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The	challenge	of	properly	analyzing	
massive	amounts	of	data	

•  Hutchison	et	al.	2015	
PLoS	Comp.	Biol.	11(3)	

•  Hutchison	et	al.	2018	J.	
Biol.	Rhythms	33(4)	

•  Hutchison	&	Dinner,	2017	
bioRxiv	10.1101/118547			

•  Perelis	et	al.	2015	
Science.	(350)	6261	

•  Flourakis	et	al.	2015.	
Cell	162	

•  Leone	et	al.	2015	Cell	
Host-Microbe	17	
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Statistical	analysis	of	
circadian	rhythms	

Identified	errors	in	
premier	methods	

Developed	improved	
and	correct	methods	

Applied	methods	to	
diverse	circadian	
questions	(fruit	flies,	
beta-cells,	microbiome)	

Interest	in	methodology	
and	circadian	biology	of	
gut	microbiome	

genome.gov	

datascience.nih.gov	



Circadian	Rhythms	are	physiological	
rhythms	regulated	by	an	internal	clock	
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Dis-regulation	of	circadian	processes	can	
cause	physiological	changes	and	disease	
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•  Long	et	al.	“Morning	vaccination	
enhances	antibody	response	over	
afternoon	vaccination:	A	cluster-
randomised	trial”	Vaccine	2016	
34(24)	

•  Scheer	et	al.	“Adverse	metabolic	
and	cardiovascular	consequences	of	
circadian	misalignment.”	PNAS	
2009	106(11)	
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Molecular	circadian	experiment	
12	h	light	
12	h	dark	

Every	time	
point	
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Three	challenges	of	rhythm	detection	

1.  Sparse	sampling	of	data	
2.  High	noise	of	measurements	
3.  High	false	positive	rate	

Time	series	data	from	
Hughes	et	al.	PLoS	Gen.	2009	5(4)	

Sampled	every	4	h	Sampled	every	2	h	Sampled	every	1	h	
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Incorrect	methods	can	lead	to	
incorrect	identification	of	rhythmicity	

8	



Well-behaved	methods	will	have	uniformly	
distributed	p-values	in	null	conditions	
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Time	series	generated	
from	Gaussian	noise	

9	

co
un

ts
	



Well-behaved	methods	will	have	uniformly	
distributed	p-values	in	null	conditions	

Rhythm		
detection		
method	

co
un

ts
	

1	0	
0	

1	

Hutchison	et	al.	2015	

Time	series	generated	
from	Gaussian	noise	

10	

1	0	
0	

1	

P-value	(P)	
	

co
un

ts
	

Incorrect	
distribution	of	
p-values	

Rhythmicity	
statistic	(τ)	



Simulation	of	null	data	allows	for	the	
computation	of	the	correct	p-values	
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Simulation	of	null	data	allows	for	the	
computation	of	the	correct	p-values	
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Leading	methods	in	the	field	have	
artifactually	low	p-values	

Hutchison	&	Dinner	2017	

Null	time	series	(generated	from	Gaussian	noise)	

RAIN	fails	to	account	for	correlation	
of	p-values	from	different	waveforms	

MetaCycle	fails	to	account	for	correlation	of	
p-values	from	different	methods	

Thaben	PF,	Westermark	PO.	“Detecting	
rhythms	in	time	series	with	RAIN”	Journal	of	
Biological	Rhythms,	2014.	(29)	6	
-	57	citations	(Google	Scholar)	

Wu	et	al.	“MetaCycle:	an	integrated	R	
package	to	evaluate	periodicity	in	large	
scale	data.”	Bioinformatics.	2016;	32(21):
3351-3353.		-	43	citations		
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Different	gene	rhythmicity	is	found	when	
accurately	calculating	p-values		

14	

ADC

ADM
HEA

ILE

IRI

PUT

STF

0

1000

2000

3000

4000

5000

0 1000 2000 3000 4000
ARSER

M
et

aC
yc

le
 (u

nc
or

re
ct

ed
)

Hutchison	&	Dinner,	in	preparation	

ADM:	Adrenal	Medulla	
ADC:	Adrenal	Cortex	
STF:	Stomach	Fundus	
PUT:	Putamen	
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MUG:	Muscle	Gastrocnemian	
MGP:	Medial	Globus	Pallidus	
PVN:	Paraventricular	Nuclei	
PRC:	Prefrontal	Cortex	
STF:	Stomach	Fundus	
OMF:	Omental	Fat		
BLA:	Bladder	
THR:Thyroid	
IRI:	Iris	
	



Outline	

•  Introduction	
•  Statistical	inaccuracies	in	p-value	calculation	
–  Computational	correction		

•  Hutchison	et	al.	2015	
–  Identification	of	errors		

•  Hutchison	et	al.	2015	
•  Hutchison	&	Dinner	2017	

•  Methodological	improvements	in	rhythm	
detection	

•  Future	directions	
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Outline	

•  Introduction	
•  Statistical	inaccuracies	in	p-value	calculation	
•  Methodological	improvements	in	rhythm	
detection		
– Adapting	empirical	Bayesian	methods	to	rhythm	
detection	
•  Hutchison	et	al.	2018	

•  Future	directions	
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Three	challenges	of	rhythm	detection	

•  Sparse	sampling	of	data	
•  High	noise	of	measurements	
•  High	false	positive	rate	

Time	series	data	from	
Hughes	et	al.	PLoS	Gen.	2009	

Sampled	every	4	h	Sampled	every	2	h	Sampled	every	1	h	
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Introducing	empirical	Bayes	variance	estimation	
via	bootstrapping		improves	rhythm	detection	

1100	time	series,	11	asymmetries,	cosine	with	Gaussian	
noise	added	to	each	point	with	noise-to-amplitude	ratio	of	1		
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Hughes	et	al.	1h	liver	dataset	
12	h	light	
12	h	dark	

0	0	0	0	 12	 12	12	

Hughes	et	al.	(2009)	“Harmonics	of	Circadian	
Gene	Transcription	in	Mammals.”PLoS	Genetics,	
2009.	5(4):	e1000442	
	

1:	0,	1,	2,	3,	4…	
2a:	0,	2,	4,	6...	
2b:	1,	3,	5,	7...	
4a:	0,	4,	8,	12...	
4b:	1,	5,	9,	13...	Hutchison	et	al.	2018	
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Bootstrap	eJTK		performs	better	on	
sparse	data	than	other	methods	

Rhythmicity	criteria:	Benjamini-Hochberg	adjusted	p-value	<0.05	
Hutchison	et	al.	2018	
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Zhang	et	al.	2h	12	tissue	dataset	
12	h	light	
12	h	dark	

0	0	0	0	 12	 12	12	

Zhang	et	al.	(2014)	“A	circadian	gene	expression	atlas	
in	mammals:	Implications	for	biology	and	medicine.”	
PNAS	(111)	45	

Hutchison	et	al.	2018	
21	



Bootstrap	eJTK	reveals	greater	
rhythmicity	across	tissues	

Zhang	et	al.	(2014)	“A	circadian	gene	expression	atlas	in	
mammals:	Implications	for	biology	and	medicine.”	PNAS	(111)	45	

11,731/20,038	(55%)	rhythmic	genes	

Hutchison	et	al.	2018	
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Looking	at	commonly	rhythmic	genes	
reveals	novel	rhythmic	pathways	

Probes	rhythmic	in	>9	tissues	

Hutchison	et	al.	2018	
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•  Stress	response	
•  Heat	Shock	Protein	70	
•  Endoplasmic	reticulum	



Circadian	future	directions	

Hutchison	&	Dinner,	in	preparation	
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Collaborations	

• Perelis	et	al.	2015	Science.	(350)	6261		
– Joseph	Bass	group	at	Northwestern	U	

• Flourakis	et	al.	2015.	Cell	162	
– Ravi	Allada	group	at	Northwestern	U	

• Leone	et	al.	2015	Cell	Host-Microbe	17	
– Eugene	Chang	group	at	UChicago	
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Pancreatic	beta-cell	enhancers	regulate	rhythmic	
transcription	of	genes	controlling	insulin	secretion	

Perelis	et	al.	2015	
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A	Conserved	Bicycle	Model	for	Circadian	Clock	
Control	of	Membrane	Excitability	

Flourakis	et	al.	2015	

Two	distinctly	timed	
sodium	and	
potassium	electrical	
drives	collaborate	to	
directly	control	
membrane	excitability	
and	neuronal	function	
in	a	circadian	
manner.	
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Effects	of	Diurnal	Variation	of	Gut	Microbes	and	High-Fat	
Feeding	on	Host	Circadian	Clock	Function	and	Metabolism	

Leone	et	al.	2015	
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Future	Interests	
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Exploration	of	16S	
quantification	limitations	

Time	

%	
Bayesian	
methods	to	
improve	
quantification	

Circadian	host-microbiome	interactions	



Fin.	
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Rhythm	detection	approaches	
Cosine-fitting	
•  ARSER	
•  Fourier	methods	

Reference-free	methods	
•  ANOVA	

Combination	methods	
•  MetaCycle	(JTK_CYCLE,	Lomb-Scargle,	ARSER)		

Reference	waveform	
matching	
•  JTK_CYCLE,	eJTK,	

Bootstrap	eJTK	
•  RAIN	
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Non-parametric	methods	avoid	arbitrary	
amplitude	thresholds,	but	we	want	amplitude	

relative	to	measurement	uncertainty	

Hutchison	et	al.	2018	

eJTK	Tau:	0.57					BooteJTK	Tau:	0.67	

eJTK	Tau:	0.57					BooteJTK	Tau:	1.08	
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Bootstrap	eJTK	outperforms	other	
rhythm	detection	methods	

Hutchison	et	al.	2018	

1100	time	series,	11	asymmetries,	cosine	with	Gaussian	
noise	added	to	each	point	with	noise-to-amplitude	ratio	of	1		
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Asymmetric	waveforms	improve	
rhythm	detection	
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Period	 Phase	 Asym.	 τ	

24	 10	 4	 0.6	

24	 10	 8	 1.3	

24	 10	 12	 1.0	
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Data	sampled	every	2	h	
over	24	h:		
12	possible	phases	
11	possible	asymmetries	
132	reference	waveforms	
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Asymmetric	waveforms	improve	
rhythm	detection	

Hutchison	et	al.	2018	



JTK_CYCLE	picks	the	best	reference	
waveform	match	as	its	measure	of	

rhythmicity	
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JTK_CYCLE	picks	the	best	reference	
waveform	match	as	its	measure	of	

rhythmicity	
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JTK_CYCLE	picks	the	best	reference	
waveform	match	as	its	measure	of	

rhythmicity	
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Asymmetric	waveforms	improve	
rhythm	detection	
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Picking	the	best	Kendall	Tau	p-value	
underestimates	the	true	p-value	
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Period	 Phase	 τ	 p-value	

24	 4	 0.4	 0.3	

24	 8	 1.1	 0.001	

24	 12	 0.8	 0.02	

Hutchison	et	al.	2015	



The	Bonferroni	correction	results	in	
overestimates	of	p-values	
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τ	 p-value	 #	ref.	 Bonf.	

0.4	 0.3	 12	 1	

1.1	 0.001	 12	 0.012	

0.8	 0.02	 12	 0.24	

Hutchison	et	al.	2015	



The	Bonferroni	correction	results	in	
overestimates	of	p-values	
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τ	 p-value	 #	ref.	 Bonf.	

0.4	 0.3	 132	 1	

1.1	 0.001	 132	 0.132	

0.8	 0.02	 132	 1	

Hutchison	et	al.	2015	



Empirically	calculating	the	p-values	via	
simulation	generates	accurate	p-values	

Simulate	1	million	time	series	from	
noise	to	get	empirical	distribution	of	
null	p-values	
	
Can	fit	distribution	using	fitting	of	
1000	time	series	

43	Hutchison	et	al.	2015	



Bootstrap	eJTK	shows	increased	
consistency	compared	to	other	methods	
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