, where φn is given by (15).

Consider

Cn = {
θ ∈Θ :φn(θ) = 0

}
�(21)

The following theorem shows that Cn satisfies (19). In the statement of the the-
orem, we denote by μj(θ�P) and σ2

j (θ�P) the mean and variance, respectively,
of gj(Xi� θ) under P .

THEOREM 3.1: Let Xi� i = 1� � � � � n, be an i.i.d. sequence of random variables
with distribution P ∈ P. Suppose P is such that, for all 1 ≤ j ≤ k,

lim
λ→∞

sup
P∈P

sup
θ∈Θ0(P)

EP

[(
gj(Xi� θ)−μj(θ�P)

σj(θ�P)

)2

× 1

{∣∣∣∣gj(Xi�θ)−μj(θ�P)

σj(θ�P)

∣∣∣∣> λ

}]
= 0�

Then, Cn defined by (21) with Tn given by (6), (8), or (9) satisfies (19).
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4. SIMULATION STUDY

The goal of this section is to study the finite-sample performance of our two-
step procedure. For the reasons mentioned in the Introduction, the compar-
ison with other procedures is reserved to the newly recommended procedure
of Andrews and Barwick (2012a) (henceforth abbreviated as AB) with certain
details provided in Andrews and Barwick (2012b). In their notation, the pre-
ferred procedure is the “recommended moment selection” (RMS) test based
on (S2�ϕ

(1)) with data-dependent tuning parameters κ̂ and η̂ and it is termed
“qlr, ad/t-Test/κAuto.”

We compare finite-sample performance in terms of both maximum null re-
jection probability (MNRP) and average power for a nominal level of α= 0�05.
The design of the simulation study is equal to the one used by AB for their
Table III. We focus on results for k = 2�4, and 10. For each value of k, we
consider three correlation matrices: ΩNeg�ΩZero, and ΩPos. The matrix ΩZero

equals Ik (i.e., the identity matrix). The matrices ΩNeg and ΩPos are Toeplitz
matrices with correlations on the diagonals (as they go away from the main
diagonal) given by the following: for k = 2: ρ = −0�9 for ΩNeg and ρ = 0�5 for
ΩPos; for k = 4: ρ = (−0�9�0�7�−0�5) for ΩNeg and ρ = (0�9�0�7�0�5) for ΩPos;
for k = 10: ρ = (−0�9�0�8�−0�7�0�6�−0�5�0�4�−0�3�0�2�−0�1) for ΩNeg and
ρ= (0�9�0�8�0�7�0�6�0�5� � � � �0�5) for ΩPos.

For k= 2, the set of μ vectors M2(Ω) for which asymptotic average power is
computed includes seven elements: M2(Ω) = {(μ1�0)� (μ2�1)� (μ3�2)� (μ4�3)�
(μ5�4)� (μ6�7)� (μ7�μ7)}, where μj depends on Ω. For brevity, the values of
μj in M2(Ω) and the sets Mk(Ω) for k = 4�10 are given in Section 7.1 of
Andrews and Barwick (2012b). We point out, however, that we reverse the
signs of the mean vectors used by AB, since in our framework the inequality
signs are reversed in the null and alternative hypotheses.

To showcase the value, in terms of power properties, of incorporating infor-
mation about which components of EP[Wi] are “negative,” we also include a
one-step procedure which ignores such information. This one-step procedure
simply uses J−1

n (1−α�λ� P̂n) with the “least favorable” value of λ, that is, λ= 0,
as the critical value for the test statistic. Equivalently, it can be described as our
two-step procedure using β = 0. Such an approach is expected to have higher
power when all non-positive moments are equal to zero (or at least very close
to zero), but is expected to have reduced power when some non-positive mo-
ments are far away from zero.

AB found that a bootstrap version of their test has better finite-sample size
properties than a version based on asymptotic (normal) critical values. There-
fore, we only implement bootstrap versions, both for the qlr, ad/t-Test/κAuto
test and our two-step and one-step procedures. All bootstraps use B = 499 re-
samples; this is also the case for the first step of our two-step procedure.

The two-step procedure uses β = 0�005 for the construction of the confi-
dence region in the first step. Using larger values of β leads to somewhat re-
duced average power in general. Lower values of β do not make a noticeable
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difference in terms of average power, but require a larger number of bootstrap
resamples in the first step. (The reason is that the number of bootstrap samples
needed to accurately estimate a β quantile is inversely related to β, for small
values of β.)

Unlike Andrews and Barwick (2012b), we do not consider any singular co-
variance matrices Ω. Therefore, the qlr, ad/t-Test/κAuto test as well as our
two-step and one-step procedures use, for simplicity and reduced computa-
tional burden, the “unadjusted” quasi-likelihood ratio test statistic (7) rather
than the “adjusted” version (8). For the scenarios that we consider, this does
not make any difference.

4.1. Maximum Null Rejection Probabilities

Following AB, to ensure computational feasibility, empirical MNRPs are
simulated as the maximum rejection probability over all μ vectors that are
composed only of zero and −∞ entries, containing at least one zero entry.
So for dimension k, there are a total of 2k − 1 null vectors to consider. It is
worth emphasizing, however, that it has not been proven that the maximum
over these 2k − 1 null vectors equals the maximum over all μ vectors satisfying
the null.

For each scenario, we use 10,000 repetitions to compute empirical MNRPs.
The results are presented in the upper half of Table I and can be summarized
as follows; from here on, we use the term AB-Rec to denote the recommended
procedure of AB, that is, the qlr, ad/t-Test/κAuto test.

• All procedures achieve a satisfactory performance.
• The empirical MNRP of the AB-Rec procedure is generally somewhat

higher compared to the two-step and one-step procedures.
• The empirical MNRPs are somewhat higher when the distribution of the

elements is heavy-tailed (i.e., t3) or skewed (i.e., χ2
3) versus standard normal.

4.2. Average Powers

Empirical average powers are computed over a set of m different alterna-
tive μ vectors, with m = 7 when k = 2, m = 24 when k = 4, and m = 40 when
k = 10. For a fixed k, the specific set of μ vectors depends on the correlation
matrix Ω ∈ {ΩNeg�ΩZero�ΩPos}; see Andrews and Barwick (2012b, Section 7.2)
for the details. For each scenario, we use 10,000 repetitions to compute em-
pirical average powers when k = 2 and k = 4, and 5,000 repetitions to com-
pute empirical average powers when k = 10. Unlike AB, we first report “raw”
empirical average powers instead of size-corrected empirical average powers.
If anything, this slightly favors the recommended procedure of AB, since our
two-step and one-step procedures were seen to have (somewhat) lower empir-
ical MNRPs in general. The results are presented in the lower half of Table I
and can be summarized as follows.
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TABLE I

EMPIRICAL MAXIMUM NULL REJECTION PROBABILITIES (MNRPS), UPPER HALF,
AND EMPIRICAL AVERAGE POWERS, LOWER HALF, OF THE AB-RECOMMENDED

PROCEDURE, THE TWO-STEP PROCEDURE, AND THE ONE-STEP PROCEDUREa

k = 2 k= 4 k= 10

Test Distribution H0/H1 ΩNeg ΩZero ΩPos ΩNeg ΩZero ΩPos ΩNeg ΩZero ΩPos

AB-Rec N(0�1) H0 5.3 5.1 4.9 5.3 5.0 5.1 5.8 5.9 5.6
Two-Step N(0�1) H0 5.0 4.8 4.5 5.1 4.9 5.0 5.3 5.2 5.4
One-Step N(0�1) H0 5.2 5.1 4.9 4.9 5.0 5.1 5.2 4.9 5.3

AB-Rec t3 H0 6.2 6.2 5.9 5.7 5.9 5.7 5.4 5.5 5.3
Two-Step t3 H0 5.6 5.7 5.6 5.3 5.7 5.4 5.7 5.6 5.6
One-Step t3 H0 5.2 6.1 5.7 4.7 5.3 5.7 5.3 5.2 5.7

AB-Rec χ2
3 H0 5.2 4.9 5.1 5.3 4.8 4.9 5.8 5.9 6.0

Two-Step χ2
3 H0 4.8 4.4 4.8 5.1 4.7 4.8 5.6 5.3 5.7

One-Step χ2
3 H0 4.6 4.9 5.1 4.9 5.0 5.0 5.3 4.9 5.5

AB-Rec N(0�1) H1 64.1 68.1 71.4 59.1 66.6 77.5 54.7 63.6 78.9
Two-Step N(0�1) H1 62.0 65.1 66.4 56.1 60.6 74.4 51.0 54.8 75.6
One-Step N(0�1) H1 52.7 61.1 64.2 41.3 50.4 72.6 23.9 32.6 68.4

AB-Rec t3 H1 68.1 72.4 75.2 63.9 71.5 79.5 58.9 68.2 80.4
Two-Step t3 H1 66.0 69.1 71.0 61.1 66.1 76.6 54.9 58.9 77.4
One-Step t3 H1 61.7 66.2 68.8 46.7 57.2 74.9 27.6 37.7 71.5

AB-Rec χ2
3 H1 69.3 76.4 77.9 63.1 74.5 82.4 57.8 69.8 82.6

Two-Step χ2
3 H1 67.6 73.7 74.3 61.0 70.8 80.1 55.5 63.7 80.7

One-Step χ2
3 H1 63.7 70.1 71.7 46.9 59.5 77.9 26.1 37.2 73.5

aThe nominal level is α = 5% and the sample size is n = 100. All results are based on 10,000 repetitions when
k= 2�4 and on 5,000 repetitions when k= 10.

• For every scenario, the AB-Rec procedure has the highest empirical aver-
age power and the one-step procedure has the lowest empirical average power.
However, this does not mean that the AB-Rec procedure is uniformly more
powerful than the other two procedures. For individual alternative μ vectors,
even the one-step procedure can have higher empirical power than the AB-
Rec procedure; for example, this happens when all non-positive moments are
equal to zero.

• The two-step procedure generally picks up most of the difference in em-
pirical average powers between AB-Rec and the one-step procedure; across
the 27 scenarios, the average pickup is 74.1% and the median pickup is 76.4%.
In particular, the relative improvement of the two-step procedure over the one-
step procedure tends to be largest when it is needed most, that is, when the
differences between AB-Rec and the one-step procedure are the largest. Such
cases correspond to ΩNeg; across these 9 scenarios, the average pickup of the
two-step procedure is 82.2% and the median pickup is 83.7%.
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TABLE II

EMPIRICAL AVERAGE POWERS OF THE AB-RECOMMENDED PROCEDURE
AND THE TWO-STEP PROCEDURE AND EMPIRICAL “SIZE-CORRECTED”

AVERAGE POWERS OF THE TWO-STEP PROCEDUREa

k= 2 k= 4

Test Distribution H0/H1 ΩNeg ΩZero ΩPos ΩNeg ΩZero ΩPos

AB-Rec N(0�1) H1 64.1 68.1 71.4 59.1 66.6 77.5
Two-Stepsc N(0�1) H1 63.3 66.3 67.8 56.7 62.1 75.2
Two-Step N(0�1) H1 62.0 65.1 66.4 56.1 60.6 74.4

AB-Rec t3 H1 68.1 72.4 75.2 63.9 71.5 79.5
Two-Stepsc t3 H1 67.5 70.2 72.4 61.7 67.0 77.3
Two-Step t3 H1 66.0 69.1 71.0 61.1 66.1 76.6

AB-Rec χ2
3 H1 69.3 76.4 77.9 63.1 74.5 82.4

Two-Stepsc χ2
3 H1 69.0 74.8 75.6 61.8 71.8 80.6

Two-Step χ2
3 H1 67.6 73.7 74.3 61.0 70.8 80.1

aThe nominal level is α= 5% and the sample size is n= 100. Empirical (size-corrected) average powers are based
on 10,000 repetitions.

As mentioned before, reporting “raw” empirical average powers slightly fa-
vors the recommended procedure of AB, so we also compute “size-corrected”
average powers for the two-step procedure. Because of the extremely high
computational burden when k = 10, we are only able to do this for k = 2
and k = 4, however, as follows. For a given combination of k ∈ {2�4}, Ω ∈
{ΩNeg�ΩZero�ΩPos}, and Dist ∈ {N(0�1)� t3�χ2

3}, we vary the nominal level α for
the two-step procedure, keeping β = 0�005 fixed, until the resulting MNRP
matches that of the AB-Rec procedure with α= 0�05. Denote the correspond-
ing nominal level α for the two-step procedure by αsc; for the 18 different com-
binations of (k�Ω�Dist) considered, we find that αsc ∈ [0�051�0�055]. We then
use αsc to compute the “size-corrected” average empirical power for the given
combination of (k�Ω�Dist). The results are presented in Table II. The “fair”
comparison is the one between AB-Rec and Two-Stepsc. It can be seen that the
difference is always smaller than for the “unfair” comparison between AB-Rec
and Two-Step.

4.3. Maximum Null Rejection Probabilities for a Large Number
of Moment Inequalities

We finally turn attention to a case with a large number of inequalities, that
is, a case with k > 10, for which the procedures of AB are no longer available.

We feel that it is most informative to compute MNRPs. Since a comparison
to AB-Rec (or any other of the procedures suggested by AB) is no longer possi-
ble, it is not clear what useful information could be taken away from computing
empirical average powers.
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TABLE III

EMPIRICAL MAXIMUM NULL REJECTION PROBABILITIES OF THE TWO-STEP PROCEDURE
AND THE ONE-STEP PROCEDURE BASED ON VARIOUS TEST STATISTICSa

k= 50� n = 100 k= 50� n = 500

Test Distribution H0/H1 T
qlr
n TMMM

n Tmax
n T

qlr
n TMMM

n Tmax
n

Two-Step N(0�1) H0 NA 4.9 5.1 4.9 4.8 5.1
One-Step N(0�1) H0 NA 4.5 4.9 5.2 5.1 5.2

Two-Step t3 H0 NA 4.3 4.4 4.4 4.7 4.9
One-Step t3 H0 NA 2.9 2.1 4.7 4.5 4.0

Two-Step χ2
3 H0 NA 4.5 4.7 5.2 5.2 5.1

One-Step χ2
3 H0 NA 3.0 4.3 4.9 5.0 5.2

aThe nominal level is α= 5% and the covariance matrix is ΩZero. All results are based on 5,000 repetitions.

As discussed before, computing MNRPs, in principle, involves the evalu-
ation of 2k − 1 NRPs. Given current computational powers, this is infeasi-
ble for any value of k much larger than 10. However, for the special case of
Ω = ΩZero, the problem is reduced to the evaluation of k NRPs only. This
is because, under the identity covariance matrix, for a given number of zero
entries, the position of these entries does not matter. So if there are p zero
entries, say, one only has to evaluate a single NRP rather than

(
k

p

)
NRPs; and

without loss of generality, the corresponding single null vector can be chosen
as (0� � � � �0�−∞� � � � �−∞)′.

We use k= 50, which corresponds to roughly the limit of our computational
capabilities. The sample sizes considered are n= 100�500. It turns out that for
n = 100, in many instances, the qlr test statistic cannot be computed because of
numerical difficulties. We suspect that the reason is that, for (k= 50� n= 100),
the sample covariance matrix is ill-conditioned; this problem is exacerbated in
the bootstrap world where, in a given data set, there are always some repeated
observations.

Therefore, in addition to the qlr test statistic, we also consider the following
two alternative test statistics: first, the “modified method of moments” (MMM)
test statistic TMMM

n defined in (9), and second, the maximum test statistic Tmax
n

defined in (6).
For each scenario, we use 5,000 repetitions to compute empirical MNRPs.

The results are presented in Table III and can be summarized as follows.
• For n = 100, the results for the qlr test statistic are not available due to the

numerical difficulties described above. The other two test statistics yield satis-
factory performance throughout, though the one-step procedure is somewhat
conservative when the distribution of the elements is heavy-tailed (i.e., t3) or
skewed (i.e., χ2

3).
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• For n = 500, both the two-step method and the one-step procedure yield
satisfactory performance for all test statistics and all distributions of the ele-
ments considered.

APPENDIX

In Section A.1, we establish a series of results that will be used in the proof
of Theorem 2.1 in Section A.2. The proof of Theorem 3.1 is then provided in
Section A.3.

A.1. Auxiliary Results

LEMMA A.1: Suppose μn is a sequence in R
k
− such that μn → μ with μ ∈ R̄

k
− =

(R− ∪ {−∞})k. For τ ∈ R
k and Γ a positive definite k× k real matrix, define

fn(τ�Γ ) = inf
t∈Rk:t<−μn

‖τ − t‖Γ �

where ‖x‖Γ = (x′Γ x)1/2 for x ∈ R
k. (Below, we may simply write ‖x‖ for ‖x‖Ik .)

Suppose (τn�Γn) → (τ�Γ ), where Γ is positive definite. Then, fn(τn�Γn) →
f (τ�Γ ), where

f (τ�Γ ) = inf
t∈Rk:t<−μ

‖τ − t‖Γ �

PROOF: We first argue that fn(τn�Γn)− fn(τ�Γ ) → 0. To see this, first note,
by strict convexity and continuity of ‖Γ 1/2(τ − t)‖ as a function of t ∈ R

k, that
there exists t∗n ≤ −μn such that

inf
t∈Rk:t<−μn

∥∥Γ 1/2(τ − t)
∥∥ = min

t∈Rk:t≤−μn

∥∥Γ 1/2(τ − t)
∥∥ = ∥∥Γ 1/2

(
τ − t∗n

)∥∥�
Next, since 0 ≤ −μn, note that

∥∥Γ 1/2
(
τ − t∗n

)∥∥ ≤ ∥∥Γ 1/2τ
∥∥�(22)

Finally, observe that

fn(τn�Γn)− fn(τ�Γ )

= inf
t∈Rk:t<−μn

∥∥Γ 1/2
n (τn − t)

∥∥ − inf
t∈Rk:t<−μn

∥∥Γ 1/2(τ − t)
∥∥

= min
t∈Rk:t≤−μn

∥∥Γ 1/2
n (τn − t)

∥∥ − min
t∈Rk:t≤−μn

∥∥Γ 1/2(τ − t)
∥∥

≤ ∥∥Γ 1/2
n

(
τn − t∗n

)∥∥ − ∥∥Γ 1/2
(
τ − t∗n

)∥∥
≤ ∥∥Γ 1/2

n

(
τn − t∗n

) − Γ 1/2
(
τ − t∗n

)∥∥
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= ∥∥Γ 1/2
n (τn − τ)+ Γ 1/2

n

(
τ − t∗n

) − Γ 1/2
(
τ − t∗n

)∥∥
= ∥∥Γ 1/2

n (τn − τ)+ Γ 1/2
n Γ −1/2Γ 1/2

(
τ − t∗n

) − Γ 1/2
(
τ − t∗n

)∥∥
≤ ∥∥Γ 1/2

n (τn − τ)
∥∥ + ∥∥Γ 1/2

n Γ −1/2 − Ik
∥∥

op

∥∥Γ 1/2
(
τ − t∗n

)∥∥
≤ ∥∥Γ 1/2

n (τn − τ)
∥∥ + ∥∥Γ 1/2

n Γ −1/2 − Ik
∥∥

op

∥∥Γ 1/2τ
∥∥

→ 0�

where the first equality follows from the definition of the relevant norms, the
second equality follows from strict convexity and continuity, the first inequality
follows from the definition of t∗n and the fact that t∗n ≤ −μn, the second inequal-
ity follows from the reverse triangle inequality, the third and fourth equalities
follow by inspection, the third inequality follows from the triangle inequality
and the definition of the operator norm, the fourth inequality follows from
(22), and the convergence to zero follows from the assumed convergences of
τn and Γn.

Next, we argue that fn(τ�Γ ) → f (τ�Γ ). For this purpose, it is useful to
assume, without loss of generality, that μn = (μ(1)

n �μ(2)
n ) and μ = (μ(1)�μ(2)),

where all components of μ(1) are finite and all components of μ(2) are infinite.
Define ι(1) to be a vector of ones with the same length as μ(1); define ι(2) simi-
larly. First note, for 0 < εn → 0 sufficiently slowly and n sufficiently large, that

inf
t∈Rk:t<−μn

‖τ − t‖Γ ≥ inf
t∈Rk:t<−(μ(1)�μ

(2)
n )+(εnι(1)�0ι(2))

‖τ − t‖Γ

= inf
t∈Rk:t<−(μ(1)�μ

(2)
n )

∥∥τ − (
εnι

(1)�0ι(2)
) − t

∥∥
Γ
�

But, by identifying τn in the preceding paragraph with τ − (εnι
(1)�0ι(2)) here,

we see that the final expression equals

inf
t∈Rk:t<−(μ(1)�μ

(2)
n )

‖τ − t‖Γ + o(1)�(23)

The same argument with ε < 0 establishes that inft∈Rk:t<−μn
‖τ − t‖Γ in fact

equals (23). To complete the argument, we argue that

inf
t∈Rk:t<−(μ(1)�μ

(2)
n )

‖τ − t‖Γ → inf
t∈Rk:t<−μ

‖τ − t‖Γ �(24)

To establish this fact, given any subsequence nk, consider a further subsequence
nk� such that μ(2)

nk�
is strictly increasing. By the monotone convergence theorem,

we see that

inf
t∈Rk:t<−(μ(1)�μ

(2)
nk�

)

‖τ − t‖Γ → inf
t∈Rk:t<−μ

‖τ − t‖Γ �

Hence, (24) holds. Q.E.D.
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LEMMA A.2: Let Wi� i = 1� � � � � n, be an i.i.d. sequence of random variables
with distribution P ∈ P on R

k, where P satisfies (16). Then, Mn(1 −β) defined by
(4) satisfies

lim inf
n→∞

inf
P∈P

P
{
μ(P) ∈Mn(1 −β)

} ≥ 1 −β�(25)

PROOF: Follows immediately from Theorem 3.7 in Romano and Shaikh
(2012). Q.E.D.

LEMMA A.3: Consider a sequence {Pn ∈ P :n ≥ 1} where P is a set of distribu-
tions on R

k satisfying (16). Let Wi� i = 1� � � � � n, be an i.i.d. sequence of random
variables with distribution Pn. Suppose

√
nμj(Pn)

σj(Pn)
→ −∞

for all 1 ≤ j ≤ k. Then,

Pn

{
Mn(1 −β) ⊆R

k
−
} → 1�

PROOF: Note that we may write Mn(1 −β) as the set of all μ ∈R
k such that

μj ≤ σj(Pn)√
n

[√
n(X̄j�n −μj(Pn))

σj(Pn)
+

√
nμj(Pn)

σj(Pn)
+ K−1

n (1 −β� P̂n)

σj(Pn)
Sj�n

]

for all 1 ≤ j ≤ k. From Lemma 11.4.1 of Lehmann and Romano (2005), we see
that

√
n(W̄j�n −μj(Pn))

σj(Pn)
=OPn(1)�

By assumption,
√
nμj(Pn)

σj(Pn)
→ −∞�

From Lemma 4.8 in Romano and Shaikh (2012), we see that

Sj�n

σj(Pn)

Pn→ 1�

Finally, note that

K−1
n (1 −β� P̂n) =OPn(1)

because, using the Bonferroni inequality, it is asymptotically bounded above
by �−1(1 −β/k), from which the desired result follows. Q.E.D.
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LEMMA A.4: Let P′ be the set of all distributions on R
k and let P be a set of

distributions on R
k satisfying (16). For (P�Q) ∈ P′ × P, define

ρ(Q�P) = max
{

max
1≤j≤k

{∫ ∞

0

∣∣rj(λ�Q)− rj(λ�P)
∣∣exp(−λ)dλ

}
�

max
1≤j≤k

∣∣∣∣σj(P)

σj(Q)
− 1

∣∣∣∣�∥∥Ω(Q)−Ω(P)
∥∥}

�

where

rj(λ�P) = EP

[(
Xj −μj(P)

σj(P)

)2

1

{∣∣∣∣Xj −μj(P)

σj(P)

∣∣∣∣> λ

}]
�(26)

and the norm ‖ · ‖ is the component-wise maximum of the absolute value of all
elements. Let {Qn ∈ P′ :n ≥ 1} and {Pn ∈ P :n ≥ 1} be such that ρ(Pn�Qn) → 0
and, for some ∅ �= I ⊆ {1� � � �k},

√
nλj�n

σj(Pn)
→ −δj for all j ∈ I and some δj ≥ 0

and
√
nλj�n

σj(Pn)
→ −∞ for all j /∈ I�

Then, for Tn given by (6), (8), or (9), we have

lim sup
n→∞

sup
x∈Rk

∣∣Jn(x�λn�Pn)− Jn(x�λn�Qn)
∣∣ = 0�(27)

PROOF: Consider first the case where Tn is given by (6). Note that
√
nλj�n

Sj�n

= σj(Pn)

Sj�n

√
nλj�n

σj(Pn)
�

From Lemma 4.8 in Romano and Shaikh (2012), we see that

Sj�n

σj(Pn)

Pn→ 1�

Hence,
√
nλj�n

Sj�n

Pn→ −δj for all j ∈ I(28)
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and
√
nλj�n

Sj�n

Pn→ −∞ for all j /∈ I�(29)

It follows that

max
1≤j≤k

(√
n(W̄j�n −μj(Pn))

Sj�n

+
√
nλj�n

Sj�n

)
(30)

= max
j∈I

(√
n(W̄j�n −μj(Pn))

Sj�n

+
√
nλj�n

Sj�n

)
+ oPn(1)�

Next, we argue that

max
1≤j≤k

(√
n(W̄j�n −μj(Qn))

Sj�n

+
√
nλj�n

Sj�n

)
(31)

= max
j∈I

(√
n(W̄j�n −μj(Qn))

Sj�n

+
√
nλj�n

Sj�n

)
+ oQn(1)�

For this purpose, it suffices to show that the convergences in (28) and (29) also
hold with Pn replaced by Qn. To see this, first note that by arguing as in the
proof of Lemma 4.11 in Romano and Shaikh (2012), we have that

lim
λ→∞

lim sup
n→∞

rj(λ�Qn)= 0�

The convergence ρ(Pn�Qn)→ 0 implies further that

σj(Pn)

σj(Qn)
→ 1 for all 1 ≤ j ≤ k�

Since
√
nλj�n

Sj�n

= σj(Qn)

Sj�n

σj(Pn)

σj(Qn)

√
nλj�n

σj(Pn)
�

the desired conclusion follows. Finally, (27) now follows from (30) and (31)
and by arguing as in the proof of Lemma 4.11 in Romano and Shaikh
(2012).

Now consider the case where Tn is given by (8). Note that

T qlr�ad
n = inf

t∈Rk:t<−√
nD−1(Pn)λn

Z̃n(t)
′Ω̃nD

2(Pn)S
−2
n Z̃n(t)�
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where

Z̃n(t)=
(√

n(W̄1�n −μ1(Pn))

σ1(Pn)
− t1� � � � �

√
n(W̄k�n −μk(Pn))

σk(Pn)
− tk

)′
�

D2(Pn)= diag
(
σ2

1 (Pn)� � � � �σ
2
k(Pn)

)
�

Now suppose by way of contradiction that (27) fails. It follows that there exists
a subsequence nk along which the left-hand side of (27) converges to a nonzero
constant and

Ω(Pnk)→ Ω∗� as well as(32) (
W̄1�nk −μ1(Pnk)

σ1(Pnk)
� � � � �

W̄k�nk −μk(Pnk)

σk(Pnk)

)′
(33)

d→Z ∼N
(
0�Ω∗) under Pnk�

Since

D2(Pnk)S
−2
nk

→ Ik�

we have further that

Ω̃nkD
2(Pnk)S

−2
nk

Pnk→ max
{
ε− det

(
Ω∗)�0

}
Ik +Ω∗ = Ω̄�(34)

Note that, along such a subsequence nk, we also have that
√
nkλj�nk

σj(Pnk)
→ −δj for all j ∈ I(35)

and
√
nkλj�nk

σj(Pnk)
→ −∞ for all j /∈ I�(36)

Hence, by Lemma A.1 and the extended continuous mapping theorem (van der
Vaart and Wellner (1996, Theorem 1.11.1)), we have that

T qlr�ad
nk

d→ inf
t∈Rk:t<−δ

(Z − t)′Ω̄−1(Z − t) under Pnk�(37)

Note that a similar result under slightly stronger assumptions could be estab-
lished using, for example, Lemma S.1 in Bugni, Canay, and Guggenberger
(2012). Moreover, by Chow and Teicher (1978, Lemma 3, p. 260), we have
that

sup
x∈R

∣∣∣Pnk

{
T qlr�ad
nk

≤ x
} − P

{
inf

t∈Rk:t<−δ
(Z − t)′Ω̄−1(Z − t)≤ x

}∣∣∣ → 0�
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since the distribution of inft∈Rk:t<−δ(Z− t)′Ω̄−1(Z− t) is continuous everywhere
except possibly at zero and

Pnk

{
T qlr�ad
nk

≤ 0
} → P{Z ≤ −δ} = P

{
inf

t∈Rk:t<−δ
(Z − t)′Ω̄−1(Z − t) ≤ 0

}
�

Next, note that by arguing as above, it follows from the assumed convergence
ρ(Pnk�Qnk) → 0 that (32)–(36) all hold when Pnk is replaced by Qnk . Hence,
by the triangle inequality, we see that along nk, the left-hand side of (27) must
converge to zero, from which the desired result follows.

Finally, consider the test statistic (9), for which the argument is easier. For
example, the above argument for (8) can be used with Ω̃n replaced by the iden-
tity, so that the convergence (37) holds with Ω̄ replaced by the identity. Q.E.D.

LEMMA A.5: Consider a sequence {Pn ∈ P :n ≥ 1} where P is a set of distribu-
tions on R

k satisfying (16). Let Wn�i� i = 1� � � � � n, be an i.i.d. sequence of random
variables with distribution Pn. Suppose that, for some ∅ �= I ⊆ {1� � � � �k},

√
nμj(Pn)

σj(Pn)
→ −δj for all j ∈ I and some δj ≥ 0

and
√
nμj(Pn)

σj(Pn)
→ −∞ for all j /∈ I�

Then,

Pn

{
Tn > J−1

n

(
1 − α+β�μ(Pn)� P̂n

)} → α−β�

PROOF: Let P′ and ρ(P�Q) be defined as in Lemma A.4. Trivially,

Pn

{
P̂n ∈ P′} → 1�

From Lemma 4.8 in Romano and Shaikh (2012), we see that

max
1≤j≤k

∣∣∣∣ Sj�n

σj(Pn)
− 1

∣∣∣∣ Pn→ 0�

From Lemma 4.9 in Romano and Shaikh (2012), we see that

∥∥Ω(P̂n)−Ω(Pn)
∥∥ Pn→ 0�

It follows from Lemma 4.12 in Romano and Shaikh (2012) that

ρ(P̂n�Pn)
Pn→ 0�
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The desired result now follows by applying Lemma A.4 with λn = μ(Pn) and
Theorem 2.4 in Romano and Shaikh (2012). Q.E.D.

A.2. Proof of Theorem 2.1

Suppose by way of contradiction that (3) fails. It follows that there exist a
subsequence nk and η> α such that

EPnk
[φnk] → η�(38)

There are two cases to consider.
First, consider the case where there exists a further subsequence (which, by

an abuse of notation, we continue to denote by nk) such that
√
nkμj(Pnk)

σj(Pnk)
→ −∞

for all 1 ≤ j ≤ k. Then, by Lemma A.3, we see that

Pnk

{
Mnk(1 −β) ⊆R

k
−
} → 1�

Hence,

EPnk
[φnk] → 0�

contradicting (38).
Second, consider the case where there exists a further subsequence (which,

by an abuse of notation, we continue to denote by nk) and ∅ �= I ⊆ {1� � � � �k}
such that

√
nkμj(Pnk)

σj(Pnk)
→ −δj for all j ∈ I and some δj ≥ 0

and
√
nkμj(Pnk)

σj(Pnk)
→ −∞ for all j /∈ I�

Next, recall the definition of ĉn(1 − α+β) in (14) and note that

EPnk
[φnk] ≤ Pnk

{
Tnk > ĉnk(1 − α+β)

}
≤ Pnk

{
Tnk > J−1

nk

(
1 − α+β�μ(Pnk)� P̂nk

)}
+ Pnk

{
μ(Pnk) /∈Mnk(1 −β)

}
�
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Then, by Lemmas A.2 and A.5, we have that

lim sup
k→∞

EPnk
[φnk] ≤ α�

contradicting (38).

A.3. Proof of Theorem 3.1

Follows immediately from Theorem 2.1 by identifying the distribution of
g(Xi�θ) under P ∈ P and θ ∈ Θ0(P) in the present context with the distribution
of Wi under P in Theorem 2.1.
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