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S.1 Appendix

Please note that in what follows we will use the notation a < b to denote a < ¢b for some constant c.

S.1.1 Additional details for Remark 3.8

To streamline our exposition, it is helpful to introduce the following shorthand notation:

Ay = (Yeej) — Yr@i-1)Prej) — Dr2j-1)
Axj = (Xnej) = Xrej—1)(Pr2j) — Dr2j—1))
. 1 A
o= = Y (Ay;—An)Ax
"1<<n
1
= — Z Ax,j /X,j
" 1<G<n
Hn = — Z Ax,j
1<5<n
Using this notation,
Gn = A n — H/m@n 5

where Bn = Q;lﬁyn with Q, = V5, — pnpl,. Hence,

Vi(én — AQ) = V(A — AQ)) — Viu, B -
In order to establish (18), it therefore suffices to show that
Vg, Bn = op(1) .
Using the Sherman-Morrison-Woodbury formula, we have that

Vi ! /’«nﬂ;z Vi !

o t=v 1ty .
" " lfﬂfnvnilﬂn
It follows that
; g NV, Vi 4
VB = Vi Vet SR
Mn n ;Ufn
1 1 _1 _1
_ \/E(V*%u )/V*%ﬁ L VAV 2 ) (Vo 2 ) (Ve 2 i)' (Vi 2 )
- n n n n .

_1 _1
1- (‘/n ZNTL)/(VTL 2#%)

It therefore suffices to show that

VAV T = Op() (S.1)

Vi 24, = op(l). (S.2)

_1 _1
In order to establish (S.1), note E[v/nVy 2 un|X(™] = 0 and Var[y/nV;, 2 un|X™] = I, where I, is the identity matrix and
k = dim(X;). Now (S.1) follows immediately. In order to establish (S.2), note that

1 _11 L1
Vi 2’3/71 = W 2% Z AY,jA)(,j"I‘An‘/n 2Un
1<j<n

_11
= Va?- D AyjAx;top(l),
1<

where in the final equality we make use of Lemma S.1.5 in the Supplemental Appendix and (S.1). To argue that

11
Vi 2 o Z Ay jAxj=op(1),
1<5<n



first use Assumption 2.1(c) and the Cauchy-Schwartz inequality to obtain

1 1
2 2
_11 1 1 _
EVa?= > AYJAX,]"X(n) Slo > 1axf — D Ak Vitaxg
"i<i<n "i<i<n "i<i<n
Using properties of the trace, it follows that
! Ay Vi Ax = S
D AyValdx,=k. (5:3)
"1<i<n
It therefore follows from Assumption 2.3 that
Blv, 2t S Ayaxlx®] Bo.
n JEX,j

1<j<n

To complete the establishment of (S.2), it is helpful to assume further that Var[Ayyj\X(")] is bounded uniformly in 1 < j <n
(as would be the case if, for example, the support of the potential outcomes were bounded). With this assumption, we have
that

_11 1 1
Var |V, 2; > AY,]'AXJ‘X(”) S Do Ak Valax,
1<j<n 1<j<n

which tends to zero from (S.3).

S.1.2 Proof of Theorem 3.1

The theorem follows immediately upon noting that (9) follows from Lemmas S.1.4—-S.1.5 below. l

S.1.3 Proof of Theorem 3.2

The theorem follows immediately upon noting that (14) follows from Lemmas S.1.4-S.1.5 and S.1.6 below. B

S.1.4 Proof of Theorem 3.3

From Lemma S.1.4, we see that it suffices to show that 2 defined in (20) tends in probability to (S.16). Since
B[VarlY; ()| X1] + E[Var[¥ 0) X3 + 5 B [(BY:()]X:] - BIY(D) — (BIYi(0)1X:] — BV 0)]))]
= BValv()IXi)] + ENVarlYi )1 Xl] + 5 (B [(EW 1] - EX1X:D)?] - (B(1)] - BYi©))?) -

the desired conclusion follows immediately from Lemmas S.1.5-S.1.7. B

S.1.5 Proof of Theorem 3.4

Let @ satisfying (31) be given. For such a Q, we first argue that

gz | x ™) 4 zm|xm) (S.4)
Since m = 7, (X (™)), we have from Assumption 2.2 that

gD | x () 4 DM x M) (S.5)

Furthermore,
Y™ 1 pxm (S.6)



To see this, note for any set A and any d and d’ in the support of D(™) \X(") that

P{Y(™ ¢ AID™ = (di,...d2n), XM}

\
v
=
<
S

( . Yan(d2n)) € AID™ = (dy,...dgn), XM}
= P{(Yi(d1),...Yan(d2n)) € AIX(™}

(dh), ... Yan(dhy)) € A|IX(M}
= P{(Yi(d}),. Yan(da,)) € AID™) = (di, ... db,), X}
= P{Y™ cAD™ =(d},...dy,), XM},

where the first and fifth equalities follow from (1), the second and fourth equalities follow from (Y (™) (1), V(") (0)) 1L D(™) !X("),
the third follows from the fact that @ satisfies (31). It now follows from (S.5) and (S.6) that (S.4) holds.

Next, observe that

E Z ¢£Land(gz(n)) - EI|E Z (z);land(gz(n)) X(’ﬂ)

9E€Gn () 9€Gn ()
= E| Y E[%and(z(n))’)((m]
9€Gp ()
)
— onp [¢§fmd(z(n>)} , (S.7)

where the first and final equalities follow from the law of iterated expectations, the second follows from (S.4), and the third

exploits the fact that |Gy (7)| = 2. Using the fact that G, () is a group, we have with probability one that
Y. diez™) <2t
g€G, (1)
Hence,

El > ¢z <2na. (S.8)
gEGy ()

Combining (S.7) and (S.8), we see that (32) holds, as desired. B

S.1.6 Proof of Theorem 3.5

Note that

N 1
Ap =— Z (Yr2j) = Yr(2j—1)) (Dr(25) — Dr(2j-1)) -
" 1<i<n

This observation, together with the definition of &y, in (20), implies that

1
Bty = P ‘ﬁ 2i<j<n Ej(YW(zjV) = Ya(2j-1))(Dr(aj) — Dﬁ(2]‘—1))‘ < |wm
Un(€1y...,€n)
where, independently of W(")7 €j,j = 1,...,n are i.i.d. Rademacher random variables and 1),% is defined as in (S.41). Note
further that
Rn (t) = Rn(t) - Rn(_t) )
where L
Rot) = P T Yi<j<n Ej(Yw(2jj = Yr(25-1))(Dr(2j) = Dr(2j-1)) <dlwm |
Un(€t,...,€n)

The desired conclusion now follows immediately from Lemmas S.1.8-S.1.9 together with Theorem 5.2 of Chung and Romano
(2013). m



S.1.7 Proof of Theorem 4.1

For 1 <4 < 2n, let U; = | X;| and write Ugyy < --- < U(zp). Note that

S

1
o Z [ Xre2j) — Xn(2j—1)| = Z (Xr(25) — Xr(25-1))

1<j<n 1<j<n

1

< = (Xx@n) — Xr)
n

< ! 2U

> n (2n)

5 o

)

where the equality exploits the fact that X (5;_1) < X (25, the two inequalities follow by inspection, and the convergence in

probability to zero follows from Lemma S.1.1. Similarly,

1 1
— Z [ Xr(25) — Xﬁ(2j71)|2 < [ Xren) —Xamyl | = Z | Xr25) — Xr(2i—1)l
"1<i<n " 1<G<n
Uen
v
E o,

where the first inequality follows by inspection, the second follows by arguing as before, and the convergence in probability to

zero again follows from Lemma S.1.1. Finally, for any k € {2,3} and ¢ € {0, 1}, we have that

2 2
SN | Xn@ir) — Xn@j—pl® < -~ > 1 Xn(aj-3) — Xl
1<<2 1<%
2
< |X7'r(2n) - X‘rr(l)l ; Z |X7'r(4j—3) - X7'r(4j)|
1<5<8
Ugn \?
/n
£ o,

where the first and second inequalities follow by inspection, the third follows by arguing as before, and the convergence in

probability to zero again follows from Lemma S.1.1. It thus follows that Assumptions 2.3-2.4 hold.

S.1.8 Proof of Theorem 4.2

We describe an algorithm that leads to a pairing that does not minimize the right-hand side of (35) exactly, but which leads to

the desired bound, from which the result follows.

In order to describe the algorithm, it is useful to introduce some further notation. For an integer m > 1, divide [0, 1]’“ into
m¥ hypercubes with sides of length m~!. We index these cubes by k-tuples of the form (i1,...,4;) with 1 < i; < m for all

1 < j < k. Specifically, the k-tuple (i1,...,i) corresponds to the (closed) cube with vertices

1
{*(il—1+61,...,ik—1+5k):5j6{0,1} foralllgjgk} .
m

We further order these cubes in a “contiguous” way. We do so by defining an algorithm f; that takes as an input a k-
dimensional hypercube of the form (i1,...,%x) with i; € {1,m} for all 1 < j < k and returns a “path” starting from (1, ...,%)
and ending at (i, ...,%}) with z; € {1,m} for all 1 < j < k that traverses all m* of the possible k-dimensional hypercubes. We
define f1 so that

)= 2= = (m=1)—(m) if (i1)=(1)

J1((in)) = ‘ (S.9)
(m)y—(m—1)—--—=(2)— (1) if (¢1)=(m).



Given fr_1, we define fk((z?,,zg)) as follows. If i% =1, then fk((z?,,zg)) equals
(@9, i ) e (i, ik 1)
o (i ih1,2) e (32,011, 2)
-1 -1 . o . .
— (7‘1 7~'~77'k,17.])'_) '_)(Zlu"wzk,pj)
m—1 m—1 . .
e ,...,z;”_l,m)i—)-nb—)(z{”,.,.,zzzl,m),

where in the preceding display it is understood that the “path” for a fixed “row,” i.e.,
-1 -1 . . . .
(1’{ 7"'7Z‘]7€_17.7)H"'H(Ziv"wzi_l?.])7 (Slo)

is given by applying frp_1 first to obtain a “path” starting from (i{;l, .. ,ziill) and ending at (1]1, L. ’ii—l) and then “ap-
pending” j to obtain a “path” of the form (S.10). If, on the other hand, ig = m, then fk((i(l), . ,ig)) equals

(9,30 m) e e (i, iy, m)
= (i m = D) e (67,2, m — 1)

i—1 j—1 . .j .j .
= @, g m =+ D) (6,8 m— i+ 1)
= @ D) e e T, 1)

where, as before, in the preceding display it is understood that the “path” for a fixed “row,” i.e.,
@l m ) e s (i, m— 1) (S.11)

is given by applying fr_1 first to obtain a “path” starting from (i{fl, .. ’%:11) and ending at (zjl, ... ’ii—l) and then “ap-

pending” m — j + 1 to obtain a “path” of the form (S.10).

With fx so defined, we may obtain a “path” starting with (1,...,1). Figure 1(a) above illustrates the “path” obtained
in this way for the case of k = 2 and m = 4. Using this “path,” we are now prepared to describe our algorithm for pairing
units below. We emphasize that the algorithm depends on the choice of m. For clarity, we also note that when we say in our
description of the algorithm that a unit ¢ belongs to a hypercube, we mean that X; belongs to the hypercube. To avoid any
ambiguity, whenever a unit belongs to more than one hypercube, we assign it the hypercube that appears earliest along the

“path.”

Algorithm S.1.1.

Begin with the first nonempty hypercube along the “path.” If there are an even number of units in that
hypercube, pair them together in any fashion; if there are an odd number of units in that hypercube, pair as
many as possible together. Now proceed to the “next” nonempty hypercube along the “path.” If in the previous
hypercube there was an unpaired unit, pair one of the units in the present hypercube with the remaining unit
from the previous hypercube. If, after doing so, there are an even number of unpaired units in the hypercube,
pair them in any fashion; if, after doing so, there are an odd number of unpaired units in the hypercube, pair as
many as possible together. Proceed to the next nonempty hypercube along the “path.” Continue in this fashion

until there are no more nonempty hypercubes.

Figure 1(b) above illustrates a pairing obtained by applying Algorithm S.1.1 with k =2, n = 12 and m = 4.
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Figure S.1: (a) Illustration of the “path” obtained by applying fi with k¥ = 2 and m = 4; (b) Illustration of
a pairing obtained by applying Algorithm S.1.1 with & = 2, n = 12 and m = 4. Note that the endpoints of
the line segments correspond to units and the pairs correspond to units connected by a line segments.

We now argue that Algorithm S.1.1 leads to a pairing satisfying the desired bound. To this end, first note that the maximum
distance between any two points in the a k-dimensional hypercube with sides of length i is % Note further that the maximum
distance between two points in two such cubes that are contiguous (as understood according to ordering described in Section
1) is % Using these facts, the bound in (36) now easily follows. Indeed, simply note that the sum that appears on the
left-hand side of (36) may contain at most n terms corresponding to pairs of points within hypercubes and at most mF terms

corresponding to pairs of points in contiguous hypercubes. The desired conclusion now follows immediately. B

S.1.9 Proof of Theorem 4.3

We prove the result for £k = 3 and ¢ = 0; the other values of k and ¢ can be handled similarly.

By arguing as in the proof of Theorem 4.2 and using (35), we see that

2 o o P
ST Xy — Xeei—pl? 20 (S.12)
1<5<|%]

Note that

D [ Xrajos) — Xaapl®
1<j<2

1 _ - — _
= = 2 1 Xauios) — Keejn T Xeei-1) ~ Xrey + Xnej) — Xagyl?

1<5<8
S - Z | X5 (45-3) — Xﬁ(2j—l)|2 + | Xr2j—1) — Xﬁ(21)|2 + |X7'r(2j) - Xv"t(4j)|2
1<<%
s - Z | X5 45—3) — Xir(4j72)|2 + 1 Xr2j—1) — Xﬁ-(2j)|2 + 1 Xz@j—1) — Xfr(4j)|2
1<5<2
1 _ _
S = D Py~ Xe@-nlP+— X0 1Xaeion — Xepl
1$5<n 1<j<2
E o,

where the first equality follows by inspection, the first inequality follows using the fact that |a + b2 < 2(|a|? + |b|?) for any



real vectors a and b, the second inequality follows from (38) and (39), the second equality follows again from (39), and the

convergence to zero in probability follows from the assumption that 7 satisfies Assumption 2.3 and (S.12). B

S.1.10 Auxiliary Results

Lemma S.1.1. Let U;,i =1,...,n an i.i.d. sequence of random vectors such that E[|U;|"] < co. Then,
_1 P
n~r max |U;| =0
1<i<n
as m — oo.

PROOF: Let € > 0 be given. Note that

_1
Plot mas >} < X PQur s en

- 1<i<n
1
< = > BIUI"H{|UiI" > €'n}]
1<i<n
1
= SEIUT{U" > €'n}]
— 0

as n — oo, where the first inequality follows from Bonferonni’s inequality, the second inequality follows from Markov’s inequality,

the final equality follows from the i.i.d. assumption, and the convergence to zero follows from the assumption that E[|U;|"] < oo.

|
Lemma S.1.2. Forn > 1, let Uy and V;, be real-valued random variables and Fyp, a o-field. Suppose
P{U, < u|Fn} = ®(u/11) a.s. (S.13)
where ®(-) is the standard normal c.d.f. Further assume Vy is Fn-measurable and
d 2
Vi = N(0,75) .
Then,

Up + Vo % N(0, 72+ 72) .

PRrROOF: The proof is omitted, but follows easily using characteristic functions. H

Lemma S.1.3. Let (Un1,...,Unn) ~ G = Q1<cicp Gnyi with u(Gn,i) =0 for all 1 < i < n. Define

G =2 > G

" <i<n

If
lim limsup Eg [|U|I{|U| > A}] =0, (S.14)
A—00 n—oo "

_ a*
then U, =¥ 0

PRrROOF: The proof is omitted, but is a straightforward generalization of Lemma 11.4.2 in Lehmann and Romano (2005), where
Gn,i=Gpn. 1

Lemma S.1.4. If Assumptions 2.1-2.5 hold, then
Vi(An - A@Q) % N(0,12) (5.15)
where

Vi = E[VarY;(1)|Xi]] + E[Var]Yi(0)|X;]]



+3 B [(BY()1X:) - BY() - (B 0] - BV 0)])?] (8.16)
= VerlVi(U] + Varlvi(0)] - 3 B [(EY(IX] — EY (D) + (BYi(0)1X] ~ BYi(0))?]

as n — o0.

PROOF: Note that

1 1
- Yi = — > YD
n . n N
1<:<2n:D;=1 1<:i<2n
1
- > Y = = > Yi(0(1-Dy).
" <i<2n:D;=0 " <li<on

Hence, we may write

Vi(An = AQ)) = Ay — By +Cp — Dny

where
An = % = (Yi(l)Di - Em(l)Di|X<">,D<")])
B o= = 22 (50D = W) - DYIX™, D)
e = o= z (EM:()D,|x ™, DOV - DBy (1))
Dy = %1%2” (EY(0)(1 — D)X, D] - (1~ D)EY; (0)]) -

Note that, conditional on X () and D(”), Ay, and B, are independent and C), and D,, are constant.

We first analyze the limiting behavior of A,,. Conditional on X (™) and D(™), the terms in this sum are independent, but not
identically distributed. We proceed by verifying that the condition in Linderberg’s Central Limit Theorem holds in probability
conditional on X (™) and D("). To that end, define

sh=sn(XM, D)= 37 Var[vi(1)Di| XM, D]
1<i<2n

and note that

3N

> var[vi(n)|x ™, p™]
1<i<2n:D;=1

ST Varyi()x ™)

1<i<2n:D;=1

> Valvi(n)lx],

1<i<2n:D;=1

where the first equality follows from Assumption 2.2 and the second follows from the fact that Q, = Q™. It follows that

2 1 1 1
Sno_ - g Var[Y;(1)|X;] + ( E Var[Y;(1)|X;] — — E Var[Yi(l)Xi}>
n n = 2n . 2 )
1<i<2n 1<i<2n:D;=1 1<i<2n:D;=0

Using Assumption 2.1(b), we have that
1
— > Var[v;()[X,] B E[Var[yi(1)] X)) -
1<i<2n

Note further that

=Y vamOX - Y V)X

2n 1<i<2n:D;=1 1<i<2n:D; =0



1
< o [Var[Yr 25y (1) X (2] = Var[Ye(2;—1) (1) Xr(2-1)]|
n N
1<j<n
1 P
s - [ Xr(25) = Xn2j—1)| = 0,
"<

where the first inequality follows by inspection, the second inequality exploits Assumption 2.1(c) and the convergence to zero
follows from Assumption 2.3. Hence,

B B[Var]y;(1)|X:]] > 0, (8.17)

3 ‘;Jw

where the final inequality exploits Assumption 2.1(a). Next, we argue for any € > 0 that
1

E[|Y;(1)D; — E[Y;(1)D;|X™, DM]21{|Y;(1)D; — E[Y;(1)D;|X™, D™]| > es, 3 X™ DM Ko
s7,

1<i<2n

To this end, first note that for any m > 0 we have that
P{esp, >m} — 1. (S.18)

Note further that Assumption 2.2 implies that

ElYi()Di| X", D] = D; B[Y;(1)|Xi] , (8.19)
so the lefthand-side of the preceding display may be written as

S BN - BMOXIPHIYG) - BY 1] > esal XM, D]
n
—) Tl S i) - EMOIXIRHING) - B > sl X0, D0
™ 1<i<on ' ' ' ' ' ' "’ 7

ST EIYi() - BV (OIXAPI{Yi(1) - EY:(D)[Xi]| > m}X™, D] 4+ op(1)
1<i<2n

IN
VRS 7N VRS
‘ 3 ‘3031\::
N—
L
—

— > Ei(1) - EVi(D[XPI{]Y: (1) — E[Y;(1)]X4]| > m}|Xi] + op(1)
1<i<2n

L (BNarlyi()X:]) T EYi(1) — E[Y;()[X:)PI{]Y; (1) — E[Yi(1)|X,]| > m}]

3 ;zmw
N—
L
—

where the first inequality follows by inspection, the second inequality exploits (S.17)—(S.18), the equality follows from Assump-
tion 2.2 and the fact that Qn, = Q™, and the convergence in probability follows from (S.17) and the fact that Assumption 2.1(b)
implies

E[Yi(1) — BV (1)IX2] = E[Var[Yi (1)|X,] < EYZ(1)] < o0 . (8.20)

Note further that (S.20) implies that
lim B{|Y;(1) - BY;(D1XG]PI{]Y;(1) = BY;(1)|X;]] > m}] = 0.

The condition in Lindeberg’s Central Limit Theorem therefore holds in probability. It follows by a subsequencing argument

similar to that used in the proof of Lemma S.1.5 below that

sup [P{A, < #X™), DM} — @(t/\/E[Var[Yi(lﬂXi]])’ Lo.

teR

A similar argument establishes that

sup [P{B, <t|X™, DM} — @(t/\/E[Var[}Q(O)\Xi}])‘ Lo.

teR

Since A, and B, are independent conditional on X (") and D(™) | it follows by another subsequencing argument that

sup |P{An — Bp, < t|X™ DM} — &(t/\/E[Var[Y; (0)|X;]] + E[Var[Y; (0)| X:]])| 50 . (S.21)
teR

10



To analyze Ch,, first note that (S.19) implies that

Cn Y;(1)|X:] - BlY; (1)) 522
v Z
E[Cn|X™] = —— Z (ElY;(1)|X,] — E[Y;(1)]) . (S.23)
1<z<2n
Furthermore,
Var[Cn|X(M] = Var[Ch — E[Cp|X ™)1 X™)]
- Var|— 1 e o
Vi NG 1§i2§:2n (Dl 2) (B[Y;(1)]X5] E[Yz(l)})’X
- Var| = RS YN I
k [‘/ﬁ 1§§2n (Dl 2) Em(l)XJ‘X ]
B ﬁ (B2 DX (2] = EVr(2j—1) (D1 Xn(2j-1))”
1<j<n
S % (Xn(2j) — X7‘r(2]‘—1))2 o,
1<j<n

where the first equality exploits properties of conditional variances, the second follows from (S.22)—(S.23), the third exploits the
fact that Y, ., <5, Di = n, the fourth exploits the distribution of D)X (™) the inequality follows from Assumption 2.1(c),
and the convergence in probability follows from Assumption 2.3. For any € > 0, it thus follows from Chebychev’s inequality

that n)
Var[Cp | X ("
arlCal X)) 1

P{|Cp — E[Cp| X™M]| > ¢|x (M} < =2

Since probabilities are bounded, we have further that
P{|Cn E[Cn| ]|>e}—>0.

Hence,

Cn = (EYi(1)]X:] - EY:()]) + op(1) - (s.24)
f 1<12§:2n i

A similar argument establishes that

Dn= == > (EYi(0)X:] - EYi(0) +op(1) - (S.25)

Hence,

Cn=Dn = == ), ((BNIX]-EN:0)) - (EXi(0)|Xi] - E:(0)])) +op(1)
= o= (EMi(D)IX:] = E[Yi(1)) — (E[Y:(0)|Xi] — E[Y:(0)])) + op(1)

4w (058 [(EWOIX] - BV - (EYO1X] - BV 0D?] ) |

where the first equality follows from (S.24)—(S.25), the second equality follows by inspection, and the convergence in distribution

follows from Slutsky’s theorem and the Central Limit Theorem.

The desired conclusion (S.15) now follows by a subsequencing argument. To see this, suppose by way of contradiction that

(S.15) fails. This implies that there exists § > 0 and a subsequence ny along which
fUIF{'P{\/nk(Ank —A@Q) <ty —2(t/v)] =6 (5.26)
€

By considering a further subsequence if necessary, which, by an abuse of notation, we continue to denote by ny, it follows from

11



(S.21) that
An,, — Bn,, 5 N(0, E[Var[Y;(0)|X,]] + E[Var[;(0)| X;]]) w.p.1 (conditional on X (") and D("%)) .

Since Cp,, — Dn,, is constant conditional on X (") and D(”k>, Lemma S.1.2 establishes that

Vik(Bn, = A) = An, — Bny, + Cny — Dny 5 N(0,12)
which, by Polya’s Theorem, implies a contradiction to (S.26).
Finally, in order to complete the proof, note that
E[Var[Y; (1)|X,]] + E[Var[Y;(0)|X,]] + éE [(BMIX] - BY(1)]) - (B (0)1X.] - EIY;(0)])?]

= VarlYi(1)] + Var[¥i(0)] - Var[E[Y;(1)|Xi]] — Var[E[Y:(0)|X,]
+3 8 [(BY()IX:] - B - (EY 0] - EY:0))?]

= VarlYi(D)] + VarlYi(0)] - S VarlBIYi()|Xi]] - 5 Varl EY; ()1 X.]
—E[(E[Y:(1)|X:] — E[Yi(L)])(E[Yi(0)|X:] — E[Yi(0)])]
= Varl¥i(1)] + Varl¥i(0)] - 5 B [(BYI] - B () + (BI¥0)|X:] - EYOD)?]
which establishes that the two expressions for v2 in the statement of the theorem are in fact equivalent. Hl
Lemma S.1.5. If Assumptions 2.1-2.3 hold, then fin(d) Eis E[Y;(d)]and 6;(d) £ VarY;(d)], where fin(d) and 52(d) are

defined in (1) and (5), respectively.

PROOF: Note that

inld) = = 3 YidHD, = d}
" <li<on
62(d) = % D> (Vi — in(d)*I{D; = d}
1<i<2n
= LS vranp =dp - i) .
1<i<2n

It therefore suffices to show that
1
= > V(@D =d} 5 EY] (d)]
1<i<2n
for r € {1,2}. We prove this result only for r = 1 and d = 1; the other cases can be proven similarly. To this end, write
1 1
— > YIDi=1} = — 3 Yi()D;

1<i<2n " i<i<on

1 n n 1 n n
= = Y (MWD - BN DX ™, DM+~ ST B (1)Dif X ™, D]
1<i<2n " <li<on

Next, note that

> EMi(1)D|x ™, D]
1<i<2n

> DiE[Y:(1)Xi]

1<i<2n
= Y EM)IXi)

1<i<2n:D;=1

= % Z EY;(1)]X:] + (2::1 Z E[Yi(1)|Xi]—% Z E[Yi(1)|Xi]) ,

1<i<2n 1<i<2n:D;=1 1<i<2n:D;=0

S 3=

12



where the first equality exploits (S.19) and the second and third equalities follow by inspection. Note further that

L 1
= > EMOMIXI-5 Y ENOIX)
" <i<omiD;=1 1<i<2n:D;=0
1
= 2n Z |EYr(25) (DX r2j)] = ElVr(2j—1) (DI Xr(2i-1)]l
" 1<5<n
1 P
S = D 1 Xngy) — Xrnl 20,
1<5<n

where the first inequality follows by inspection, the second exploits Assumption 2.1(c) and the convergence in probability follows

from Assumption 2.3. Since Assumption 2.1(b) implies that E[|E[Y;(1)|X;]|] < E[|Y:(1)|] < oo, it follows that

=Y EM@DIX™, D] B BB (1)|X0)] = BYi(1)]
1<i<2n

To complete the argument, we argue that

(vi)Di = EXi() DX, D)) Ko (8.27)
1<i<2n

S

For this purpose, we proceed by verifying that (S.14) in Lemma S.1.3 holds in probability conditional on X (™) and D). To
that end, note for any m > 0 that

L > E[Yi(1)D; — E[Y;(1)Ds| X, DM I{]Y;(1)D; — E[Yi(1)D;| X ™), D] > m}|x ™), D]

1<i5m
- % 1<;2nE[m(1>Di — DiEY; ()Xl {|Yi(1)D; — DiB[Y;(1)| Xi]| > m}[ X (™), D]

S o 1§izg2nE[m<1> = B (IXG]I{Yi(1) = BY:(D)[X]| > m}[ X", D]

- m 1<z<:2 E[Y;(1) - EYi(DIX|{]Y:(1) — E[Yi(D)]Xi]| > m}|Xi]

B - BRI - B > m), o

where the first and fourth equalities follow from (S.19), the inequality follows by inspection, and the convergence in probability
follows from (S.20). The desired conclusion (S.27) now follows by a subsequencing argument. To see this, suppose by way of

contradiction that (S.27) fails. This implies that there exists € > 0, § > 0 and a subsequence ny, along which

1
Pdl— 3 @qnmemuﬂmXW%DWM)>e 3. (S.29)
"k 1 <i<on,
By considering a further subsequence if necessary, which, by an abuse of notation, we continue to denote by ny, it follows from
(S.19), (S.20) and (S.28) that

1
lim timsup o > (B[Yi(1)Di - BY:()Di| X", D))

MO0 koo SNy ST,
x H{|Yi(1)Di — EYi(1)Di| X, D] > m} | x (™), D)) =0

w.p.1 (conditional on X (k) and D<"k>). Lemma S.1.3 implies, however, that

1
— 3 (Yi(l)Di - Em(1)Di|XW>,D<w>]) — 0 w.p.1 (conditional on X (™) and D)) |

"k 1<i<ony

which implies a contradiction to (S.29). B
Lemma S.1.6. If Assumptions 2.1-2.5 hold, then

72 5 E[VarlYi (D[ X:]] + E[VarlYi (0)|X,]] + E [(E[Y;(1)|X:] — E[Y;(0)|Xi))?]

13



where 72 is defined in (21).

PROOF: Note that

.2
n

S|

1 2
Z (Yr(zj) — Yr2j—1))? = = Z Y- = Z Yr(25)Yr(25-1) -
1<j<n " <i<on " 1<i<n

Since L
= > Y2 =6r(1) - pa(1)+6%(0) — 4n(0)
" <li<on
it follows from Lemma S.1.5 that
1 P
— > Y2 S ENZ()] + EYA(0)] .
1<i<2n

Next, we argue that

P
> Ve Ve@i-1) — 2B (Xi)po(X)]
1<5<n

where we use the notation p4(X;) to denote E[Y;(d)|X;]. To this end, first note that

1 1
E [Yw(Qj)Yw(Qj—l)‘X(n)] = iﬂl(XW(Qj))“O(Xﬂ(2j—l)) + E.L"O(XW(Qj))#l(Xw(Qj—l)) ; (8.30)

X("):|

> ‘E[Y%<%>Y%mjfmlxan
1<5<n

Z w1 ( X2y )0 (X (25-1)) + 10 (Xr(25)) 1 (Xr(25-1))
1<j<n

= - Z <M1(Xﬂ(2j))(u0(xfr(2jfl))_MO(XTr(Qj)))+/1/1(X7r(2j))/"0(X7r(2j))
1<5<n

SO

=

2
— E Yioi\Yr(2i—
n m(25) fm(25-1)

1<j<n

ARSI

3=

—_

11 (X (2 1)) (10 (X (2)) = 10 (Xn(25-1))) + 11 (X 1)JH0(Xe(2j 1))

1 1
= = Y mX)po(X)+ = D (1 (Xnzj-1) = 11 (Xr2i) (10 (Xr(25)) = #0(Xn(2j-1))) »
" li<om 1<j<n

where the second equality follows from (S.30) and the other equalities follow by inspection. Assumption 2.3 implies that

1 1 P

= > (1 (Xr2i-1) = 11 (X)) (10 (Xr25)) = p0(Xr(2;—1)| S = D [ Xm2i—1) = Xn(2p))? 2 0.
1<5<n " 1<G<n

Furthermore, since

Ellpa(X)po(Xa)l] £ Elnd (X)) + Elpf(X:)] < E[YZ(1)] + B[ (0)] < oo,

we have that

2
B~ 3 YapYa@i-

X B 2B (X))o (X)) -
1<j<n

To complete the argument, we show that

> (YeenYaimn) = B [Ya(ap Yaei—n | X)) S0, (S.31)
1<j<n

For this purpose, we proceed by verifying that (S.14) in Lemma S.1.3 holds in probability conditional on X In what follows,

we make repeated use of the following facts for any real numbers a and b and A > 0:

A A
la+blI{la+b] > A} < 2|a|l{|a\ > 5} +2|b|]{|b| > 5} (S.32)

lab|I{|ab] > A} < a%I{|a] > VA} + b2 I{[b] > VA} . (S.33)
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Note that the second of these facts follows from the first together with the inequality 2|ab| < a? + b2. Next, note that

1 n n n
o > EHYﬂzj)Yw(%*l) —E[Yw@j)yw@jfl)‘X( )”I{‘Yw@j)ymrl) —E[ij)y,r@j,l)’x( )” >/\} ’X< )]
1<5<n
< ! E|\Y2, I |Yoia: A E|Y? I|Y,0s A
~ Z m(25) | w(2j>|> 2 Z 7r(2j—1) | W(QJ*1)|> 2
1<j<n 1<J<n
1
+= 30 |B Ve Yacs-n| X )HI{)E[ Yaiaq Yr2i-n|X™]| > 5 }
1<]<
1 hy . h) .
S L X E[ 2])1{|Y""(23)| > \/7} [x ~ > B|YZ, 1)I{|Yw(2a bl > \/7} [x¢ )]
1<j<n 1<]<n
1 A
+E Z !/-LI(XW(2j))M0(X7r(2j71))| I{|/"1(X7r(2j))NU(X7r(2j71))| > 5}
1<j<n
1 A
o Z [ 110 (X (2511 (Xr(2i-1))]| I{|M0(X7r(2j))ul(X7r(2j71))| > 5}
1<j<n
< ! E|\Y2, I |Yoia: A E|Y? I|Y,(0s A
~ Z w(25) | 7r(2j)| > 2 Z 7r(2j71) | ‘"’(2J*1)| > 2
1<j<n 1<j<n
1 2 . _ Al 1 2 _ i
+ Z ;U'I(XW(Z]))I |“1(X7r(2]))|> 2 + Z 'U'O(X‘rr(2j—1))1 |/J'0 (25— 1) 2
™ 1<i<n " 1<i<n
+l Z 20x T X o A 1 2 . i
Ho( 71'(2])) |H0( 7F(2j))|> 2 + Z #1(X7r(23—1))1 |H1 m(25—1) {> 2
1<5<n ™ 1<G<n
1 by
Y E[Yj@j)(1)f{|yﬂ2j)(1)|>\/Z} ’Xw Z E 772(2].)(0)I{|YW(2]-)(0)|> }‘X(m]
" 1<G<n " i<i<n
>\ n A n
+* > E{ 7r2(2j—1)(1)1{|y7f(21'1)(1)| > \/;} [x( D E[ w(25-1)(0 { ~(2-1) (0] > \E}‘X( )}
1<]<n l< <n
1 2 . , Al 1 2 . . A
+ Z 13 (X)) S |1 (X (2))] > 5 (7t Z 15 (Xn(2j—1)I 4 |10 (Xr25-1))] > 5
" 1<5<n "i<i<n
1 ) By 1 ) hy
= D w3 (X [10(Xn(2j))| > S0y > i (Xngjm)I { |1 (Xr(2i-1))| > 5
™ 1<i<n " 1<i<n
hS L E |:YiQ(1)I{|Yi(1) > \/X} )Xi > E |:YiQ(0)I{|Yi(O) > \/X} )X]
" li<on 2 1<i<2n 2
1 hy 1 hY
+= > (X {Iuo(X )| > \/;} - > u?(Xi)I{Im(Xi)I > \/;}
" i<li<on " <li<on
5 E[ﬁ(l)l{mu)w\/f} +E Yﬁ(@f{n@)b@”

+E +E

“%(X”I{'“I(X”' g \@} Ng(Xi)I{MO(Xi) > @H

where the second inequality exploits (S.30). Since E[Y2(d)] < oo and E[u3(X;)] < E[Y;?(d)], we have that
. 2 A
lim B {p3(X)T ] [pa(X0)| > /2 | =0
A— 00 2
2 A
lim E Y ()Iq|Y;(D)]>4/=¢|=0.
A— 00 2

It now follows from a subsequencing argument as in the proof of Lemma S.1.5 that (S.31) holds. Hence,

2 = ENZ()]+ EN?(0)] — 2E[u1 (Xi)po(X:)]
= E[Var[Y;(1)|X;] + E[Var[Y;(0)| X;]] + E [(11(X3) — po(X3))?]
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= BNVarly;(1)|X]] + E[Var[Y; (0)[X:]] + E [(B[Yi(1)|X:] — E[Y;(0)|X.])?]
as desired. B
Lemma S.1.7. If Assumptions 2.1-2./ hold, then
32 B B(EM(1DIX] - B (0)[X:])?] (S.34)

where Ay, is defined in (22).

PRrROOF: Let pg(X;) denote E[Y;(d)|X;] and note that

B [ (Va(aj-9) = Ya(a3-2) Ya(as—1) = Yo(a)) (Pn(aj—3) = D(aj—2)Dr(aj—1) = Driag)| X ]
= i(ul(Xﬂ'Mij)) — 110(Xr(45-2))) (11 (Xr(a5-1)) — B0 (Xr(45)))
_E(MO(XW(4J'73)) — 11 (X (45-2)) (111 (X (a5-1)) — 0 (X7 (45)))
_i(ul(Xﬂ(4j73)) — 110 (X (45-2))) (10 (Xr(a5-1)) — 1 (X7 (45)))

1
+Z(“0(X7r(4j73)) — 11 (X (a5-2))) (B0 (Xr(ai—1)) = #1(Xn(45)))

1 1
= 3 > p1 (X a1 (X aj—e) + = > 10 (X (45—k)) 10 (Xr(aj—0))
ke{2,3},0€{0,1} ke{2,3},£€{0,1}
1
1 > (10 (X (aj— )1 (X (aj—0)) + 11 (X (aj— i) 110 (X (a5—0))) -

ke{2,3},4e{0,1}

Hence, in order to show that

ER2IX™) B Bl(u1(X:) — po(X:)?] (5.35)
it suffices to show that
1 P
o > 11 (X (i) 1 (X (a5—0)) = E[p3 (X0)] (8.36)
1<5< 2 ke{2,3},€{0,1}
1 P
on Z 10 (X (45— 1) 10 (X aj—0)) = E[ud (X)) (8.37)
1<7< 3 ke{2,3},0€{0,1)
1
> > (10 (X (aj— )1 (X (aj—0)) + 11 (X (aj—r) 0 (X r(a5—1)))
1<5< 2 kef2,3},€{0,1}
B 2B 1 (Xi)po (X)) - (3.38)
We first prove (S.36). To see this, note that
11 (X)) (Xr(aj—e)) = 13 (Xn(aj—r)) + 81 (Xnaj—i)) (1 (X (aj—e)) — #1 (X (aj—1)))
1 (Xrajoi) (Xrj—e) = 13 Xn(aime) — 11 (Xraj—0) (1 (Xrgj—e)) — 11 (Xn(aj—1))) 5

SO
1 1 1
1 (X (j—r)) 1 (Xr(aj—p)) = 5#%()(#(4]'—1@)) + 5#%09(4;’—@)) - 5(M1(Xﬁ(4j—z)) — 1 (Xpaj—1)))” -
It follows that

1
o > > 1 (X aj—)) 1 (Xr(aj—p))
1<5< 2 ke{2,3},06{0,1}

= Y B Y Y (0 Kagwe) —m (Kagagn)?

2n - n -
1<i<2n ke{2,3},6€{0,1}1<;<2

But, Assumption 2.1 implies that

1

1
> (11 (Xr(aj—)) — 11 (Xraj—iy)? < -

P
in |Xr(aj—k) = Xnaj—oy|> =0,
ke{2,3},€{0,1} 1<j<% 1<5<

3
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where the convergence in probability to zero follows from Assumption 2.4. Since E[u2(X;)] < E[Y2(1)], we have that

1 P
o 2 MX) S ERi(X)] .
" <i<on

It thus follows that (S.36) holds. Similar arguments may be used to establish (S.37)-(S.38), from which (S.35) follows.
To complete the proof, it remains only to show that
N N P
N2 _ERIx™ S0,

This fact may be established by verifying that (S.14) in Lemma S.1.3 holds in probability conditionally on X () which may be
accomplished by repeated application of (S.32) and (S.33), as in the proof of Lemma S.1.6. B

Lemma S.1.8. Let

~ 1
Rn(t) =P 7 > € (Vr@s) = Yr2i—1))(Dr(2j) — Drzjo1)) < tjw™
" 1<G<n
where, independently of W("), €j,j =1,...,n are i.i.d. Rademacher random variables. If Assumptions 2.1-2.5 hold, then
= P
sup | (1) — @(t/7)| 50,
teR

where

72 = B[VarlYi(1)|Xi]] + E[VarlY; ()| Xi]] + B [(E[Y; (1) Xi] — E[Y;(0)|X:))?] . (5.39)
Proor: Using the fact that €;,j =1,...,n and ¢; (D,,(gj) — Dr(2j-1)):J = 1,...,n have the same distribution conditional on
W (") we have that

~ 1
Rn(t) =P 7 > 6 (Vrg) — Yrzjor)) < tw™
"i<<n
We now proceed by applying part (ii) of Lemma 11.3.3 in Lehmann and Romano (2005) with Cy,,j = (Yr(25) — Yr(25—1)), Which
requires
max;<i<y C? .
1*;7‘2"73 Eo. (S.40)
21<i<n Cn

From Lemma S.1.6, we see that % Zl<j<n C’TQL’]- =72 £ 2 > 0, where the inequality exploits Assumption 2.1(a). Furthermore,

maxi<j<n C2 maXlSjén(Yf(zjfl) + Yﬁ(zj))

n,J <
n ~ n
< maxici<on Y2
~ n
< maxi <;<2, (Yi(1)% + Y;(0)?)
~ n
£ o,

where the first inequality follows by exploiting the fact that |a — b|? < 2(a? 4 b?) for any real numbers a and b, the second and
third inequalities follow by inspection, and the convergence in probability to zero follows from Lemma S.1.1 and Assumption
2.1(b). Hence, (S.40) holds, from which the desired conclusion now follows easily by appealing to the aforementioned lemma

and Polya’s theorem. H

Lemma S.1.9. Let

1. .
D2(e1,. .. €n) =72 — 5(}\%(61, coven) F A% (er,. ., 6)) (S.41)
where 72 is defined in (21),
5‘121(617' . "En)
2
= Z e2j—1€2§ (Yr(a5-3) = Yr(aj—2)) Yraj—1) — Yr(4j))(Dr(aj—3) — Dr(aj—2))(Dr(aj—1) — Dr(45))
15212
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An(el,,..,sn)

1
= - Z ej(Yﬂ(Qj) - Yﬂ(2j—1))(D7r(2j) - Dw(zjq)) )
1<j<n
and, independently of wn), €,j =1,...,n are i.i.d. Rademacher random variables. If Assumptions 2.1-2.5 hold, then
2 (e1,. .. €n) B2 ,

where 72 is defined in (S.39).
PRrOOF: From Lemma S.1.6, we see that 72 £ 72 From Lemma S.1.8, we have further that An(el, ceey€n) LY 0. It therefore
suffices to show that 5\% (€1y--.,€n) £ 0. In order to do so, note that 5\%(51, ...,€n) may be decomposed into sums of the form

2

- Z €2j—1€25 Yr(aj—k) Yr(4j—0) Dr(aj—1)Dr(aj—ery - (8.42)

1<5<1 %]

where (k, k') € {2,3}2 and (¢,¢') € {0,1}2. Furthermore, conditional on W (™) the terms in any such sum are independent
with mean zero. We may therefore argue that any such sum tends to zero in probability by verifying that (S.14) in Lemma

S.1.3 holds in probability conditional on W(n) . To this end, note that

2
= E|:|52j7152jY7r(4j—k)Yﬂ—(4j—£)D7r(4j—k’)D7r(4j—l’)|
1<5< (2]
X I {|e2j—1€2jYr(aj—1)Yr(aj—0) Dr(aj—r/)Dr(aj—eny| > A} ‘W(")]
2 n
< -~ Z E |:|Y7r(4j7k)y7r(4jfl)|1{‘Yﬁ(4j7k)y7r(4j7€)| > A} ‘W( )]
1<5<12 )
2
< = D ek Ye@i—ol {IYa(aj—r) Yaj—o| > A}
1<i<[ 5]
2 2 2 2
< = Y Vol {Va@-nl > VAT += 0 30 V20 gl { Wil > VA}
1<5<1 5 1<j<l3]
1
S - D YIYi>VA
n 1<i<2n { }
1 1
< S 3 PO YOI {(EM) + YRO)E > V)
" <li<on
5 B[+ PO {2 + Y20)2 > VAl

where the first inequality follows from the fact that |e;| = 1 for all 1 < j < n and |D;| < 1 for all 1 <4 < 2n, the second
inequality exploits the fact that 7 = m,(X(™) and both Y™ and X (") are contained in W), the third inequality follows
from (S.33) used in the proof of Lemma S.1.6, the fourth inequality follows by inspection, the fifth inequality uses the fact that
Y2 <Y?2(1) + Y2(0), and the convergence in probability follows from Assumption 2.1(b). Since E[Y;?(d)] < oo, we have that
Jim B [(V2(1) + Y2O){(¥2 1)+ Y2(0)% > VA}] =0.
— 00

It now follows from a subsequencing argument as in the proof of Lemma S.1.5 that (S.42) tends to zero in probability. The

desired result thus follows. H

S.1.11 Additional Simulations

S.1.11.1 Power Curves

In the following figure, we present power curves for the different tests discussed in Section 5 using the specification given by
Model 4 in Table 3 with v = 1.
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Figure S.2: Power curves for Model 4 in Table 3 with v = 1.

S.1.11.2 €d,i Nt4

In the following tables, we repeat the analysis presented in Tables 1-3, but with €4 ; ~ t4 instead of standard normal.

Under H — A =0 Under H1 — A =1/4
Model | t-test naive MP-t t-adj R-adj | t-test naive MP-t t-adj R-adj
1 4.70 5.13 5.41 5.54 5.22 23.45 2391 2494 2479 23.91

4.57 4.83 5.08 5.23 5.04 23.70  24.26 2495 2474 2383
4.09 4.82 5.13 5.24 4.92 2252 2421  25.01 25.38 24.26
1.91 1.78 1.95 5.14 4.60 6.07 5.46 6.15 13.84 13.01
5.30 0.84 1.01 5.28 4.64 9.22 2.14 2.39 9.17 8.35
0.93 0.93 1.00 5.44 4.87 4.94 4.31 4.74 17.46  15.35
4.23 5.17 5.57 5.70 5.40 22.35 24.89 25,74 2581 2523
1.14 1.07 1.14 4.60 4.29 0.95 0.97 0.96 5.15 4.74
9 5.08 0.72 0.81 4.18 3.94 7.12 1.42 1.64 5.78 5.35
10 2.02 4.26 4.58 4.79 4.66 13.19  20.10 20.99 20.81  20.52
11 0.72 0.79 0.86 3.37 3.23 0.65 0.76 0.85 3.86 3.63
12 4.31 0.66 0.70 3.55 3.35 4.41 0.63 0.68 3.72 3.57
13 0.00 4.27 4.76 4.72 4.59 0.00 6.09 6.37 6.47 6.40
14 0.49 0.49 0.54 3.84 3.58 0.62 0.67 0.74 3.74 3.50
15 4.22 0.55 0.62 4.02 3.84 4.06 0.52 0.55 3.96 3.73

0 (O U = W N

Table S.1: Rej. prob. for Models 1-15 with v = tgim(x) for Models 1-15, o1 = 1, p = 0.2. Errors are
distributed as t4.
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Under H — A =0 Under H1 — A =1/4

Model | t-test naive MP-t t-adj R-adj | t-test naive MP-t t-adj R-adj

1 5.29 5.36 5.80 5.70 5.40 17.85 17.84 1859 1881 17.94
5.19 5.08 5.47 5.50 4.92 17.71 17.94 1873 1873 18.02
4.34 4.66 4.97 5.11 4.79 17.37 17.82 18.89 1894 18.35
2.15 2.07 2.19 5.33 4.77 5.72 5.30 5.81 12.29 11.35
5.52 0.88 1.06 5.55 4.73 9.05 2.36 2.59 8.99 8.14
1.10 0.89 1.03 5.42 4.65 4.50 3.82 4.24 16.80 14.94
1.38 4.75 5.14 4.98 5.01 7.34 18.34 19.13 19.00 18.70
1.81 1.78 1.90 6.00 5.72 0.95 1.01 1.04 4.94 4.66
9 5.67 1.22 1.32 5.20 4.68 7.82 2.20 2.19 6.98 6.54
10 0.98 3.13 3.41 3.55 3.48 6.16 12.99 13.45 1342 13.26
11 0.57 0.52 0.66 3.60 3.42 0.47 0.49 0.57 3.73 3.51
12 3.70 0.47 0.49 3.43 3.23 3.86 0.45 0.50 3.80 3.51
13 0.00 3.52 3.81 3.81 3.63 0.00 5.98 6.37 6.53 6.21
14 0.46 0.50 0.54 4.14 3.79 0.35 0.44 0.47 4.02 3.72
15 3.98 0.51 0.55 4.17 3.89 3.88 0.34 0.37 3.92 3.70

0 (O U = W N

Table S.2: Rej. prob. for Models 1-15 with v = 1 for Models 1-6, 4" = (1,4) for Models 7-9, v = taim(x) for
Models 10-15, 01 = 2, p = 0.7. Errors are distributed as t4.

Under H — A =0 Under Hi — A =1/4
Model | t-test niaive MP-t t-adj R-adj | t-test nidive MP-t t-adj R-adj
1 4.49 4.96 5.15 5.06 4.85 23.13 23.74 24.66  24.63 23.95

4.42 5.09 5.31 5.35 5.00 24.44 2475 25.62 25.56  24.69
3.79 4.70 4.84 5.05 4.78 2290 24.89 2588 26.22 25.14
1.59 1.55 1.72 4.94 4.37 5.77 5.30 5.96 13.52 12.38
5.27 0.80 0.90 5.20 4.67 9.10 2.11 2.28 9.11 8.36
0.72 0.62 0.71 4.77 4.24 4.79 4.07 4.58 18.41 16.77
1.03 5.14 5.53 5.46 5.04 10.23 24.15 24.84 2498 2443
0.90 0.85 0.92 4.39 4.12 1.26 1.28 1.38 5.85 5.47
9 5.67 0.62 0.73 4.68 4.28 7.15 1.17 1.40 5.67 5.29
10 2.42 3.78 3.95 4.08 3.95 14.38 17.60 1839 18.28 17.98
11 0.73 0.80 0.88 3.30 3.01 0.81 0.82 0.91 3.42 3.16
12 3.95 0.62 0.64 2.66 2.44 3.69 0.63 0.69 2.72 2.58
13 2.12 3.56 3.82 3.93 3.73 4.47 6.52 6.94 7.21 6.95
14 2.86 2.69 2.98 3.42 3.28 3.08 2.92 3.17 3.46 3.35
15 3.56 1.92 2.08 2.92 2.62 3.83 2.06 2.37 3.05 2.90

0 (O O W N

Table S.3: Rej. prob. for Models 1-12 with v = 1 for Models 1-6, 7" = (4, 1) for Models 7-9, 7 = tdim(x) for
Models 10-15, 01 = 1, p = 0. Errors are distributed as t4.
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S.1.11.3 n=40

In the following table, we repeat the analysis presented in Table 1, but with n = 40 instead of n = 100.

Under H — A =0 Under H1 — A =1/4

Model | t-test naive MP-t t-adj R-adj | t-test naive MP-t t-adj R-adj
1 4.90 5.16 6.07 6.24 5.24 19.65 20.29  22.65 22.72  20.17
2 4.65 4.80 5.92 5.93 4.90 19.24 19.16 21.60 21.44 19.04
3 4.03 5.04 5.85 6.17 5.14 16.60 1871  21.05 21.32  19.00
4 1.57 1.27 1.73 5.61 4.28 2.60 2.18 2.79 9.65 7.16
5 5.41 0.76 1.08 5.39 4.03 7.64 1.10 1.43 7.50 5.85
6 1.14 0.80 1.23 6.02 4.44 1.88 1.27 1.72 9.74 7.14
7 3.46 4.81 5.65 5.98 5.36 15.92 18.66 20.90 20.77 19.35
8 1.48 1.28 1.53 4.58 3.93 1.09 0.83 1.09 4.17 3.59
9 5.71 0.92 1.16 4.14 3.62 7.01 1.30 1.62 4.95 4.40
10 2.12 4.51 4.79 4.69 4.68 13.51  20.35 21.11 20.99 20.54

11 0.67 0.69 0.75 3.76 3.59 0.71 0.80 0.92 3.82 3.62
12 4.32 0.55 0.64 3.69 3.39 4.39 0.61 0.73 3.66 3.37
13 0.00 4.50 4.66 4.79 4.56 0.00 10.38  10.98 11.17  10.80
14 0.72 0.77 0.86 4.13 3.88 0.65 0.71 0.77 3.88 3.55
15 4.09 0.53 0.59 3.80 3.50 4.18 0.64 0.71 3.96 3.60

Table S.4: Rej. prob. for Models 1-15 with v = 1gim(x) for Models 1-15, 01 = 1, p = 0.2. Sample size is
2n = 80.
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